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Power and Sample Size Calculations with the Additive Hazards
Model
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Abstract: Existing methods on sample size calculations for right-censored
data largely assume the failure times follow exponential distribution or the
Cox proportional hazards model. Methods under the additive hazards model
are scarce. Motivated by a well known example of right-censored failure time
data which the additive hazards model fits better than the Cox model, we
proposed a method for power and sample size calculation for a two-group
comparison assuming the additive hazards model. This model allows the
investigator to specify a group difference in terms of a hazard difference
and choose increasing, constant or decreasing baseline hazards. The power
computation is based on the Wald test. Extensive simulation studies are
performed to demonstrate the performance of the proposed approach. Our
simulation also shows substantially decreased power if the additive hazards
models is misspecified as the Cox proportional hazards model.
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1. Introduction

The Cox proportional hazards (PH) model (Cox, 1972) has become the stan-
dard tool and routinely used in the analysis of survival data. The hazard function
for the failure time T associated with a p-vector of possibly time-varying covarites
Z(t) takes the form

λ(t;Z) = λ0(t)e
γ′Z(t), (1.1)

where γ denotes a p-vector of unknown regression parameters and λ0 (t) is an
unspecified baseline hazard function. A useful alternative to the Cox model is
the Aalen additive hazards model (Aalen, 1980) which takes the form

λ(t;Z) = λ0(t) + β′Z(t), (1.2)

∗Corresponding author.
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where β denotes a p-vector of unknown regression parameters. These models
provide two principal frameworks for studying the association between risk factors
and disease occurrence or death, namely, the multiplicative effect of risk factors
on the hazard of the failure time for the Cox model and the additive effect for
the Aalen model.

The partial likelihood approach introduced by Cox (1972, 1975) eliminates the
nuisance quantity λ0(t) from the score function for γ. The resulting maximum
partial likelihood estimator possesses asymptotic properties similar to those of
the standard maximum likelihood estimator (Tsiatis, 1981; Anderson and Gill,
1982). Such desirable theoretical properties, together with the wide availability
of computer programs, have made the Cox model a popular choice in many fields
of survival analysis. However, little emphasis has been placed on the fit of the
model. Additionally, under the PH model the effect of covariates is restricted to
be multiplicative on hazards of failure. The additive hazards model was argued to
be more reasonable for certain instances such as dose on risk or hazard (Breslow
and Day, 1987) and the covariate effect directly reflects the difference of hazards
and is thus easier to interpret. It is important to decide which of the two models
that are more appropriate to apply in a given application. This is nontrivial as
these two classes of models are not nested except for special cases.

Sample size calculations have been an important part in the design of clinical
trials. The sample size calculations in survival analysis of right-censored failure
times are largely based on exponential distribution or the Cox model (Schoenfeld,
1983). However, there exists no literature on sample size or power calculation
assuming the additive hazards model. It is well known that a sample size cal-
culation under a misspecified model may yield compromised power or increased
sample size.

Several methods have been proposed to compare the fit of the two models.
Among these, one method is to embed the two models within a power family
asymmetric transformations of the linear predictor proposed by Aranda-Ordaz
(1981, 1983) for grouped survival data. This family transformation has as special
cases the Cox and additive hazards models. In his paper, a score test statis-
tic was developed to discriminate between these models which is asymptotically
equivalent to maximum likelihood ratio test. Tibshirani and Ciampi (1983) gener-
alized Aranda-Ordaz’s family transformation to allow time trends in the hazards.
McKeague and Utikal (1991) introduced a goodness-of-fit test for the Cox and
additive hazards models. They proposed goodness-of-fit statistics based on differ-
ences between the estimates of a doubly cumulative hazard function and a fully
nonparametric estimators of this cumulative hazard function under both models.
Recently, Martinussen, Aalen and Scheike (2008) proposed a Mizon-Richard em-
compassing test for this problem which corresponds to fitting the additive hazards
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model to the martingale residues obtained from the Cox regression analysis.
As the motivation of this paper, we present a well-known example of right-

censored failure time data which can be fit better by the additive hazards model
than the Cox model. These data arose from a clinical trial of drug 6-Mercaptopuri-
ne (6-MP) versus a placebo in 42 children with acute leukemia reported by Freire-
ich et al. (1963) and used by Gehan (1965) and several subsequent authors. Table
1 shows the ordered length of remission for two samples of individuals with cen-
sored values indicated by plus.

