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Abstract: In this paper we introduce a Bayesian analysis of a spherical distri-
bution applied to rock joint orientation data in presence or not of a vector
of covariates, where the response variable is given by the angle from the
mean and the covariates are the components of the normal upwards vector.
Standard simulation MCMC (Markov Chain Monte Carlo) methods have
been used to obtain the posterior summaries of interest obtained from Win-
Bugs software. Illustration of the proposed methodology are given using a
simulated data set and a real rock spherical data set from a hydroelectrical
site.
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1. Introduction

A distribution of errors over the surface of the unit sphere was introduced by
R. A. Fisher in 1952, given by the density,

f (θ | k) =
k

2 sinh (k)
exp(k cos (θ)) sin (θ) , (1)

where 0 < θ < π.
The random variable θ is the angular displacement from the true position at

which θ = 0; the parameter k is a measure of precision. The parameter k has the
following interpretation:

(i) If k is large the distribution is confined in a small portion of the sphere in
the neighborhood of the maximum (small variability);

(ii) If k = 0 (great variability), the distribution is uniform over all spherical
surface.

∗Corresponding author.
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Applications of the spherical distribution with density (1) could be considered
in different areas, as in geology, where sedimentary rocks could have a great
heterogeneity or composition changes in time.

In rock engineering, discontinuities, also known as joints, are idealized as
planes that interrupt the continuity of a rock mass. The representation of an
individual joint is made through the vector perpendicular to itself. A rock mass
can be intersected by many sub parallel planes that are clustered in groups de-
nominated as families. Moreover, a rock mass usually presents more than one
family of discontinuities. These families are typically represented following Fisher
distributions (Merrien-Soukatchoff et al., 2012).

However, in some cases Fisher distribution cannot adjust field data (Lanney,
1978). This fact can be originated from the presence of some covariates that
not were appropriately identified and treated. The presence of covariates such as
spatial position transforms the random variable vector problem into a stochastic
process and the treatment needs to be different.

In rock mechanics, we can find some problems where we need to estimate
the reliability of some performance functions at spatial location that we have not
reached yet, e.g., tunneling. In this case Bayesian prediction constitutes a strong
tool to perform this task. There exists some approaches for performing Bayesian
prediction of the rock mass conditions ahead of the face of the excavation but
these are planned for equivalent continuous rock masses (Einstein, 2004). At
present, we do not have a Bayesian prediction tool for jointed systems.

Consequently, the scope of this paper is to offer a statistical tool to eval-
uate the presence of covariates in a joint cluster. The application of Bayesian
prediction will be presented in another engineering paper.

In Figure 1, we have plots the spherical density (1) considering different val-
ues of k. The mean of the spherical distribution with density (1) is given (see
Appendix 1) by,

E (θ | k) =
π

exp (k)− exp (−k)
[I0 (k)− exp (−k)] , (2)

where I0 (k) =
∑∞

m=0 1/m!Γ(m + 1)(k/2)2m is the modified Bessel function of
first kind (see Abramowitz and Stegun, 1965).

An approximation for (2) considering I0(k) ∼= 1 + (k/2)2 + 1/4(k/2)4 is given
by

E (θ | k) ∼=
πk

exp (k)− exp (−k)

[
k3

64
+
k

4
+

1

k
− exp (−k)

k

]
. (3)

In Table 1, we have some approximations for E (θ | k) using (3) for different values
of k.
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Figure 1: Spherical densities for different values of k

Table 1: Approximated values for E (θ | k)

k 5 3 2 1 0.5 0.1

E (θ | k) 0.36009 0.70024 0.91586 1.19994 1.37742 1.53155

The paper is organized as follows: in Section 2, we introduce the likelihood
function; in Section 3, we present a Bayesian analysis for the model; in Section
4, we assume the presence of covariates; in Section 5 we introduce two examples
considering a simulated data set and a real rock engineering data set in presence
of covariates; finally, in Section 6, we present some concluding remarks.

2. The Likelihood Function for k

Let us assume that θ = (θ1, · · · , θn) is a vector denoting a random sample of
size n of the spherical distribution with density (1).

