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Abstract: Simple parametric functional forms, if appropriate, are preferred
over more complicated functional forms in clinical prediction models. In
this paper, we illustrate our practical approach to obtaining the appropriate
functional forms for continuous variables in developing a clinical prediction
model for risk of Clostridium difficile infection. First, we used a nonpara-
metric regression smoother to establish the reference curve. Then, we used
regression spline function-restricted cubic spline (RCS) and simple para-
metric forms to approximate the reference curve. Based on the shape of the
reference curve, the model fit information (AIC), and the formal statistical
test (Vuong test), we selected the simple parametric forms to replace the
more elaborated RCS functions. Finally, we refined the simple parametric
forms in the multiple variable regression model using the Wald test and the
likelihood-ratio test. In addition, we compared the calibration and discrim-
ination aspects between the model with appropriate functional forms and
the model with simple linear terms. The calibration x? (8.4 versus 10) and
calibration plot, the area under ROC curve (0.88 vs 0.84, p < 0.05), and inte-
grated discrimination improvement (0.0072, p < 0.001) indicated the model
with appropriate forms was better calibrated and had higher discrimination
ability.
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1. Introduction

Clinical prediction models, which relate patient characteristics to a certain
outcome, are a useful tool for clinicians in their routine clinical practice and
clinical research. In routine clinical practice, these models facilitate diagnostic
testing, treatment selection, and follow-up planning. In clinical research, these
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models facilitate patient stratification into different homogeneous risk groups to
better test the treatment effect of new agents or procedures [1].

Clinical prediction models are often obtained by regressing the outcome vari-
able on a set of patient characteristics. The data for common clinical outcomes
have several different types — continuous, categorical, and the time to event.
Different types of outcome data require different distributional assumptions in a
regression model. For a continuous outcome, the normality and constant vari-
ance assumptions are often postulated. For a categorical outcome, binomial or
multinomial distribution is commonly assumed. For a time-to-event outcome,
various distributional assumptions about the event time (for example, exponen-
tial, Weibull, and log normal) can be assumed in parametric survival models. In
addition to the required distributional assumptions for the outcome variables, a
regression model assumes certain shapes of the relationships between the contin-
uous variables and the outcome variable (or transformed outcome variable). The
shapes can range from a simple linear relationship to some unspecified arbitrary
trends. Many of these shapes can be represented by certain functional forms in
the regression model. The most commonly used functional forms include a single
linear term, the second or third order polynomials, the logarithm, etc. More
elaborate forms may include linear or polynomial regression splines. There is no
functional form for a smoother, so there cannot be an equation with a smoother
for the purpose of easy prediction. Use of the appropriate functional form for a
continuous variable is crucial for valid predictions because the expected value of
outcome can be different for the same value of a continuous variable with different
functional forms.

Clinical prediction models are developed with intent to apply them to similar
patient populations. Therefore, functional forms that represent the underlying
patterns as closely as possible, but are not sensibly affected by the idiosyncrasies
in the dataset, should be used. In this paper, we describe our approach to se-
lecting appropriate functional forms for continuous variables in developing a risk
prediction model for Clostridium difficile infection (CDI), and we compare the
predictive accuracy between the model with appropriate functional forms and the
model with simple linear terms.

2. Study Subjects and Data

The study population consisted of 35,350 patients admitted to a tertiary-care
hospital for at least 48 hours during 2003. There were 329 CDI cases among the
study population. Data on patient demographics, medications, and laboratory
results were collected electronically from hospital databases. Patients already
known to be at high risk for CDI (those with a recent history of CDI or those
admitted to leukemia/bone marrow transportation wards) were excluded. The
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Washington University Human Research Protection Office approved this study.