Table 1: Lengths of Remission (in weeks) for leukemia patients (from Gehan,
1965)

6-MP 6 6 6 6+ 7 9+ 10 10+ 11+ 13 16

17+ 19+ 20+ 22 23 25+ 32+ 32+ 34+ 35+

Placebo 1 1 2 2 3 4 4 5 5 8 8

8 8 11 11 12 12 15 17 22 23

Because of the computational simplicity, we applied Aranda-Ordaz’s efficient
score test to this data set. This method uses a multiplicative grouping model and
can accommodate ties of event times. Five partition intervals (0-5, 5-10, 10-15,
15-20 and 20-25) are used to group the time of remission for leukemia patients.
At a significance level of 0.05, a two-sided test for departure from the Cox model
yields a Z-score 7.24 (p-value < 0.0001). However, a two-sided test for departure
from the additive hazards model yields a Z-score −1.13 (p-value = 0.258). These
tests provide strong evidence that the Additive hazards model is a better fit than
the Cox model in describing the effect of 6-MP on the hazard of remission time
in patients with acute leukemia. Based on these pilot data, if clinicians would
like to design a pivotal study to compare 6-MP to placebo where the outcome is
time to remission in patients with acute leukemia, a method for sample size or
power calculation under the additive hazards model is warranted.

We propose a method for power calculations for clinical trials comparing two
groups with right-censored data under the additive hazards model in Section 2.
We consider the additive hazards model with the baseline hazard λ0(t) from a
Weilbull random variable. This specification allows constant, decreasing and in-
creasing baseline hazards which describes many disease processes and is appealing
to medical investigators. In Section 3, we illustrate the proposed method using
the leukemia example described above. Section 4 presents simulation studies to
demonstrate the performance of the proposed approach, followed by discussion
and concluding remarks in Section 5.

2. Methods
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Consider a survival study and let T denote the failure time of interest and Z
a vector of covariates that may depend on time t. We assume that right-censored
failure time data are available and given by {Xi, δi, Zi, i = 1, · · · , N} from N
independent subjects. Here Xi denotes the observed failure time defined as the
minimum of the true failure time Ti and the censoring time Ci for subject i and
δi = 1 if the true failure time is observed and 0 censored. It is assumed that the
failure time and the censoring time are independent given covariates.

Assume the failure time T follows the additive hazards model with the baseline
hazard following a Weibull distribution with a scale parameter θ and a shape
parameter ν with θ, ν > 0. In this paper we consider a two-group comparison
scenario where the covariate Z is time-invariant. Given the covariate Z, the
additive hazards model takes the form

λ(t;Z) =
ν

θν
tν−1 + β′ Z. (2.1)

With 0 < ν < 1 the baseline hazard is decreasing from ∞ to 0, and with ν > 1
the baseline hazard is increasing from 0 to∞. The covariate effect is to additively
increase or decrease the hazard of the failure.

Let the survival distribution for the failure time T be denoted by S(t; θ, ν, β) =
Pr(T ≥ t), where t ≥ 0. The likelihood for the set of right-censored failure time
data is

L(X, δ, Z; θ, ν, β) =

N∏
i=1

ST (xi, δi, zi; θ, ν, β)1−δifT (xi, δi, zi; θ, ν, β)δi .

The parameters can be estimated by solving the score function ∂L/∂η = 0,
where η = [θ, ν, β]′. Since the parameters θ and ν have linear inequality con-
straints (θ, ν > 0), a linearly constrained optimization called adaptive barrier
algorithm (constrOptim in R) can be used to estimate the parameter vector η.
The derivation of the score vector and Hessian matrix is presented in Appendix.

For many sample size calculations in medical and public health settings with
survival outcome, it is of main interest to compare two groups (e.g., treatment
versus placebo) or two exposures (e.g., exposed versus unexposed) on the failure
time. Therefore, we have a binary covariate Z which usually does not change
with time. Here β represents the difference in hazard between the treatment and
placebo groups. Suppose we have n subjects in the placebo group (Z = 0) and rn
subjects (r > 0) in the treatment group (Z = 1) with a total of N (n+ rn = N).
The hypothesis of interest is H0 : β = 0 versus H1 : β 6= 0. We propose a power
and sample size calculation based on the Wald test. The statistic of Wald test is
given by

TWald =
β̂2

var(β̂)
,
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where β̂ is the maximum likelihood estimate of β.

Under H0, the test statistic is asymptotically distributed as a central chi-
square random variable with one degree of freedom. According to Wald (1943),
TWald is asymptotically distributed as noncentral χ2

1,ω under H1, where the non-

centrality parameter ω is the test statistic TWald = β̂2/var(β̂). Let α represent
the specified type I error rate and χ2

1,1−α represent the critical value from the

central χ2
1 distribution. The power for testing H0 with the Wald test is

1− φ =

∫ ∞
χ2
1,1−α

e−(s
2+ω2)/2sω√
ωs

I−1/2(ωs)ds, (2.2)

where φ is the type II error rate and Iν(.) is a modified Bessel function of the
first kind. (2.2) can be calculated in R (function pchisq).