The likelihood function for the parameter k is given by, L(k) =
∏n
i=1 f(θi | k)

where f(θi | k) is given by (1). That is,

L (k) =

[
k

2 sinh (k)

]
exp (kx)

[
n∏
i=1

sin (θi)

]
, (4)

where x =
∑n

i=1 cos (θi).
The logarithm of the likelihood function (4) is given by,
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l (k) = log [L (k)] = n log (k)− n log [2 sinh (k)] + kx−
n∑
i=1

log [sin (θi)] . (5)

The first derivate of the logarithm of the likelihood function with respect
to k is given by, dl/dk = n/k − n cosh(k)/ sinh(k) + x = 0. Since coth(k) =
cosh(k)/ sinh(k) and coth(k) = [exp(k) + exp(−k)]/[exp(k) − exp(−k)], we get
the maximum likelihood estimator of k from the equation,

h (k) =
n

k
− nexp (k) + exp (−k)

exp (k)− exp (−k)
+ x = 0, (6)

where x =
∑n

i=1 cos (θi).
The maximum likelihood estimator for k is obtained using a numerical itera-

tive method (for example, the Newton-Raphson algorithm).
Using the invariance property of maximum likelihood estimators (see Casella

and Berger, 2002, Chapter 7), the maximum likelihood estimator (MLE) for the
mean of the spherical distribution with density (1) is given by,

Ê(θ | k) =
πk̂

k̂
[
exp(k̂)− exp(−k̂)

] [I0(k̂)− exp(−k̂)
]
, (7)

(see (2)), where I0 (k) is the modified Bessel function of first kind.

3. A Bayesian Analysis

Let us assume a non-informative prior distribution (see Box and Tiao, 1992;
Bernardo and Smith, 2007, Chapter 5); for k given by,

p (k) ∝ 1

k
, (8)

where k > 0.
Combining the prior (8) with likelihood function for k (4), we get from the

Bayes formula, the posterior distribution for k given by,

p (k | θ) = c
kn−1 exp (kx)

[2 sinh (k)]n
, (9)

where k > 0, x =
∑n

i=1 cos(θi), 2 sinh(k) = exp(k) − exp(−k) and c is the
normalizing constant given by c−1 =

∫∞
0 k(n−1) exp(kx)/[exp(k)− exp(−k)]ndk.

A Bayesian estimator with respect to the squared error loss function for k is
given by the posterior mean,

E (k | θ) = c

∫ ∞
0

k(n) exp (kx)

[exp (k)− exp (−k)]n
dk. (10)
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The posterior mean for k (10) given a data set θ = (θ1, · · · , θn) could be
calculated using standard Monte Carlo methods or using approximation methods
for integrals.

Using Laplace’s method (see Tierney and Kadane, 1986; Tierney et al., 1989),
we can rewrite (10) as,

E (k | θ) =

∫∞
0 exp(−nh∗(k))dk∫∞
0 exp(−nh(k))dk

, (11)

where −nh∗(k) = n log(k) + kx − n log[exp(k) − exp(−k)] and −nh(k) = (n −
1) log(k) + kx− n log[exp(k)− exp(−k)].

The standard Laplace’s approximation for integrals is given by,∫ ∞
−∞

exp(−nh(k))dk ∼=
√

2π exp(−nh(k̂))(−nh′′(k̂))
1
2 , (12)

where k̂ is the maximum of −nh(k), that is, −nh′(k̂) = 0, and h′′(k̂) is the second
derivate of h(k).

Using the Laplace’s approximation (12) in the numerator and denominator of
(11), we get the approximation,

Ê(θ | k) ∼=
(k∗)n exp(k∗x)[exp(k̂)− exp(−k̂)]n

k̂(n−1) exp(k̂x)[exp(k̂∗)− exp(−k̂∗)]n

×

[
n

(k̂∗)2
− 4n

[exp(k̂∗)− exp(−k̂∗)]2

] 1
2

[
n− 1

(k̂)2
− 4n

[exp(k̂)− exp(−k̂)]2

] 1
2

, (13)

where k̂∗ is given by n/k̂∗+ x−n[exp(k̂∗) + exp(−k̂∗)]/[exp(k̂∗)− exp(−k̂∗)] = 0
and k̂ is given by n− 1/k̂+ x−n[exp(k̂) + exp(−k̂)]/[exp(k̂)− exp(−k̂)] = 0 and
x =

∑n
i=1 cos(θi).