3. Methods
3.1 Selecting Appropriate Functional Forms in Univariate Setting

In developing the risk model of Clostridium difficile Infection, we used the
logistic regression model with CDI infection (Yes/No) as the outcome variable
and the patient characteristics as the explanatory variables. After a series of vari-
able selections, 10 clinically important and statistically significant variables were
identified for the prediction model, of which five variables were on a continuous
scale: age at admission (AGE), a modified acute physiology score (MODaps), a
modified measurement of colonization pressure based on clinically symptomatic
CDAD cases (CP) [2], days on high risk antibiotics (HRABX), and number of
admissions within 60 days (ADMITG60D).

For each continuous variable, a locally weighted scatterplot smoother
(LOWESS) was used to depict the arbitrary shape of its relationship with the
outcome — CDI infection (Yes/No) [3]. For a given value of a continuous vari-
able, the value of the smoother was given by a predicted value from the weighted
regression model using data points within a local neighborhood. The weights for
the local data points were defined by a tricubic function that weighed closer data
points more than further ones [3]. The resultant curve was used as the reference
curve. Then, the restricted cubic spline (RCS) functions were used to approxi-
mate the reference curve. RCS represented the fit as piecewise cubic polynomials
with the first and the last pieces forced to be linear. The pieces were defined
by the regions, which were separated by a sequence of breakpoints, called knots.
RCS could fit sharply curving shapes, and at the same time could avoid the poor
behavior in the fit in the first and the last region [4]. Finally, simple parametric
forms (a single linear term, piecewise linear terms, low order polynomials, or log-
arithm) were compared with RCS. To determine if a simple parametric form or
RCS should be used, visual plots and Akaike Information Criterion (AIC) were
compared. To formally test the superiority of one model over another, the Vuong
test [5] was used. Different from AIC, the Vuong test takes into account the
probabilistic nature of the statistical model selection. Under the null hypothesis
that the two models are equally adequate for the data, the Vuong statistic is
distributed as a standard normal random variable.

3.2 Refining Appropriate Functional Forms in the Multiple Variable
Regression Setting

After appropriate simple parametric forms were selected in the univariate
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setting, a multiple variable regression model was fit with all five continuous and
categorical variables in the model. Using Wald x? for each parameter estimate,
the likelihood ratio test, and the partial residual plot, the simple parametric
functional forms for the continuous variables was refined further.

3.3 Comparing Predictive Accuracy

After the appropriate forms for the five continuous variables were identified,
we fit two prediction models: Model 1, in which the appropriate forms for the five
continuous variables were used plus other 5 important categorical variables, and
Model 0 in which a simple linear term was used for the five variables in addition
to the same categorical variables as used in Model 1.

To compare predictive accuracy between Model 1 and Model 0, the likeli-
hood ratio Chi-square was used to test which model fit the data better. Then
the calibration and discrimination aspects of predictive accuracy were compared
between the two models. For calibration, the Hosmer-Lemshow (calibration) x?,
and calibration plots were compared [6]. The calibration y? summarizes the dif-
ference between the observed and expected frequencies in several groups (often
10) defined by the predicted probabilities. Given the same number of groups, a
larger calibration y? value for a model indicates poorer calibration for the model.
A calibration plot displays the relationship between the predicted and the true
probabilities, and a departure from the diagonal line indicates poor calibration.

For discrimination, the area under receiver-operator characteristic (ROC)
curve (AUC) of the two models was compared using Delong’s method [7]. A
larger value of AUC indicates a better separation of the patients with and with-
out CDI, with a value of 0.5 being random assignment of the patients into two
groups. In addition to AUC, the improvement in discrimination ability was quan-
tified by Integrated Discrimination Improvement (IDI), and the improvement in
sensitivity and specificity components of the IDI was assessed [8]. IDI is the sum
of the improvement in the average sensitivity and the average specificity. With
the assumption of independence between the infected and non-infected groups,
the variance of IDI is the sum of the variances of two corresponding components.
Under the null hypothesis of IDI = 0, the ratio of the estimated IDI over the
square root of its variance is asymptotically distributed as a standard normal
variable. To assess the improvement in the sensitivity component, the difference
in the average sensitivity between the two models was obtained. The average
sensitivity is defined as the integral of sensitivity over all possible cut-off values
of predicted probabilities in those with the outcome of interest (disease group),
which can be estimated by the mean probability in that group. The one-sample
paired t-test was used to test the statistical significance in the average improve-
ment in sensitivity. The improvement in the specificity component was assessed
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in the same way among study subjects without the outcome of interest.
The free software R [9] and some functions from Design Package [10] were
used for all statistical computation and graphics.