To calculate the power for the study, we need to first specify a clinically
meaningful covariate effect β between the two groups. To estimate var(β̂), we
need to calculate the expected value of the second derivative matrix

E

[
−

N∑
i=1

∂2 logL(xi, δi, zi; η)/∂η2

]
,

and take the corresponding element of the matrix’s inverse. To accomplish this
we then specify a distribution for the censoring variable C. The expected value
of the second derivative matrix is

E

[
−

N∑
i=1

∂2 logL(xi, δi, zi; η)/∂η2

]

= −
N∑
i=1

∫ ∞
0

∂2 [logS(xi, δi, zi; η)] /∂η2ST (xi)fC(xi)dxi

+

{
−

N∑
i=1

∫ ∞
0

∂2 [δi log f(xi, δi, zi; η)] /∂η2fT (xi)SC(xi)dxi

}
,

where ST and fT are the survival and density of the failure times, SC and fC are
the survival and density of the censoring times.

We can assume the censoring time C follows a certain distribution. For ex-
ample, if the censoring times are assumed to occur at the same hazard rate
throughout the study, then an exponential distribution with parameter λC may
be appropriate. Accordingly, the probability density function for the censor-
ing time ci is fC(ci) = λCe

−λCci . Assuming the sample size ratio of treatment
(zi = 1) to placebo (zi = 0) is r, to determine a value for λC , one can specify the
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expected proportion of total failures in the study, which is∫ ∞
0

[
1

1 + r
fT (t|z = 0) +

r

1 + r
fT (t|z = 1)

]
SC(t)dt, (2.3)

where fT (t|z = 0) and fT (t|z = 1) are the density functions for the two groups.
Then we can solve for the appropriate value of λC that yields the desired

expected proportion of total failures. We will illustrate the calculations in Ex-
ample. If the censoring times are expected to increase or decrease monotonely,
a Weibull censoring distribution can be used. If the censoring times occur at
approximately equal intervals throughout the study, then a uniform distribution
may be appropriate.

The power of the study can be calculated using the following procedure:

1. Specify the sample size for each group, n and rn, and type I error rate (by
default 0.05).

2. Specify the value for the regression parameter.

3. Assume the survival time follows the additive hazards model as in (2.1) with
parameters β, θ and ν (prior data may be used to obtain the estimates).
Choose a censoring distribution such as the exponential, Weibull or uniform.

4. Specify the overall expected proportion of failures and calculate the corre-
sponding parameter for the chosen censoring distribution accordingly.

5. Calculate the information and variance-covariance matrix based on the
specified parameters (see Appendix).

6. Obtain the noncentrality parameter ω.

7. Use (2.2) to calculate power.

8. Repeat steps 5-7 by changing the sample size until the desired power is
achieved.

3. Example

Suppose we want to design a clinical trial that the outcome will be time to
relapse of leukemia with prior data in Table 1. Assume that the two groups have
equal size and length of leukemia remission will be recorded and right-censored
failure time data will result. Assuming the survival time follows the additive
hazards model as in (2.1). Fitting the prior data, we obtained prior information
about the parameter estimates: θ̂ = 9.08, ν̂ = 1.21 and β̂ = −0.11. Suppose that
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the investigators expect that overall 35% of the leukemia patients will relapse by
the end of the study and the censoring times will be exponentially distributed
with parameter λC . Solving

0.35 =

∫ ∞
0

[
1

1 + r
fT (t|z = 0) +

r

1 + r
fT (t|z = 1)

]
SC(t)dt (3.1)

will yield a value of 0.0175 for λC . Table 2 lists the required sample sizes to
achieve 80% power in testing H1 : β 6= 0.

Table 2: Total sample size to achieve 80% power

β total sample size

−0.10 222
−0.07 384
−0.05 648

4. Simulation Studies

In this section, we report the power calculations using the proposed method
from two simulation studies. Each simulated dataset consisted of two groups
(exposed or unexposed) according to a key covariate (coded as 0 for unexposed
or 1 for exposed). The failure times are assumed to follow the additive hazards
model specified in (1.2) with density function

f (t; Z) = e−(
t
θ
)ν −β′ Z t (

ν

θν
tν−1 + β′ Z ).

The regression parameter and the scale and shape parameters of the baseline
hazard function are denoted by β, θ and ν, respectively. For both studies, we
chose ν0 = 2, 1 and 0.5 to represent increasing, constant and decreasing hazard,
respectively.

