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Abstract: Interval estimation for the proportion parameter in one-sample
misclassified binary data has caught much interest in the literature. Re-
cently, an approximate Bayesian approach has been proposed. This ap-
proach is simpler to implement and performs better than existing frequen-
tist approaches. However, because a normal approximation to the marginal
posterior density was used in this Bayesian approach, some efficiency may
be lost. We develop a closed-form fully Bayesian algorithm which draws
a posterior sample of the proportion parameter from the exact marginal
posterior distribution. We conducted simulations to show that our fully
Bayesian algorithm is easier to implement and has better coverage than the
approximate Bayesian approach.
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1. Introduction

In many applications, due to practical reasons such as cost-saving, fallible
classifiers which are prone to error are used to classify individuals into two dis-
tinct categories. Consequently, misclassified binary data occur. Although both
false-positive and false-negative errors are possible for misclassified binary data,
sometimes only one type of misclassification error is present. For example, Moors
et al. (2000) presented auditing data where only false-negative error occurred,
and Perry et al. (2000) showed blood testing data which had only false-positive
error. In this paper, without loss of generality, we assume only false-positive error
exists for the data of interest.

Classical estimators of the population proportion parameter for misclassified
binary data have been demonstrated to be biased (Bross, 1954). In the literature,
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several methods are popular for correcting the bias. One method is the use of
multiple fallible classifiers. For example, with multiple fallible classifiers available,
Lie et al. (1994) have used a maximum likelihood approach and York et al. (1995)
have developed a Bayesian approach to correct false-negative error. If an infallible
classifier is available, Tenenbein (1970) proposed a double-sampling scheme where
an additional sample is classified using both the fallible and infallible classifiers.
The rationale of Tenenbein’s double-sampling scheme is very sensible. Fallible
classifiers result in misclassification but are inexpensive, while infallible classifiers
result in true classification but are much more expensive. Therefore, the use of
both fallible and infallible classifiers not only enables the identifiability of the
model, but also is economically viable.

In this paper we will focus on misclassified binary data subject to false-positive
error and obtained using a double-sampling scheme. For such data, Moors et
al. (2000) have derived a one-sided frequentist interval estimator, Raats and
Moors (2003) have derived a Bayesian interval estimator, and Boese et al. (2006)
have derived several likelihood-based confidence intervals (CIs) for the proportion
parameter. To overcome the computational difficulty required by the aforemen-
tioned methods, Lee and Byun (2008) have used noninformative priors to provide
Bayesian credible intervals that were easier to compute. However, because a nor-
mal approximation to the marginal posterior density was used in their Bayesian
approach, some efficiency may be lost.

In this paper, we derive a closed-form fully Bayesian algorithm which draws a
posterior sample of the proportion parameter from the exact marginal posterior
distribution. We describe the data in Section 2 and develop Bayesian model
and algorithm in Section 3. Then, we illustrate our algorithm using real data
in Section 4. We compare the performance of our Bayesian algorithm with the
approximate Bayesian algorithm in Section 5 and provide a discussion in Section
6.

2. Data

In this section we consider one-sample binary data subject to false-positive
misclassification and obtained using a double-sampling scheme. The overall data
set is composed of two independent data sets: original data and training data.
The original data are obtained by using only the fallible classifier to classify
individuals, and the training data are obtained by using both the fallible and
infallible classifiers to classify individuals.

The data are displayed in Table 1. There are M and n individuals in the
original and training data, respectively. We use N to denote the total number of
observations, i.e., N = M + n. For the original data, X and Y are the numbers
of positive and negative observations by the fallible classifier, respectively. For
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the training data, njk is the number of individuals classified as j and k by the
infallible and fallible classifiers, respectively. For example, n01 is the number of
individuals classified as negative (0) by the infallible classifier but positive (1) by
the fallible classifier in the training data. Note that n10 is not available because
false negative error is assumed to be impossible.

Table 1: One-sample binary data subject to false-positive misclassification and
obtained using double sampling

Fallible Classifier

Data Infallible Classifier 0 1 Total

Training 0 n00 n01 n0·
1 NA n11 n11

Total n00 n·1 n
Original NA Y X M

NA: Not Available

To describe the data and introduce notation, for an individual in the data,
let F and T be the classification by the fallible classifier and infallible classifier,
respectively. We define F = 1 if the individual is positive by the fallible classifier
and F = 0 otherwise, and T = 1 if the individual is positive by the infallible
classifier and T = 0 otherwise. Clearly, misclassification occurs when T 6= F .