4. Presence of Covariates

In presence of one or more covariates, we could assume the following regression
model:

ki = exp
(
X ′iβ

)
, (14)

where X ′i = (1, X1i , · · · , Xpi) is a vector of covariates and β = (β0, β1, · · · , βp)
is a vector of regression parameters, that is, X ′iβ = β0 + β1X1i + · · · + βpXpi ,
i = 1, · · · , n.
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For a Bayesian analysis, let us assume the following prior distribution for the
regression parameters:

β0 ∼ N
(
a0; b

2
0

)
, (15)

βj ∼ N
(
0; b2j

)
,

where j = 1, · · · , p; N (µ, σ2) denotes a normal distribution with mean equals to
µ and variance equals to σ2; a0, b0 and bj are known hyperparameters.

The joint posterior distribution for β assuming the prior distributions (15)
and prior independence is given by,

p (β | θ) ∝ exp

(
− 1

2b20
(β0 − a0)2

)∏p

j=1
exp

(
−
β2j
2b2j

)
(16)

× exp
(∑n

i=1
ki cos (θi)

)∏n

i=1

{
ki

exp (ki)− exp (−ki)

}
,

where ki is given by (14).
Posterior summaries of interest for the joint posterior distribution (16) could

be obtained using standard MCMC (Markov Chain Monte Carlo) methods (see
Gelfand and Smith, 1990; Chib and Greenberg, 1995).

5. Examples

5.1 A Simulated Data Set

The accumulated distribution function of the spherical distribution with den-
sity (1) is given by

F (θ | k) =

[
k

2 sinh (k)

] ∫ θ

0
exp(k cos (u)) sin (u) du, (17)

where 0 < θ < π. That is, F (θ | k) = (exp(k) − exp(k cos (θ)))/(exp(k) −
exp (−k)).

Since F (θ | k) ∼ U (0, 1), where U (0, 1) denotes an uniform distribution in
the interval (0, 1), we simulate a value of the uniform distribution U (0, 1), that
is, X1i in this way,

X1 =
exp(k)− exp(k cos (θ1))

exp(k)− exp (−k)
, (18)

where θ1 = arccos {1/k log [exp (k)−X1 exp (k) +X1 exp (−k)]}.
In Table 2, we have a simulated data set of n = 50 observations with k = 0.8

(use of R Software (R Development Core Team, 2012)).
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Table 2: A simulated data set of size n = 50 assuming k = 0.8

1.19865 1.66331 0.50804 0.51265 1.74771

0.48670 2.11942 1.52889 1.62911 1.59583

0.54661 1.35978 1.97644 1.14638 0.77208

1.30261 0.68733 0.74019 0.49657 2.28964

0.54474 1.77158 0.45094 1.22844 0.73070

0.80016 1.99580 1.30424 0.30916 1.69721

0.47143 1.91275 1.61882 0.86586 1.59613

1.16967 1.57620 0.90435 2.08444 1.34750

2.29437 2.22655 1.53593 0.29195 0.51069

2.32105 1.30503 2.26638 2.68381 1.03450

From (6), we get the MLE for k given by k̂ = 0.6785. From (3), the MLE

for the mean of the spherical distribution with density (1) is given by Ê(θ | k) ∼=
0.346894.

Considering a Bayesian analysis, with prior (8) for k, the Laplace’s approx-
imation for the posterior mean of k is given by (13), where k̂∗ = 0.6785 and

k̂ = 0.5638. From (13), we get Ê(k | θ) ∼= 0.6885. This value is close of the MLE
because we use non informative priors.

We also get Monte Carlos estimates for k and the mean µ = E(θ | k) (see
(3)) using MCMC methods. In Table 3, we have the posterior summaries of
interest considering two different priors for k: k ∼ U(0, 1000) (prior 1) and k ∼
Gamma(0.8, 1) (prior 2) where Gamma(a, b) denotes a gamma prior with mean
a/b and variance a/b2. The Monte Carlo estimates were obtained using the
WinBUGS software (Lunn et al., 2000) considering 1000 simulated samples for
the posterior distribution of k after “burn-in-sample” period of 3000 simulated
samples discarded to eliminate the effect of the initial values in the iterative
simulation procedure.

