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A New Family of Bivariate Copulas Generated by Univariate
Distributions1
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Abstract: A new family of copulas generated by a univariate distribution
function is introduced, relations between this copula and other well-known
ones are discussed. The new copula is applied to model the dependence of
two real data sets as illustrations.
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1. Introduction

In financial engineer, insurance risk management, economics, climatology and
many other fields of social science, researchers are usually confronted with multi-
variate data without independence. Hence, to model the dependence is becoming
more and more essential in understanding and interpreting the data. Pearson’s
correlation coefficient, Kendall’s tau and Spearman’s rho are indices often used
to measure the dependence behind the data, however, they fail to characterize
the dependence structure in a complete manner. In addition, since the nor-
mality assumption of data usually does not provide an adequate approximation
to data sets with heavy tail, non-normal multivariate distributions are used in
practice (see Johnson and Kotz, 1992; Kotz, Balakrishnan and Johnson, 2000).
However, there are possible drawbacks of these distributions. For example, each
family may have its own marginal distributions, which vary from family to family,
and measures of dependence often rely on the marginal distributions themselves.
These shortcomings make the statistical modeling rather complicated and hence
unwieldy.

Sklar (1959) first introduced the copula to model dependence structure. A
non-decreasing and right-continuous bivariate function C : [0, 1]× [0, 1] −→ [0, 1]
is called a copula if it satisfies

C(u1, 0) = C(0, u2) = 0, C(u1, 1) = u1, C(1, u2) = u2,
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C(v1, v2) + C(u1, u2)− C(v1, u2)− C(u1, v2) ≥ 0, u1 ≥ v1, u2 ≥ v2.

The concept of copula is relatively simple, the construction does not constrain the
choice of marginal distributions and it provides a good way to impose a depen-
dence structure on predetermined marginal distributions. Thus, it is particularly
useful for modeling dependence in practical applications. In risk management, fi-
nance and econometrics, copula has become more or less a standard tool. A large
number of applications of copulas can be found in various areas. For instance,
Frees and Wang (2006), Chen and Fan (2006).

In this note, we introduce a new family of copulas generated by a univariate
distribution function, relations between the new copula and other well-known
ones are discussed, and some dependence indices of this copula are studied. As
an illustration, the new copula is employed to fit two real data sets as well.

2. A New Family of Copulas

Let φ(x) = 1√
2π

exp{−x2

2 } be the standard normal density, one may easily

verify that
f(x, y) = φ(x)φ(y)(1 + sinx sin y)

forms a bivariate probability density. It is not difficult to obtain the copula of
this distribution as follows:

CΦ(u, v) = uv +

∫ u

0
sin(Φ−1(t)) dt

∫ v

0
sin(Φ−1(t)) dt, (2.1)

where Φ is the standard normal distribution function and the right continuous
inverse Φ−1(t) = sup{x : Φ(x) ≤ t} for t ∈ [0, 1]. Naturally, one may wonder
whether the resulted bivariate function

CΨ(u, v) = uv +

∫ u

0
sin(Ψ−1(t)) dt

∫ v

0
sin(Ψ−1(t)) dt, for (u, v) ∈ [0, 1]2, (2.2)

still serves as a copula when some distribution function Ψ substitutes for Φ in
(2.1)? The first theorem addresses a necessary and sufficient condition for CΨ to
be a copula.

Theorem 1 CΨ in (2.2) is a copula if and only if∫ 1

0
sin(Ψ−1(t)) dt = 0. (2.3)

Proof: Necessity: Since CΨ(u, v) is a copula, then CΨ(1, 1) = 1. Namely,

1 +

(∫ 1

0
sin(Ψ−1(t)) dt

)2

= 1.
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Hence, it holds that
∫ 1

0 sin(Ψ−1(t)) dt = 0.
Sufficiency: As a distribution function, Ψ and hence CΨ(u, v) is right-continuous.