Next, we define p = Pr(T = 1), π = Pr(F = 1), and φ = Pr(F = 1|T = 0).
We see that p is the true proportion parameter of interest, π is the proportion
parameter of the fallible classifier, and φ is the false positive rate of the fallible
classifier. Note that π is a function of other parameters. In particular, by the
law of total probability, we have

π = Pr(T = 1) Pr(F = 1|T = 1) + Pr(T = 0) Pr(F = 1|T = 0)

= p+ qφ, (2.1)

where q = 1− p.
We are interested in constructing interval estimators for p. For easy reference,

the cell probabilities of Table 1 are presented in Table 2.

Table 2: Cell probabilities

Fallible Method

Data Infallible Method 0 1 Total

Training 0 q(1− φ) qφ q
1 NA p p

Original NA 1− π π 1

NA: Not Available
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3. Model

In this section we develop Bayesian inference for the data described in the
previous section. Our aim is to derive a closed-form algorithm for sampling from
the exact posterior distribution of the proportion parameter p given the data.
Statistical inference including point and interval estimation on p will be obtained
using this posterior sample.

In Table 1, the observed counts (n00, n01, n11) of the training data have a
trinomial distribution with total size n and probabilities displayed in an upper
right 2× 2 submatrix in Table 2, i.e.,

(n00, n01, n11)|p, φ ∼ Trin(n, (q(1− φ), qφ, p)).

In addition, the observed counts (X,Y ) have the following binomial distribution:

(X,Y )|p, φ ∼ Bin(M, (π, 1− π)).

Because (n00, n01, n11) and (X,Y ) are independent, the sampling distribution of
the vector of all data d = (n00, n01, n11, X, Y ) given the vector of all parameters
η = (p, φ) is

f(d|η) ∝ [q(1− φ)]n00(qφ)n01pn11πX(1− π)Y . (3.1)

To develop a Bayesian approach, a non-informative proper prior for η has
been commonly used in the literature. Specifically, we choose a uniform prior for
each component of η and assume that these priors are independent; i.e., the joint
prior distribution is

f(η) = 1. (3.2)

Combining (3.1) and (3.2), we obtain the following joint posterior distribution:

f(η|d) ∝ [q(1− φ)]n00(qφ)n01pn11πX(1− π)Y , (3.3)

which has the same functional form as the sampling distribution in (3.1).
Sampling from (3.3) is not straightforward. Raats and Moors (2003) derived

the posterior to be a nontrivial linear combinations of beta distributions which
required heavy computation to sample from, and Lee and Byun (2008) used a
normal approximation to the marginal posterior density, which may cause some
loss of efficiency.

To improve upon existing algorithms, we propose to use a reparameterization
and then derive a closed-form algorithm. Specifically, define η∗ = (λ, π), where

λ = p/π,

π = π.
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The reparameterization from η to η∗ retains the number of unique parameters
and is also invertible:

p = λπ, (3.4)

φ = (1− λ)π/q. (3.5)

We remark that η∗ are interpretable parameters. In fact, by Table 2, we have

λ =
Pr(T = 1, F = 1)

Pr(F = 1)
= Pr(T = 1|F = 1),

π = Pr(F = 1).

Therefore, λ is the conditional probability that an individual is truly classified as
positive, given that the fallible classification is already positive. Clearly, λ and π
are quantities between 0 and 1.

We now develop a Bayesian model based on the new parameters η∗. The
sampling function of d given η∗ is

f(d|η∗) ∝ λn11(1− λ)n01πX+n.1(1− π)Y+n00 . (3.6)

We specify the joint prior density for η∗ such that the components of η∗ have
independent beta distributions:

f(η∗) ∝ λa(1− λ)bπc(1− π)d. (3.7)

Combining (3.6) and (3.7), we obtain the following joint posterior density:

f(η∗|d) ∝ λn11+a(1− λ)n01+bπX+n.1+c(1− π)Y+n00+d, (3.8)

where hyper-parameters a, b, c, and d are specified based on prior information.
Note that if we set these four hyper-parameters to be zero, then we have a non-
informative uniform prior, which will be used in Section 4 and 5 for the example
and the simulation study.

Because the new parameters λ and π are now independent given data, it is
straightforward to draw λ and π from (3.8) by using the following closed-form
algorithm:

λ ∼ Beta(n11 + a+ 1, n01 + b+ 1), (3.9)

π ∼ Beta(X + n.1 + c+ 1, Y + n00 + d+ 1). (3.10)

Once λ and π are available, we can obtain p and φ by (3.4) and (3.5).
In summary, the following is the closed-form algorithm for sampling from the

posterior density in (3.8). First, choose a large number J (say, 10,000) for the
posterior draw sample size. Then,
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1. Obtain size-J samples of λ and π using (3.9) and (3.10).