4. Results

4.1 Selecting Appropriate Functional Forms in the Univariate Setting

Figure 1 is a panel of density histograms depicting the distribution of five
continuous variables. Except for the variable AGE, all other four variables were
right skewed. Especially for CP, HRABX, and ADMIT60D, most observations
were located at the low end of the distributions. Figure 2 is a panel of plots
comparing the RCS curves with the simple parametric curves for five continuous
variables. In each plot, the solid line represented the LOWESS fit (the reference
line). The dashed line and dotted line were the RCS and the simple parametric fit,
respectively. For both AGE and MOD_APS, the simple parametric form was the
second order polynomials (square term), and for CP, HRABX and ADMITG60D,
the simple parametric form was the two piece linear terms with one knot. For
CP, the knot was located at 0.3. For HRABX and ADMIT60D, the knots were
located at 8 and 1, respectively. The second order polynomials for AGE and
MOD_APS were used since the reference lines looked like concave curves, and the
two piece linear term was used for the other three variables since the reference
lines had one clear turning point.
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Figure 1: Histogram of density plot of 5 continuous variables
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Figure 2: Comparison of selected simple parametric forms with RCS function.
Solid line: LOWESS fit, dashed line: RCS fit. Dotted line: simple parametric
fit - LSP(k), two piece linear terms with the knot at k; Pol(k), kth order
polynomials

Comparison of the RCS curves with simple parametric forms revealed that
the simple parametric forms tracked the reference curves more closely than the
RCS for the variables MOD_APS, HRABX, and ADMIT60D. For AGE, the RCS
and simple parametric curves were very close before 90 years old, and then the
simple parametric curve departed from the reference curve. For CP, the RCS
curve tracked the reference curve reasonably well when CP was less than 8, after
that it departed from the reference curve drastically as the value of CP increased.
In contrast, the two piecewise linear curve continued to track the reference curve
when the value of CP was beyond 8, although it went underneath the reference
curve. Table 1 presents the comparison of the model fit between the RCS and
the simple parametric forms. For all five variables, AIC was smaller in the simple
parametric fit, especially for the variable CP and HRABX. The results from the
Vuong test indicated that the superiority of the simple parametric model fit for
CP and HRABX over the RCS fit could not be explained by the chance alone,
with p-value < 0.001 and p-value = 0.002, respectively.
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Table 1: Comparison of model fit: restricted cubic spline and simple parametric
form

Akaike Information Criterion (AIC)

Simple Parametric

Variable Restricted Cubic Spline Vuong test
Form

AGE 3622.8 3619.7 p=0.362

CP 3441.2 3396.4 p < 0.001

MOD_APS 3585.6 3585.4 p=0.173

HRABX 3560.9 3538.5 p = 0.002

ADMIT60D 3664.7 3664.0 p=0.241

Simple parametric form: second-order polynomials for AGE and MOD_APS, and two
piecewise linear for CP, HRABX, and ADMIT60D.

4.2 Refining Simple Parametric Forms in the Multiple Variable Re-
gression Setting

Table 2 presents the results for comparison of the model with selected ap-
propriate functional forms in the univariate setting (selected model) versus the
model with refined appropriate functional forms in the multiple variable regres-
sion setting (refined model). In the refined model, the square terms for variable
AGE and MOD_APS were dropped from the selected model. The likelihood ratio
test of the refined model (LR x? = 744.49, DF = 13) against the selected model
(LR x? = 745.69, DF = 15) yielded a LR x? of 1.2 with 2 degrees of freedom
(P = 0.548), indicating adequacy of the refined model in place of the selected
model. The two models had the same value for generalized R sqaure, c-index,
and Brier score. The partial residual plots for AGE and MO_APS do not indicate
the inadequacy of a simple linear term for these two variables.