Obviously, it holds that

CΨ(1, 1) = 1, CΨ(u, 0) = CΨ(0, v) = 0, for (u, v) ∈ [0, 1]2,

lim
v→1

CΨ(u, v) = u, lim
u→1

CΨ(u, v) = v, for (u, v) ∈ [0, 1]2.

Note that, for u ∈ [0, 1],

∂CΨ(u, v)

∂v
= u+ sin(Ψ−1(v))

∫ u

0
sin(Ψ−1(t)) dt

≥ u−
∣∣∣∣∫ u

0
sin(Ψ−1(t)) dt

∣∣∣∣
≥ 0.

By symmetry, CΨ is non-decreasing in (u, v) ∈ [0, 1]2. And, for 0 ≤ ui ≤ vi ≤ 1,
i = 1, 2,

CΨ(u1, u2) + CΨ(v1, v2)− CΨ(u1, v2)− CΨ(v1, u2)

= (v2 − u2)(v1 − u1) +

∫ v1

u1

sin(Ψ−1(t)) dt

∫ v2

u2

sin(Ψ−1(t)) dt

≥ (v2 − u2)(v1 − u1)−
∣∣∣∣∫ v1

u1

sin(Ψ−1(t)) dt

∣∣∣∣ ∣∣∣∣∫ v2

u2

sin(Ψ−1(t)) dt

∣∣∣∣
≥ 0.

That is, CΨ possesses the supermodularity. So, CΨ is a copula. 2

For ease of reference, we call the copula well defined in (2.2) as a sine copula
with generator Ψ from now on. Denote X one random variable with distribution
function Ψ. Then, the equality (2.3) is equivalent to E[sin(X)] = 0, which is usu-
ally easy to be verified in some occasions. In practice, for the sake of convenience
and tractability in mathematics, one may choose those symmetric distribution
functions to serve as generators.

Suppose a random variables X’s with lattice distribution on {kπ: k = 0, ±1,
± 2, · · · }. That is, its distribution function Ψ satisfies

∞∑
k=−∞

P (X = kπ) = 1.

Then, sin(Ψ−1(t)) = 0 and hence

CΨ(u, v) ≡ uv = CI(u, v), for any (u, v) ∈ [0, 1]2.
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Namely, CI is a sine copula.
Before proceeding to other main conclusions, let us have a look at the following

examples of the sine copula in (2.2), and it should be remarked here that the
density of a sine copula usually is not unimodal due to periodicity of the sine
operator.

Example 1 (Uniform generators) Let Ψ be a distribution function of a ran-
dom variable X uniformly distributed on [c, c+ 2π] with any constant c. Then,

E[sin(X)] =

∫ c+2π

c
sinx dΨ(x) = 0.

Hence, the corresponding CΨ in (2.2) serves as a sine copula. 2

Example 2 (Symmetric generators) Let Ψ be a distribution function sym-
metric with respect to its expectation nπ, n ∈ Z. It may be verified that (2.3)
holds for any n ∈ Z. Hence, by Theorem 1, CΨ is a copula. Figure 1 plots the
density of CΨ with Ψ being the standard normal distribution.
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Figure 1: Copula generated by N(0, 1) distribution function

Note that both the normal distribution with expectation nπ and the student
distribution satisfy (2.3), they serve as generators of the copulas in (2.2). 2

Example 3 (Gamma generators) Let Ψ be the Gamma distribution function
with parameters (4n, 1), n ∈ Z+, then∫ 1

0
sin(Ψ−1(t)) dt =

∫ ∞
0

x4n−1e−x sinx

(4n− 1)!
dx = 0. (2.4)

Figure 2 plots the density of CΨ with Ψ being the Γ(4, 1) distribution function.
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Figure 2: Copula generated by Γ(4, 1) distribution function

In fact, it can be calculated by standard calculus that (2.4) holds for n = 1.
By iteratively integrating by parts on (2.4), we have∫ ∞

0

x4n+3e−x sinx

(4n+ 3)!
dx =

1

2

∫ ∞
0

x4n+1e−x cosx

(4n+ 1)!
dx

= −1

4

∫ ∞
0

x4n−1e−x sinx

(4n− 1)!
dx

= 0.