For the first study, the censoring variable was assumed to follow a uniform
distribution U(0, 7). The covariate was assumed to have a Bernoulli distribution
with probability of success 0.5. For each scenario 500 datasets were generated.
Datasets were generated with θ0 = 5 and ν0 = 2, 1, and 0.5 and the regression
parameter β0 = 0.05, 0.10 and 0.15. Three total sample sizes for both groups (N)
were chosen to approximately achieve power 0.70, 0.80 and 0.90. The datasets
were analyzed with the additive hazards model. Power was calculated for each
scenario using the proposed method. To explore the extent of power loss with
misspecified model, we compared the power under the additive hazards model and
the routinely used semiparametric Cox proportional hazards model. Empirical
power was calculated as the number of datasets resulting in the rejection of β = 0
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at a significance level α = 0.05 divided by 500. The simulation results from the
first study are presented in Table 3.

Table 3: Power calculations when censoring time is uniformly distributed

β0 ν0 = 2 ν0 = 1 ν0 = 0.5

0.05 386∗ 516 730 834 1120 1600 870 1190 1710

0.708§ 0.810 0.905 0.697 0.815 0.895 0.698 0.793 0.910

0.704? 0.800 0.902 0.702 0.800 0.900 0.702 0.802 0.902

0.482† 0.565 0.684 0.594 0.692 0.818 0.467 0.559 0.687

43.1%‡ 49.4% 55.7%

0.10 146 190 270 264 366 520 296 410 580

0.698 0.811 0.909 0.709 0.799 0.912 0.699 0.801 0.895

0.707 0.805 0.904 0.701 0.802 0.902 0.705 0.807 0.903

0.539 0.628 0.761 0.605 0.712 0.832 0.495 0.593 0.718

46.4% 52.2% 58.3%

0.15 84 110 156 146 196 276 172 226 330

0.712 0.815 0.910 0.695 0.797 0.895 0.710 0.811 0.912

0.703 0.804 0.900 0.705 0.802 0.905 0.704 0.801 0.905

0.575 0.673 0.781 0.621 0.723 0.842 0.521 0.621 0.750

48.8% 54.6% 60.3%

∗ the total sample size for the two groups
§ the calculated power using the proposed method
? the empirical power under the additive hazards model
† power under the semiparametric Cox proportional hazards model
‡ average percent failures in the datasets.

The calculated power using the proposed method is to test H0 : β = 0 versus
H1 : β 6= 0 at the type I error rate α = 0.05 (two-sided). The survival func-

tion is S(t;Z) = e−(
t
θ
)ν−βZt where ν denotes the shape parameter and θ0 = 5.

The censoring time follows a Uniform distribution U(0, 7). The empirical power
presented is based on 500 simulated datasets.

The second study was conducted with an exponentially distributed censoring
time. This scenario corresponds to a situation where censoring times occur with
a constant rate. The underlying survival model is the same as in the first study.
The simulation results for the second study are shown in Table 4.

For both the simulation studies, the calculated power was reasonably close
to the empirical power for all the scenarios. Misspecified Cox model resulted in
substantially decreased power in all the scenarios. However, the power loss was
less with constant hazards (ν0 = 1) compared to those with either increasing or
decreasing hazards.
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Table 4: Power calculations when censoring time is exponentially distributed

β0 ν0 = 2 ν0 = 1 ν0 = 0.5

0.05 410∗ 550 795 910 1180 1760 900 1200 1740
0.711§ 0.809 0.908 0.712 0.794 0.893 0.698 0.797 0.910
0.703? 0.801 0.900 0.705 0.801 0.900 0.702 0.804 0.901
0.464† 0.547 0.674 0.596 0.693 0.815 0.472 0.563 0.670

41.2%‡ 47.3% 54.1%

0.10 140 194 276 274 390 550 310 420 600
0.695 0.795 0.910 0.709 0.794 0.895 0.698 0.814 0.910
0.701 0.803 0.906 0.704 0.800 0.900 0.705 0.804 0.902
0.521 0.614 0.734 0.609 0.706 0.828 0.506 0.591 0.715

43.7% 49.6% 56.3%

0.15 82 110 156 144 200 286 186 240 344
0.693 0.817 0.910 0.719 0.813 0.892 0.715 0.813 0.909
0.704 0.803 0.900 0.710 0.800 0.901 0.704 0.801 0.900
0.553 0.649 0.760 0.623 0.718 0.837 0.537 0.627 0.745

45.6% 51.5% 58.1%

∗ the total sample size for the two groups
§ the calculated power using the proposed method
? the empirical power under the additive hazards model
† power under the semiparametric Cox proportional hazards model
‡ average percent failures in the datasets.