4.3 Comparison of Predictive Accuracy

Model fit: The model x? for Model 1 was 744.9, with 13 degrees of freedom,
and for Model 0 the model x? was 577.1 with 10 degrees of freedom. The like-
lihood ratio test comparing the two models gave the y? value of 167.8 with 3
degrees of freedom, yielding a p-value < 0.001. The generalized R square for
Model 1 was 21%, compared to 16.2% for Model 0. These results indicated that
Model 1 fit the data better than Model 0.

Calibration: Model 1 had a smaller calibration x? value than Model 0 (8.4
versus 10). The calibration plot in Figure 3 shows that the predictions from Model
0 departed further from the perfect calibration line than the predictions from
Model 1. When the predicted probabilities were less than 0.075, the predictions
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Table 2: Comparison of Selected Model versus Refined Model

Selected Model

Refined Model

Coeflicient SE p-value  Coeflicient SE p-value
Intercept -11.2000 0.7762  0.0000 -10.5570 0.4098  0.0000
AGE 0.0509 0.0236  0.0308 0.0268 0.0036  0.0000
AGE"2 -0.0002 0.0002  0.3008
cp 8.3110 1.0082  0.0000 8.3184 1.0081  0.0000
cp’ -8.2550 1.0152  0.0000 -8.2623 1.0150  0.0000
ADMIT60D 0.7076 0.1259  0.0000 0.7110 0.1258  0.0000
ADMIT60D’ -0.5340 0.1952  0.0062 -0.5366 0.1950  0.0059
MOD_APS 0.0249 0.0345 0.4711 0.0345 0.0131  0.0084
MOD_APS"2 0.0005 0.0017  0.7553
HRABX 0.1547 0.0205  0.0000 0.1547 0.0205  0.0000
HRABX’ -0.1807 0.0316  0.0000 -0.1805 0.0316  0.0000
ICUPT 0.4625 0.1342  0.0006 0.4688 0.1341  0.0005
LAX 0.2650 0.1239  0.0325 0.2663 0.1239  0.0316
GAS 0.7387 0.1846  0.0001 0.7495 0.1844  0.0000
MOTIL 0.7100 0.1187  0.0000 0.7143 0.1187  0.0000
ALBUMIN 0.5181 0.1206  0.0000 0.5160 0.1204  0.0000
Model LR 745.69 744.49
Df 15 13
RMN2 0.208 0.208
C-index 0.879 0.880
Brier score 0.009 0.009

Trug Probability

030

025

—— Appro Forms

Lingar Form

0.00

0.0%

oo

015

0.z20

0.25

0.20

FPredicted Probability

Figure 3: Calibration plot of model with appropriate simple functional forms
(solid line) and model with linear terms (dashed line). The diagonal line is for
perfect calibration
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from Model 0 tended to underestimate the true probabilities, while the predic-
tions from Model 1 were almost perfect within this range. When the predicted
probabilities were larger than 0.075, the predictions from both models tended to
overestimate the true probabilities. However, the overestimation from Model 0
was much worse than that from Model 1.