By induction, this invokes (2.4). 2

Recall that

Cϕ(u, v) =

{
ϕ−1(ϕ(u) + ϕ(v)), ϕ(u) + ϕ(v) ≤ ϕ(0),

0, otherwise,

is called an Archimedean copula generated by ϕ, which is a strictly increasing
and convex function ϕ(t) such that ϕ(1) = 0 and ϕ′(t) ≤ 0 for all t ∈ (0, 1).
Archimedean copulas are very popular in actuarial science, finance and insur-
ance risk management. It is well-known that Fréchet upper bound CU (u, v) =
min{u, v} does not belong to Archimedean family while Fréchet lower bound
CL(u, v) = max{0, u + v − 1} does. Although sine copulas include the indepen-
dent copula as one special case, Example 4 tells that neither Fréchet upper bound
copula nor Fréchet lower bound copula belong to this new family (2.2), and thus,
the family of sine copulas is inconsistent to Archimedean family.
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Example 4 For a copula C(u, v), define δC(u) = C(u, u). Then, δCU
(u) = u

and δCL
(u) = max{0, 2u− 1}. Let

f(u) = δCΨ
(u)− δCU

(u) = u2 − u+

[∫ u

0
sin
(
Ψ−1(t)

)
dt

]2

,

then f(0) = f(1) = 0, and

f ′(u) = 2u− 1 + 2 sin
(
Ψ−1(u)

) ∫ u

0
sin
(
Ψ−1(t)

)
dt.

It is easy to verify that f ′(1) > 0 and f ′(u) < 0 for some u ∈ (0, 1
4). Then,

f ′(α) = 0 for some α ∈ (1
4 , 1). Note that f ′′(u) ≥ 0, f ′(u) ≤ 0 for u ∈ [0, α] and

f ′(u) > 0 for u ∈ (α, 1], we have

δCΨ
(u) < u = δCU

(u), for u ∈ (0, 1).

That is, CU is not in the family (2.2).
Obviously, δCL

(u) = 0 for u ∈ [0, 1/2]. Note that, for any sine copula CΨ,

δCΨ
(u) = u2 +

(∫ u

0
sin(Ψ−1(t))dt

)2

6= 0, for u ∈ [0, 1/2],

CL is not a sine copula, either. 2

In fact, with the help of the following proposition, we may further clarify the
substantial difference between the sine family and Archimedean family.

Proposition 1 (Nelsen, 2006) For an Archimedean copula with generator ϕ,
it holds that

Cϕ(Cϕ(u, v), w) = Cϕ(u,Cϕ(v, w)), u, v, w ∈ [0, 1].

According to the following example, the sine copula does not possess the
above property.

Example 5 Consider a discrete random variable X,

P (X = π/2) = 1/4, P (X = π) = 1/2, P (X = 3π/2) = 1/4.

The distribution function and its right continuous inverse are

Ψ(x) =


0, 0 ≤ x < π/2,

1/4, π/2 ≤ x < π,

3/4, π ≤ x < 3π/2,

1, x ≥ 3π/2,

Ψ−1(t) =


π/2, 0 ≤ t ≤ 1/4,

π, 1/4 < t ≤ 3/4,

3π/2, 3/4 < t ≤ 1.
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It may be evaluated that
∫ 1

0 sin(Ψ−1(t)) dt = 0. By Theorem 1, CΨ is a copula.
Denote, for u ∈ [0, 1] and for u, v, w ∈ [0, 1],

H(u) =

∫ u

0
sin(Ψ−1(t)) dt,

G(u, v, w) = wH(u)H(v) +H(w)H(uv +H(u)H(v))

−uH(v)H(w)−H(u)H(vw +H(v)H(w)).