Table 3: Posterior summaries

parameter mean S. D. 95% credible interval

prior 1 k 0.6918 0.2611 (0.1772, 1.209)

µ 1.31 0.09344 (1.134, 1.504)

prior 2 k 0.5928 0.2609 (0.1035, 1.079)

µ 1.345 0.09531 (1.175, 1.531)

From the results of Table 3, we observe similar results assuming a more non-
informative prior 1 and the informative prior 2.
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5.2 A Real Data Set

We used one data set from the joint families identified after clustering anal-
yses of the geological orientation data (Priest, 1985, 1993). It was found that
the mean plane orientation was 138.43◦ for dip direction and dipping 66.56◦.
This leads us to a mean upwards vector orientation of 318.43◦ and dip 23.44◦ or
(−0.6088, 0.6864, 0.3978) in Cartesian coordinates. Appendix 2 presents orien-
tation data relative to this mean vector. In Figure 2, we have the plots of the
angles versus each component of the normal upwards vector.
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Figure 2: Angles versus each component of the normal upwards vector

From the graphs in Figure 2, we observe that the components of the normal
upwards vector apparently affect the angles from the mean. To analyse the data
set of Table 4, let us assume the spherical distribution with density (1) and the
regression model (14), that is,

ki = exp (β0 + β1n.xi + β2n.yi + β3n.zi) , (19)

where i = 1, · · · , 153.
We develop a Bayesian analysis of the model assuming the normal prior dis-

tributions (15) for the regression parameters β0, β1, β2 and β3 with the following
hyperparameter values: a0 = 0, b20 = 10 and b2j = 10, j = 1, 2, 3. Observe that
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Table 4: Posterior summaries (presence of covariates)

parameter mean standard deviation 95% credible interval

β0 -7.026 1.453 -9.922 -4.34
β1 -6.426 1.028 -8.496 -4.45
β2 7.363 1.064 5.414 9.64
β3 4.61 0.6857 3.28 6.056

we are using approximately non-informative priors for each parameter. In Table
4, we have the posterior summaries of interest obtained from a final simulated
Gibbs sample of size 1, 000 using the WinBUGS software with a “burn-in-sample”
of size 3, 000 and taking every 30th simulated sample to have approximately
uncorrelated samples used to get the Monte Carlo estimates for the parameters.
Convergence of the algorithm was obtained observing traceplots of the simulated
Gibbs samples. The code of the WinBUGS software used in this example is given
in Appendix 3 at the end of the paper.

From the Monte Carlo estimates for the regression parameters based on the
1, 000 simulated Gibbs samples, we observe that the components of the normal
upwards vector affect the angles from the mean, since zero is not included in each
95% credible interval for the regression parameters β0, β1, β2 and β3. That is,
the components of the normal upwards vector affect the precision parameter of
the spherical distribution.

6. Concluding Remarks

The use of Bayesian methods could be a good alternative to analyze spherical
data, especially using MCMC methods. We also observe that the use of existing
available software as the WinBUGS software gives great simplification in the
simulation of samples of the joint posterior distribution of interest, especially in
presence of a covariate vector. When we do not have the presence of covariates,
the use of Laplace’s method (see (13)) is a good alternative to get accurate
estimates for the mean of the spherical distribution with density (1). These
results could be of great interest for rock engineerings working with spherical
data as observed in the applications section with simulated and real data set.

Appendix 1: The Mean of the Spherical Distribution with Density (1)

Since the hyperbolic trigonometric function sinh(k) = [exp(k)− exp(−k)]/2,
the mean of the spherical distribution with density (1) is given by

E (θ | k) =
k

exp (k)− exp (−k)

∫ π

0
θ exp(k cos(θ)) sin (θ) dθ. (A.1)
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Considering the transformation y = cos(θ), that is, dy = − sin(θ)dθ, we have
θ = arccos(y), −1 < y < 1, that is,

E (θ | k) =
k

exp (k)− exp (−k)

∫ 1

−1
arccos (y) exp (ky) dy. (A.2)

To solve the integral in (A.2) we use integration by parts,∫
udv = uv −

∫
vdu, (A.3)

where u = arccos(y) and exp(ky)dy = dv, that is, v = exp(ky)/k and du =
dy/
√

1− y2. In this way,∫ 1

−1
arccos(y) exp(ky)dy =

arccos (y) exp (ky)

k

∫ 1

−1
+

1

k

∫ 1

−1

exp (ky) dy√
1− y2

. (A.4)

