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Abstract: The five parameter Kumaraswamy generalized gamma model (Pas-
coa et al., 2011) includes some important distributions as special cases and
it is very useful for modeling lifetime data. We propose an extended version
of this distribution by assuming that a shape parameter can take negative
values. The new distribution can accommodate increasing, decreasing, bath-
tub and unimodal shaped hazard functions. A second advantage is that it
also includes as special models reciprocal distributions such as the recipro-
cal gamma and reciprocal Weibull distributions. A third advantage is that
it can represent the error distribution for the log-Kumaraswamy general-
ized gamma regression model. We provide a mathematical treatment of
the new distribution including explicit expressions for moments, generating
function, mean deviations and order statistics. We obtain the moments of
the log-transformed distribution. The new regression model can be used
more effectively in the analysis of survival data since it includes as sub-
models several widely-known regression models. The method of maximum
likelihood and a Bayesian procedure are used for estimating the model pa-
rameters for censored data. Overall, the new regression model is very useful
to the analysis of real data.

Key words: Censored data, generating function, Kumaraswamy generalized
gamma distribution, log-gamma generalized regression, moment, survival
function.

1. Introduction

Standard lifetime distributions usually present very strong restrictions to pro-
duce bathtub curves, and thus appear to be unappropriate for data with this
characteristic. The gamma distribution is the most popular model for analyzing
skewed data. The generalized gamma (GG) (Stacy, 1962) distribution includes
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as special models the exponential, Weibull, gamma and Rayleigh distributions,
among others. It is suitable for modeling data with hazard rate function of dif-
ferent forms (increasing, decreasing, bathtub and unimodal) and then it is useful
for estimating individual hazard functions and both relative hazards and relative
times (Cox, 2008). The GG distribution has been used in several research ar-
eas such as engineering, hydrology and survival analysis. In fact, Ortega et al.
(2003) discussed influence diagnostics in GG regression models, Nadarajah and
Gupta (2007) applied this distribution to drought data and Cox et al. (2007)
presented a parametric survival analysis and taxonomy of GG hazard functions.
For X1 and X2 independent GG random variables, Ali et al. (2008) derived the
exact distributions of the product X1X2 and quotient X1/X2 and provided ap-
plications of their results to drought data from Nebraska. Further, Gomes et al.
(2008) focused on parameter estimation, Ortega et al. (2008) compared three
types of deviance component residuals in GG regression models under censored
observations, Cox (2008) discussed and compared the F-generalized family with
the GG model, Almpanidis and Kotropoulos (2008) presented a text-independent
automatic phone segmentation algorithm based on this distribution and Nadara-
jah (2008a) analyzed some incorrect references with respect to its use in electrical
and electronic engineering. More recently, Barkauskas et al. (2009) studied the
noise part of a spectrum as an autoregressive moving average (ARMA) model
with the innovations having the GG distribution and Malhotra et al. (2009)
provided a unified analysis for wireless system over generalized fading channels
that is modeled by a two parameter GG model. Also, Ortega et al. (2009) pro-
posed a modified GG regression model to allow the possibility that long-term
survivors may be presented in the data and Cordeiro et al. (2010) defined the
exponentiated generalized gamma (EGG) distribution. This distribution due to
its flexibility in accommodating many forms of the risk function seems to be an
important model that can be used in a variety of problems in survival analysis.

In the last years, new distributions for modeling survival data based on ex-
tensions of the Weibull distribution were developed. Mudholkar et al. (1995),
Xie and Lai (1995), Lai et al. (2003) and Carrasco et al. (2008) introduced
the exponentiated Weibull (EW), additive Weibull, modified Weibull (MW) and
generalized modified Weibull (GMW) distributions, respectively. Further, the
main motivation for the exponentiated generalized gamma (EGG) distribution
(Cordeiro et al., 2010) is that it contains as special cases the GG, EW, expo-
nentiated exponential (EE) (Gupta and Kundu, 1999) and generalized Rayleigh
(GR) (Kundu and Raqab, 2005) distributions.

The Kumaraswamy generalized gamma (KGG) distribution (Pascoa et al.,
2011) can model four types of the failure rate function (i.e. increasing, decreasing,
unimodal and bathtub) depending on the values of its parameters. It is also
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suitable for testing goodness-of-fit of some sub-models, such as the EGG, GG,
EW, Weibull and GR distributions. In this paper, we define an extended form of
the KGG distribution to cope with several reciprocal type distributions and study
some of its structural properties. We extend the model by Pascoa et al. (2011),
since a shape parameter can take negative values. The method of maximum
likelihood is used for estimating the model parameters. Unless otherwise stated,
all of the results presented in the paper are new and original. It is expected that
they could encourage further research on the new distribution.