Note that G(u, v, w) 6= 0 for some u, v, w ∈ [0, 1] if and only if

CΨ(CΨ(u, v), w) 6= CΨ(u,CΨ(v, w)),

for some u, v and w in [0, 1], from G(1/2, 3/4, 3/4) = 1/64 6= 0 and Proposition
2, it may be concluded that CΨ is not an Archimedean copula. 2

3. Some Dependence Indices

This section presents some dependence indices of the sine copula, for example,
the upper tail dependence coefficient λU , the lower tail dependence coefficient
λL, Kendall’s τ and Spearman’s ρ. Readers may refer to Kaas et al. (2001), Joe
(1993) and Denuit et al. (2005) for more details on these measures.

Proposition 2 For any random vector (X1, X2) with copula (2.2), both the
upper tail dependence coefficient λU = 0 and the lower tail dependence coefficient
λL = 0 whatever the generator Ψ is.

Proof: By using L’Hospital’s rule,

λU = lim
v→0

1− 2(1− v) + C(1− v, 1− v)

v
= lim

s→1

1− 2s+ CΨ(s, s)

1− s

= lim
s→1

−2 + 2s+ 2 sin(Ψ−1(s))
∫ s

0 sin(Ψ−1(t))dt

−1
= 0,

and

λL = lim
u→0

C(u, u)

u
= lim

u→0

u2 +
(∫ u

0 sin(Ψ−1(t))dt
)2

u

= lim
u→0

2u+ 2 sin(Ψ−1(u))

∫ u

0
sin(Ψ−1(t))dt = 0.

2

Proposition 2 tells us that any pair of random variables (X1, X2) with sine
copula (2.2) is asymptotically independent.
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In the past decades, some researchers had spent a lot of time in studying the
dependence between the sample maximum and minimum due to various practical
requirement. Recently, Schmitz (2004) investigated this dependence structure
through determining their copula and conjectured that the ratio of Spearman’s ρ
to Kendall’s τ tends to 3/2 as the sample size tends to infinity. Afterward, Li and
Li (2007) provided a theoretical proof for this conjecture. Proposition 3 below
reveals that Kendall’s τ and Spearman’s ρ of the sine copula achieve this limit
whatever the generator is. In fact, in Archimedean family, both spearman’s ρ
and Kendall’s τ are usually closely related to the generator. This fascinating fact
makes sine copula rather flexible in modeling the dependence between sample
minimum and maximum.

Proposition 3 For any random vector (X1, X2) with copula (2.2), ρ(X1, X2) =
3
2 τ(X1, X2).

Proof: By integrating by parts, we have

τ(X1, X2) = 4

∫ 1

0

∫ 1

0
CΨ(u, v) dCΨ(u, v)− 1

= 4

∫ 1

0

∫ 1

0

(
uv +

∫ u

0
sin
(
Ψ−1(t)

)
dt

∫ v

0
sin
(
Ψ−1(t)

)
dt

)
·
[
1 + sin(Ψ−1(u)) sin(Ψ−1(v))

]
dudv − 1

= 8

(∫ 1

0
u sin(Ψ−1(u)) du

)2

,

and

ρ(X1, X2) = 12

∫ 1

0

∫ 1

0
uv dCΨ(u, v)− 3

= 12

∫ 1

0

∫ 1

0
uv
[
1 + sin(Ψ−1(u)) sin(Ψ−1(v))

]
dudv − 3

= 12

(∫ 1

0
u sin(Ψ−1(u)) du

)2

.