That is,∫ 1

−1
arccos (y) exp (ky) dy = −π exp (−k)

k
+

1

k

∫ 1

−1

exp (ky) dy√
1− y2

. (A.5)

To solve the integral in (A.5), we assume transformation z = arccos(y) (y =
cos(z)). where 1− y2 = sin2(z) and dy = − sin(z)dz; that is,∫ 1

−1

exp (ky) dy√
1− y2

dz =

∫ π

0

exp(k cos(z))

sin (z)
sin (z) dz =

∫ π

0
exp(k cos(z)) = πI0(k),

(A.6)
where I0(k) is the modified Bessel function or first kind, given by,

I0 (k) =
∞∑
m=0

1

m!Γ (m+ 1)

(
k

2

)2m

. (A.7)

From (A.2), (A.5) and (A.7), we get,

E (θ | k) =
πk

exp (k)− exp (−k)
[I0 (k)− exp (−k)] . (A.8)

Appendix 2: Real Data
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Table 5: A orientation data set of the discontinuities of a hydrological dam

normal upwards vector from mean normal upwards vector from mean

njx njy njz (angle) njx njy njz (angle)

-0.416 0.893 0.174 0.362 -0.866 0.5 0 0.515

-0.416 0.893 0.174 0.362 -0.866 0.5 0 0.515

-0.416 0.893 0.174 0.362 -0.866 0.5 0 0.515

-0.416 0.893 0.174 0.362 -0.866 0.5 0 0.515

-0.866 0.5 0 0.515 -0.557 0.663 0.5 0.117

-0.354 0.354 0.866 0.639 -0.814 0.47 0.342 0.305

-0.754 0.633 0.174 0.273 -0.814 0.47 0.342 0.305

-0.754 0.633 0.174 0.273 -0.612 0.612 0.5 0.126

-0.754 0.633 0.174 0.273 -0.853 0.492 0.174 0.386

-0.754 0.633 0.174 0.273 -0.853 0.492 0.174 0.386

-0.664 0.664 0.342 0.082 -0.853 0.492 0.174 0.386

-0.612 0.612 0.5 0.126 -0.853 0.492 0.174 0.386

-0.612 0.612 0.5 0.126 -0.52 0.742 0.423 0.108

-0.612 0.612 0.5 0.126 -0.52 0.742 0.423 0.108

-0.612 0.612 0.5 0.126 -0.52 0.742 0.423 0.108

-0.612 0.612 0.5 0.126 -0.52 0.742 0.423 0.108

-0.612 0.612 0.5 0.126 -0.52 0.742 0.423 0.108

-0.612 0.612 0.5 0.126 -0.52 0.742 0.423 0.108

-0.612 0.612 0.5 0.126 -0.52 0.742 0.423 0.108

-0.612 0.612 0.5 0.126 -0.52 0.742 0.423 0.108

-0.694 0.324 0.643 0.45 -0.52 0.742 0.423 0.108

-0.694 0.324 0.643 0.45 -0.52 0.742 0.423 0.108

-0.707 0.707 0 0.413 -0.853 0.492 0.174 0.386

-0.707 0.707 0 0.413 -0.853 0.492 0.174 0.386

-0.707 0.707 0 0.413 -0.853 0.492 0.174 0.386

-0.707 0.707 0 0.413 -0.853 0.492 0.174 0.386

-0.707 0.707 0 0.413 -0.853 0.492 0.174 0.386

-0.707 0.707 0 0.413 -0.853 0.492 0.174 0.386

-0.814 0.296 0.5 0.456 -0.643 0.766 0 0.41

-0.742 0.346 0.574 0.408 -0.643 0.766 0 0.41

-0.814 0.296 0.5 0.456 -0.643 0.766 0 0.41

-0.814 0.296 0.5 0.456 -0.643 0.766 0 0.41

-0.663 0.383 0.643 0.396 -0.346 0.742 0.574 0.322

-0.633 0.754 0.174 0.236 -0.966 0.259 0 0.699

-0.604 0.72 0.342 0.065 -0.212 0.791 0.574 0.45

-0.74 0.621 0.259 0.202 -0.908 0.33 0.259 0.49

-0.612 0.612 0.5 0.126 -0.542 0.455 0.707 0.395

-0.866 0.5 0 0.515 -0.707 0.707 0 0.413

-0.866 0.5 0 0.515 -0.707 0.707 0 0.413
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Table 6: A orientation data set of the discontinuities of a hydrological dam

normal upwards vector from mean normal upwards vector from mean

njx njy njz (angle) njx njy njz (angle)