Different forms of regression models have been proposed in survival analysis.
Among them, the location-scale regression model (Lawless, 2003) is distinguished
since it is frequently used in clinical trials. Here, we propose a location-scale
regression model based on the new distribution called the log-Kumaraswamy
generalized gamma (LKGG) regression model, which is a feasible alternative for
modeling the four types of failure rate functions.

The rest of the paper is organized as follows. In Section 2, we define an
extended version of the KGG distribution. In Section 3, we derive its ordinary
moments, moment generating function (mgf), order statistics and their moments.
In Section 4, we define the LKGG distribution and derive an explicit expression for
its moments. In Section 5, we propose the LKGG regression model for analysis
of censored data. We estimate the model parameters by maximum likelihood,
derive the observed information matrix and discuss a Bayesian methodology to
estimate the model parameters. In Section 6, we illustrate the potentiality of
the new regression model by means of a real data set in chemical dependency.
Section 7 ends with some concluding remarks.

2. The KGG Distribution

Pascoa et al. (2011) defined the KGG distribution with five positive parame-
ters α, τ , k, λ and ϕ to extend the GG and EGG distributions pioneered by Stacy
(1962) and Cordeiro et al. (2010), respectively. The KGG probability density
function (pdf) (for t > 0) is given by

f(t) =
λϕ τ

αΓ(k)
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t
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where Γ(k) =
∫∞

0 wk−1e−wdw (for k > 0) is the gamma function, γ1(k, x) =
γ(k, x)/Γ(k) is the incomplete gamma function ratio and γ(k, x) =

∫ x
0 w

k−1e−wdw
is the incomplete gamma function. The incomplete gamma function defined here
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for positive real k and x can be developed into the context of holomorphic func-
tions for any complex k and x. Complex analysis shows how properties of the
real incomplete gamma functions extend to their holomorphic counterparts. In
the density function (1), α is a scale parameter and τ , k, λ and ϕ are shape
parameters. The Weibull, GG and EGG distributions are special models of (1)
when λ = k = 1, λ = ϕ = 1 and ϕ = 1, respectively. The KGG distribution
approaches the log-normal distribution when λ = ϕ = 1 and k →∞.

Now, we define an extended form of the density function (1) (for t > 0) given
by

f(t) =
λϕ |τ |
αΓ(k)
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exp
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)τ ]{
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×
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)τ ]}λ)ϕ−1

, (2)

where τ is not zero and the other parameters are positive. The terminology
Kumaraswamy generalized gamma (KGG) distribution is maintained for (2). For
a random variable T having this density, we write T ∼KGG(α, τ, k, λ, ϕ). For
τ > 0, (2) reduces to (1) and for τ > 0 and λ = ϕ = 1, it is identical to the GG
distribution. For τ > 0 and λ = ϕ = k = 1, we obtain the Weibull distribution.
The case τ < 0 and λ = ϕ = k = 1 gives the reciprocal Weibull (or inverse
Weibull) distribution. For τ = −1 and λ = ϕ = k = 1, we obtain the reciprocal
exponential. If τ = −2 and λ = ϕ = k = 1, we have the reciprocal Rayleigh. For
τ = −1 and λ = ϕ = 1, we obtain the reciprocal gamma. The case τ < 0 and
λ = ϕ = 1 corresponds to the generalized reciprocal gamma. If α = 1/2, τ = −1,
k = p/2 and λ = ϕ = 1, we have the reciprocal chi-square. The values α = 1/

√
2,

τ = −2, k = p/2 and λ = ϕ = 1 yield the reciprocal-chi. If α =
√

2σ, τ = −2,
k = p/2 and λ = ϕ = 1, we obtain the scaled reciprocal-chi. The case τ < 0 and
k = 1 gives the Kumaraswamy (“Kum” for short) reciprocal Weibull. For τ = −1
and k = 1, we have the Kum reciprocal exponential. If τ = −2 and k = 1, we
obtain the Kum reciprocal Rayleigh. The Kum reciprocal gamma corresponds to
τ < 0. Several special models of (2) when τ > 0 are discussed by Pascoa et al.
(2011). Plots of the KGG density function for selected values of τ > 0 and τ < 0
are displayed in Figure 1.