Discrimination: Figure 4 displays the ROC curves from Model 1 (solid line)
and Model 0 (dashed line). Given the value of 1- specificity, the solid line tended
to be higher than the dashed line, indicating that Model 1 separated the patients
with CDI from the patients without CDI better than Model 0. In fact, the
AUC for Model 1 was 0.879, and for Model 0 was 0.843. The difference was
statistically significant. The integrals of sensitivity for Model 1 and Model 0 were
0.0461 and 0.039, respectively. The improvement in the integral of sensitivity for
Model 1 over Model 0 was 0.0071 with standard error of 0.0018, yielding a p-
value < 0.001. Although the magnitude of the absolute improvement (0.0071)
was small, the relative improvement of 28% (0.0071/0.039) was moderate. The
integral of specificity for Model 1 and Model 0 was indistinguishable (0.99103
versus 0.99096). The integrated discrimination improvement (IDI) of Model 1
over Model 0 was 0.0072 with standard error of 0.0019, yielding a p-value <
0.001.
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Figure 4: ROC curve and area under the curve (AUC) for the model with
appropriate simple parametric forms (solid line) and the model with linear
term (dashed line)

5. Discussion and Conclusion

Simple parametric functional forms, if appropriate, are preferred over more
complicated functional forms in clinical prediction models [11, 12]. In this pa-
per, we illustrate our practical approach to obtaining the appropriate functional
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forms for continuous variables in developing a clinical prediction model for risk
of Clostridium difficile infection. First, we used a nonparametric regression
smoother to establish the reference curve. Then, we used regression spline function-
restricted cubic spline (RCS) and simple parametric forms to approximate the
reference curve. Based on the shape of the reference curve, the model fit infor-
mation (AIC), and the formal statistical test (Vuong test), we selected the simple
parametric forms to replace the more elaborated RCS functions. Finally, we re-
fined the simple parametric forms in the multiple variable regression model using
the Wald test and the likelihood-ratio test.

Steyerberg et al. [13] used an alternative approach to selecting simple para-
metric forms in developing the clinical prediction rule for testicular cancer. They
first fitted RCS function for a continuous variable to obtain a flexible and smooth
curve. Based on visual examination and model x? information, they simplified
these RCS curves using dichotomization, a linear term, or logarithm and square
root transformations. Our work extended their approach by using nonparametric
regression smoother as the reference curve and using the more formal test for
comparing the superiority between RCS and candidate parametric forms, and
by further refining simple parametric forms in the multiple variable regression
models.

Using nonparametric regression smoother as the reference curve, we found
the RCS functions did not always represent the data better than the simple
parametric forms. For AGE, which was well distributed, RCS function tracked
the reference curve better than the simple functional form. For HRABX and
ADMITG60, however, RCS functions did not track the reference curve as well as
the simple functional forms. More formal statistical evidence (AIC and Voung
test) also indicated that the simple functional forms fit the data better than
the RCS for CP and HRABX. Steyerberg et al. also found one of the continuous
variables (prechemotherapy HCG) that had a higher model x? with dichotomized
functional form than with the RSC form (14 versus 10) [13]. Recognizing that
the RCS may not represent the underlying shape of a continuous variable with
the outcome in certain situations, we should avoid blindly using the RCS without
checking the appropriate reference curves.

When using RCS, we need to specify the number and location of knots. Stone
has found that the performance of RCS depends more on the number of knots
than on the location of knots in most situations [14]. Harrell has suggested that it
is a good approach to place the knots at fixed quantiles of a predictor’s marginal
distribution [15]. Stone has also found that more than 5 knots are seldom required
in RSC [14]. In our RCS modeling, we used 5 knots with equally spaced quantiles
to ensure enough data points in each interval as recommended by Harrell [15]. In
this article, we use RCS for comparison since it is widely used in medical research,
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and can be easily implemented by the R function [10].

To our knowledge, there are few studies presenting the information about
the difference in predictive accuracy between the model with the appropriate
forms for continuous variables and the model with simple linear terms. In our
study, we found that compared to the model with simple linear terms for all
continuous variables, the model with appropriate functional forms not only fit the
data much better, but it also had higher predictive accuracy. The improvement
of predictive accuracy mainly came from the discrimination aspect, especially
the sensitivity component. This observation further highlights the importance
of appropriate functional forms for continuous variables when developing clinical
prediction models.
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