-0.707 0.707 0 0.413 -0.28 0.77 0.574 0.384

-0.766 0.643 0 0.433 -0.28 0.77 0.574 0.384

-0.766 0.643 0 0.433 -0.28 0.77 0.574 0.384

-0.985 0.174 0 0.769 -0.28 0.77 0.574 0.384

-0.985 0.174 0 0.769 -0.383 0.663 0.643 0.336

-0.985 0.174 0 0.769 -0.383 0.663 0.643 0.336

-0.406 0.579 0.707 0.388 -0.224 0.837 0.5 0.429

-0.527 0.628 0.574 0.203 -0.633 0.754 0.174 0.236

-0.709 0.497 0.5 0.238 -0.633 0.754 0.174 0.236

-0.709 0.497 0.5 0.238 -0.453 0.785 0.423 0.186

-0.742 0.52 0.423 0.215 -0.453 0.785 0.423 0.186

-0.742 0.52 0.423 0.215 -0.453 0.785 0.423 0.186

-0.742 0.52 0.423 0.215 -0.621 0.74 0.259 0.15

-0.875 0.408 0.259 0.413 -0.621 0.74 0.259 0.15

-0.875 0.408 0.259 0.413 -0.354 0.612 0.707 0.411

-0.875 0.408 0.259 0.413 -0.354 0.612 0.707 0.411

-0.875 0.408 0.259 0.413 -0.643 0.766 0 0.41

-0.875 0.408 0.259 0.413 -0.853 0.15 0.5 0.607

-0.875 0.408 0.259 0.413 -0.641 0.641 0.423 0.061

-0.875 0.408 0.259 0.413 -0.497 0.709 0.5 0.154

-0.77 0.539 0.342 0.226 -0.497 0.709 0.5 0.154

-0.77 0.539 0.342 0.226 -0.72 0.604 0.342 0.149

-0.985 0.174 0 0.769 -0.807 0.565 0.174 0.324

-0.985 0.174 0 0.769 -0.583 0.694 0.423 0.037

-0.866 0.5 0 0.515 -0.696 0.696 0.174 0.241

-0.416 0.893 0.174 0.362 -0.696 0.696 0.174 0.241

-0.694 0.583 0.423 0.137 -0.696 0.696 0.174 0.241

-0.985 0.174 0 0.769 -0.696 0.696 0.174 0.241

-0.709 0.497 0.5 0.238 -0.696 0.696 0.174 0.241

-0.643 0.766 0 0.41 -0.696 0.696 0.174 0.241

-0.497 0.709 0.5 0.154 -0.696 0.696 0.174 0.241

-0.262 0.72 0.643 0.429 -0.709 0.497 0.5 0.238

-0.262 0.72 0.643 0.429 -0.709 0.497 0.5 0.238

-0.628 0.527 0.574 0.239 -0.709 0.497 0.5 0.238

-0.28 0.77 0.574 0.384 -0.709 0.497 0.5 0.238

-0.28 0.77 0.574 0.384 -0.497 0.709 0.5 0.154

-0.28 0.77 0.574 0.384 -0.497 0.709 0.5 0.154

-0.28 0.77 0.574 0.384 - - - -
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Appendix 3: WinBUGS Code

Listing 1: WinBUGS code

1 model {

2 for (i in 1:n) {

3 dummy[ i ] <− 0

4 dummy[ i ] ˜ dloglik(logLike[ i ])

5 log(k[ i ]) <− beta0+beta1∗n.x[ i ]+beta2∗n.y[ i ] +beta3∗n.z[ i ]

6 logLike[ i ] <− log(k[ i ])−log(exp(k[ i ])−exp(−k[ i ]))+k[ i ]∗

7 cos(theta[ i ])+log(sin(theta[ i ]))}

8 beta0˜ dnorm(0, 0.1)

9 beta1˜ dnorm(0, 0.1)

10 beta2˜ dnorm(0, 0.1)

11 beta3˜ dnorm(0, 0.1)}
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