Thus, ρ(X1, X2) = 3
2τ(X1, X2). 2

Since

τ(X1, X2) = 8

[∫ 1

0
u sin(Ψ−1(u)) du

]2

≤ 1

2
,

Kendall’s τ of a sine copula is always bounded below 2−1. This also helps to
determine whether the sine copula is suitable for a certain data set in practice.
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Actually, when

Ψ−1(u) =

{
−π/2, u ∈ [0, 1/2],

π/2, u ∈ (1/2, 1],
(3.1)

τ achieves the maximum 2−1.
Recall that the normal or Gaussian copula

Cα = Hα

(
Φ−1(u),Φ−1(v)

)
,

where Hα is the standard bivariate normal distribution function with correlation
α and Φ is the distribution function of N(0, 1) (Li, 2000). By Proposition 3, we
immediately have the following corollary.

Corollary 4 The normal copula is not in the family of sine copulas.

Proof: By Exercise 5.4.6 of Denuit et al. (2005), the normal copula Cα has the
Kendall’s τ and Spearman’s ρ as

τ =
2

π
arcsinα, ρ =

6

π
arcsin

α

2
.

It is evident that ρ/τ = 3 arcsin(α/2)
arcsinα 6= 3/2. So, the normal copula is not a sine

copula. 2

4. Two Applications

To demonstrate the new copula discussed in previous sections, in this section,
we fit the sine copula to the following two real data sets:

• The first data set is (also used by Frees and Valdez, 1998) from the US
Insurance Services Office and comprising general liability claims randomly
chosen from late settlement lags, it contains 1500 observations, each consists
of loss and allocated loss adjustment expenses (ALAE’s) on a single claim.

• According to the manual of R’s package MASS, the US National Institute
of Diabetes and Digestive and Kidney Diseases collected a data set from a
population of women (at least 21 years old, of Pima Indian heritage and
living near Phoenix, Arizona) who were tested for diabetes according to
World Health Organization criteria. This data set consists of 332 complete
records after dropping the (mainly missing) data on serum insulin.

Scatter plots of the two data sets in Figure 3 demonstrate obvious dependence
between involved random variables, their summary statistics are given in Table
1. Also from Figure 4 it may be reasonable to use the same family of some
distribution to estimate both margins in the same data set.
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(a) log(loss) versus log(ALAE) (b) bmi versus ped

Figure 3: Scattered plots of two real data sets

Table 1: Summary statistics of two data sets

loss ALAE p-value bmi ped p-value1

Total 1500 1500 332 332

Minimum 10 15 19.40 0.09

1st Quartile 4000 2333 28.17 0.27

Median 12000 5471 32.90 0.44

Mean 41208.4 12588.1 33.24 0.53

3rd Quartile 35000 12572 37.20 0.68

Maximum 2173595 501863 67.10 2.42

Standard deviation 102747.7 28145.6 7.28 0.36

Kendall’s τ 0.31542 < 2.2× 10−16 0.0642 0.0816

Spearman’s ρ 0.45187 < 2.2× 10−16 0.0970 0.0777

UTDC2 0.3716 5× 10−5 0.0873 0.3601

LTDC3 0.4481 5× 10−5 0.5469 0.6640

1 The null hypotheses of the standard tests of Kendall’s τ and Spearman’s ρ are
τ = 0 and ρ = 0, respectively. And null hypotheses of the tests of upper/lower tail
dependence coefficients are λU = 0 and λL = 0, respectively. Tests of tail dependence
in Kojadinovic and Yan (2010) are used.
2 upper tail dependence coefficient.
3 lower tail dependence coefficient.
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(a) log(loss) versus log(ALAE) (b) bmi versus ped

Figure 4: QQ plots of the two data sets

For a parametric copula, Oakes (1989) described an omnibus procedure to
estimate the dependence parameter in a copula model as follows: Suppose the
copula Cα with density cα is to be estimated. Let the rescaled empirical distribu-
tion function corresponding to the j-th component of the vector of observations

F̂j,m(x) =
1

m+ 1

m∑
i=1

I{xij≤x}, j = 1, 2,

and the pseudo-log-likelihood

m∑
i=1

ln cα

(
F̂1,m(xi1), F̂2,m(xi2)

)
. (4.1)

Then, the value α̂ maximizing (4.1) is the desired estimator of α.