The calculated power using the proposed method is to test H0 : β = 0 versus
H1 : β 6= 0 at the type I error rate α = 0.05 (two-sided). The survival function

is S(t;Z) = e−(
t
θ
)ν−βZt where ν denotes the shape parameter and θ0 = 5. The

censoring time follows an exponential distribution exp(0.25). The empirical power
presented is based on 500 simulated datasets.

5. Concluding Remarks

We propose power calculations based on an additive hazards model and a
two-group comparison via the Wald test. Simulation results demonstrate that
the proposed method for calculating power performs reasonably well. The pro-
posed method can be easily generalized with a generalized Weibull as the baseline
hazards. This allows more flexibility in specifying the form of the baseline haz-
ards. This approach can also be easily extended to other parametric survival and
censoring distributions.

Our approach assumes a Weilbull distribution for the baseline hazards, which
specifies a parametric distribution of survival time. However, assessing this base-
line hazards assumption is a challenge for real data. Therefore, a power calcu-
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lation based on the semiparametric additive hazards model is warranted which
leaves the baseline hazards completely unspecified.

This method calculates the total required number of subjects. However, in
a survival study, usually the number of actual death or events that must be
observed is more important. It would be helpful to derive an expression for the
required number of death or events under the semiparametric additive hazards
model.

Appendix

Assume the additive hazards model with the baseline hazard following a
Weibull distribution specified in model (2.1) in Section 2. Then the survival
function of the failure time is

S(t;Z) = e−(
t
θ
)ν−β′Zt.

The density function of the failure time is

f(t;Z) = e−(
t
θ
)ν−β′Zt(

ν

θν
tν−1 + β′Z).

The likelihood function

L(X, δ, Z; θ, ν, β) =
N∏
i=1

S(xi, δi, zi; θ, ν, β)1−δif(xi, δi, zi; θ, ν, β)δi

=
N∏
i=1

{
exp

[
−(
xi
θ

)ν − β′zixi
]}1−δi {

exp
[
−(
xi
θ

)ν − β′zixi
] ( ν

θν
xν−1i + β′zi

)}δi
.

To estimate β, ν and θ, the elements of the 3× 1 score vector are

∂ logL

∂β
=

N∑
i=1

{
−zixi +

δizi(
ν
θν x

ν−1
i + β′zi

)} ,
∂ logL

∂θ
=

N∑
i=1

{
ν

θ

(xi
θ

)ν
− δi

[
(νθ )2

ν
θ + β′zi(

θ
xi

)ν−1

]}
,

∂ logL

∂ν
=

N∑
i=1

{
−
(xi
θ

)ν
log

xi
θ

+ δi

[
1 + ν log xi

θ

ν + β′zixi(
θ
xi

)ν

]}
.

The elements of the 3× 3 observed Fisher information matrix are

∂2 logL

∂β2
=

N∑
i=1

{
−δiz2i(

ν
θν x

ν−1
i + β′zi

)2
}
,
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∂2 logL

∂θ2
=

N∑
i=1

−(ν + 1)νxνi θ
−(ν+2) − δi

ν3θ−4 + β′zix
1−ν
i θν−4ν2(ν + 1)(

ν
θ + β′zi(

θ
xi

)ν−1
)2


 ,

∂2 logL

∂ν2
=

N∑
i=1

{
−
(

log
xi
θ

)2 (xi
θ

)ν

+δi

 log xi
θ

[
ν + β′zixi(

θ
xi

)ν
]
−
(
1 + ν log xi

θ

) [
1 + β′zixi(log θ

xi
)( θxi )

ν
]

[
ν + β′zixi(

θ
xi

)ν
]2


 ,

∂2 logL

∂β∂θ
=

N∑
i=1

{
δiziν

2xν−1i θ−(ν+1)(
ν
θν x

ν−1
i + β′zi

)2
}
,

∂2 logL

∂β∂ν
=

N∑
i=1

{
−δixizi[

ν(xiθ )ν + β′zixi
]2 (xiθ )ν (1 + ν log

xi
θ

)}
,

∂2 logL

∂θ∂ν
=

N∑
i=1

{
1

θ

(xi
θ

)ν
+
ν

θ

(
log

xi
θ

)(xi
θ

)ν

− δi

 2ν
θ2

[
ν
θ + β′zi(

θ
xi

)ν−1
]
− ν2

θ3

[
1 + β′zixi(log θ

xi
)( θxi )

ν
]

[
ν
θ + β′zi(

θ
xi

)ν−1
]2


 .
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