2. Obtain size-J samples of p and φ using (3.4) and (3.5).

Then, we use the median of the sample of p as a point estimator for p. We choose
the median because the distribution of the posterior sample of p may be skewed.
Finally, we obtain a 100(1−α)% credible set for p by using the highest posterior
density method.

4. Example

In this section we apply our closed-form Bayesian algorithm to social security
payment data described in Raats and Moors (2003). In Netherlands, six com-
panies are responsible for social security payment and can make mistakes due to
the complexity of the rules and regulations. To assess the error rate, an internal
auditor of a company checked a random sample of 500 payments and reported
that there were 16 errors. The internal auditor might also make mistakes and
hence was considered a fallible classifier. Then, a supervising institution (infalli-
ble classifier) double-checked a subsample of 53 payments. Analogous to Table 1,
the original data sample size is M = 447 and the training sample size is n = 55.
Finally, the classification result can be summarized as n00 = 50, n01 = 1, n10 = 0,
n11 = 2, X = 14, and Y = 433. Because n10 = 0, the false-negative rate is likely
0. Therefore, we assume the data follow our model.

Using the algorithm developed in the previous section with posterior sample
size J=10,000, the posterior median for p is 0.0222 and a 95% Bayesian credible
interval is (0.0047, 0.0396). These results are the same as those reported by Lee
and Byum (2008) up to the fourth decimal point.

5. Simulations

We conduct two simulation studies and report results in this section to exam-
ine and compare the performance of our closed-form Bayesian algorithm (Fully)
and the approximate Bayesian algorithm (CIBL) by Lee and Byun (2008). We
make the comparison using coverage probability (CP) and average length (AL)
of the Bayesian credible intervals. We consider 95% confidence limit and fix the
false-positive rate φ at .1 for all the simulations. For each simulation configura-
tion, we generate 10,000 data sets based on which the CP and AL are computed.
For our fully Bayesian algorithm, we use posterior samples of size 1,000 for com-
puting point and interval estimators.

In the first simulation study, we fix p at .1 and the proportion of the training
data n/N at .1. Then, we choose the total sample size N to range from 30 to 400
with an increment of 10. This simulation setup is similar to what’s been done
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in Lee and Byun (2008). In Figure 1 we plot the CP and AL versus N for both
our fully Bayesian algorithm and the approximate Bayesian algorithm. Figure 1
shows that our fully Bayesian algorithm performs better than the approximate
Bayesian algorithm with narrower intervals.
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Figure 1: Coverage probabilities (left panel) and average lengths (right panel)
of 95% credible intervals versus N , where p = φ = .1 and n = 0.1N

In the second simulation study, we use φ = .1, N = 400, and n = 40. Then, we
choose the proportion parameter p to range from .01 to .99 with an increment
of .01. In Figure 2 we plot the CP and AL versus p for both our fully Bayesian
algorithm and the approximate Bayesian algorithm. Similar to Figure 1, Figure
2 shows that our fully Bayesian algorithm performs better that the approximate
Bayesian algorithm with narrower intervals. We note that when p is extremely
close to 1, the approximate Bayesian intervals have over-coverage and the fully
Bayesian intervals have under-coverage. It is hard to tell which one is better in
this case; therefore, we recommend that the overall sample size and the proportion
for the training data need to be large for valid statistical inference when p is close
to 0 or 1.
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Figure 2: Coverage probabilities (left panel) and average lengths (right panel)
of 95% credible intervals versus p, where φ = .1, N = 400, and n = 40
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6. Discussion

In this paper we derived a closed-form fully Bayesian credible interval for pro-
portion parameter p for one-sample binary data subject to false-positive misclas-
sification. Our algorithm is much easier to implement than existing algorithms.
In addition, simulations showed that our algorithm produced credible intervals
with the nominal coverage probabilities and have narrower intervals than the ex-
isting approximate Bayesian credible intervals, especially when the sample sizes
were small. This was not surprising because Lee and Byun’s method was based
on asymptotic theory while our algorithm sampled from the exact posterior dis-
tribution.

Because both λ and π have marginal beta posteriors, exact Bayesian inference
without Monte Carlo simulation can be made on them. However, the parameter
p is a product of λ and π and does not have a recognizable marginal posterior
functional form, therefore, Monte Carlo simulation is needed to make Bayesian
inference on p.

There are several advantages for our closed-form algorithm which draws sam-
ples from the exact posterior distribution. First, because we sample directly
from the posterior distribution, we do not need to specify initial values and do
not have burn-in period or convergence issue. Second, our algorithm can han-
dle zero counts. Lastly, we do not rely on asymptotic theory and therefore the
algorithm works well for data with small sample sizes.

We need to be cautious when p is close to either 0 or 1. In these scenarios,
the overall sample size and the proportion for the training data need to be large
for valid statistical inference, regardless of the statistical methodology used.
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