4.1 Loss and Allocated Loss Adjustment Expenses

Note that the ratio of Spearman’s ρ and Kendall’s τ is 1.433, which is not
far from 1.5, by Proposition 3, we may have a try to fit some sine copula to this
data set. By Example 2, Ψ ∼ N(0, α2) may serve as a generator of a sine copula.
All calculations were performed in R (http://www.r-project.org). For this data
set, we use the omnibus procedure to get the estimator α̂ = 0.84. We use MLE
method and Weibull distribution to estimate the marginal distributions of the
data on log scale. The margins are estimated as Weibull distributions with scale
parameters 10.05, 9.11 and shape parameters 6.34, 6.80, respectively.
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From Table 2, the estimated upper and lower tail dependence coefficients of
the data are significantly different from 0 and hence the data might be fitted
better by some other copula models having tail dependence, however, we can still
compare the three chosen copula models. As can be seen in Figure 5, Weibull
distribution fits the margins of the data well. Now, we use these estimated
margins and different estimated copulas such as Frank copula, Clayton copula
and the sine copula with normal generator Ψ ∼ N(0, 0.842) to fit the data. It
is hard to tell which model performs better from Figure 6, however, according
to Table 2 of AICs (Akaike, 1980), we may conclude that sine copula performs
better than Clayton copula though it is not as good as Frank copula.

Table 2: AIC’s of all models for loss and alae

copula Frank sine Clayton data

AIC 5356.29 5401.42 5448.893

ρ/τ 1.456 1.5 1.476 1.433

Number of parameters 1 1 1

UTDC 0 0 0 0.3716

LTDC 0 0 0.2617 0.4481

(a) log(loss) with parameters (6.34, 10.05) (b) log(ALAE) with parameters (6.80, 9.11)

Figure 5: Estimated Weibull marginal densities
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(a) Frank copula with α = 3.158 (b) Clayton copula with α = 0.517

(c) Sine copula with α = 0.84 (d) Kernel density estimation

Figure 6: Densities of loss and ALAE with estimated Weibull margins

4.2 Body Mass Index and Diabetes Pedigree Function

Let us model the dependence between body mass index (bmi) and diabetes
pedigree function (ped). For this data set, we employ the omnibus procedure
to get the estimator α̂ = 0.34, and Gamma distribution is employed to fit the
margins of the data, the shape parameters are estimated as 21.82, 2.58 and rate
parameters 0.66, 4.89, respectively. As can be seen in Figure 7, Gamma distribu-
tion fits the margins of the data well. Note that the estimated upper/lower tail
dependence coefficient of the data are significantly close to 0, it is reasonable to
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employ sine copula, Frank copula and Clayton copula (when our focuses are on
the upper tail behavior of the data) to model the dependence of the data. Like-
wise, we use the estimated margins and these copulas with estimated parameters
(using omnibus procedure) to fit the data.

(a) bmi with parameters (21.82, 0.66) (b) ped with parameters (2.58, 4.89)

Figure 7: Estimated Gamma marginal densities

The estimation of the joint density functions are plotted in Figure 8. Accord-
ing to Table 3, sine copula performs better than the other copulas.

Table 3: AIC’s of all models for bmi and ped

copula Frank Clayton sine data

AIC 2342.811 2342.683 2342.125

ρ/τ 1.498 1.497 1.5 1.5096

Number of parameters 1 1 1

UTDC 0 0 0 0.0836

LTDC 0 0.0018 0 0.5469
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(a) Clayton copula with α = 0.11 (b) Frank copula with α = 0.59

(c) Sine copula with α = 0.34 (d) density estimation

Figure 8: Densities of bmi and ped with estimated Gamma margins
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