The cumulative distribution function (cdf) corresponding to (2) becomes

F (t) =


1−
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1−
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γ1

(
k, ( tα)τ

)]λ}ϕ
, if τ > 0,

{
1−

[
γ1

(
k, ( tα)τ

)]λ}ϕ
, if τ < 0.

(3)



The Log-Kumaraswamy Generalized Gamma Regression Model 785

(a) (b) (c)

0.0 0.5 1.0 1.5 2.0 2.5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

t

f(
t)

α=1; τ=0.7; k=1; λ=1; ϕ=1
α=1; τ=1.5; k=1; λ=1; ϕ=1
α=1; τ=2; k=1; λ=1; ϕ=1
α=1; τ=2.5; k=1; λ=1; ϕ=1
α=1; τ=3; k=1; λ=1; ϕ=1

0.0 0.5 1.0 1.5 2.0 2.5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

t

f(
t)

α=1; τ=−0.7; k=1; λ=1; ϕ=1
α=1; τ=−1.5; k=1; λ=1; ϕ=1
α=1; τ=−2; k=1; λ=1; ϕ=1
α=1; τ=−2.5; k=1; λ=1; ϕ=1
α=1; τ=−3; k=1; λ=1; ϕ=1

0 2 4 6 8 10 12

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

t

f(
t)

α=4.7; τ=7.2; k=2.8; λ=0.8; ϕ=1.5
α=5; τ=2.3; k=3; λ=0.9; ϕ=2.5
α=1.9; τ=−5; k=0.4; λ=2.1; ϕ=2
α=1.2; τ=−0.6; k=0.4; λ=10; ϕ=0.8
α=6; τ=3; k=1; λ=20; ϕ=0.9
α=3.1; τ=−10.3; k=2; λ=0.1; ϕ=1.2

Figure 1: The KGG density curves: (a) For some values of τ > 0. (b) For some
values of τ < 0. (c) For some values of τ > 0 and τ < 0

Let gα,τ,k(t) be the GG(α, τ, k) density function (Stacy and Mihram, 1965)
given by (for t > 0)

gα,τ,k(t) =
|τ |

αΓ(k)
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The generalized binomial expansion converges for |z| < 1 and any real b
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= Γ(b + 1)/[Γ(b − j + 1)j!]. Then, from (5), the density function (2)

can be expressed as

f(t) =
λϕ |τ |
αΓ(k)

(
t

α

)τk−1

exp

[
−
(
t

α

)τ ]{
γ1

[
k,

(
t

α

)τ ]}λ−1 ∞∑
j=0

(−1)j
(
ϕ− 1

j

)

×

{
γ1

[
k,

(
t

α

)τ ]}λj
.

This equation holds for any ϕ > 0. From expansion (27) (given in Appendix A),
we obtain

f(t) =
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For any real λj +m > 0, we can write{
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Applying the binomial expansion, (6) can be rewritten as
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From (31) (given in Appendix A) and replacing
∑∞

l=0

∑l
q=0 by

∑∞
q=0
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l=q, the

density function f(t) can be expressed as a double linear combination of GG
density functions

f(t) =

∞∑
d,q=0

wd,q gα,τ,k(1+q)+d(t), t > 0, (7)

where gα,τ,k(1+q)+d(t) is the GG(α, τ, k(1 + q) + d) density function given by (4)
and the coefficients wd,q are

wd,q = wd,q(k, λ, ϕ) = λϕ
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where the quantity sm(λ − 1) is given by (28) and the quantities cq,d can be
determined from the recurrence (30) (see Appendix A). Clearly,

∑∞
d,q=0wd,q = 1.

(7) is the main result of this section. Some KGG mathematical properties (for
example, the ordinary, inverse, factorial and incomplete moments and generating
function can be obtained from (7) and those GG properties.

3. General Properties

Henceforth, let T and Y be random variables having the densities (2) and (4),
respectively.

3.1 Moments

Here, we obtain an infinite representation for the rth ordinary moment of T ,
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say µ′r = E(T r). The rth moment of the GG(α, τ, k) distribution is

µ′r,GG =
αr Γ(k + r/τ)

Γ(k)
.

Based on (7), µ′r can be expressed as

µ′r = αr λϕ
∞∑
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∞∑
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l

)(
l

q

)
,

where the quantity sm(λ) is given by (28) and the coefficients cq,d can be deter-
mined from (30).

3.2 Generating Function

Here, we provide an explicit expression for the mgf of Y , say Mα,τ,k(s) =
E(esY ), for τ > 1, based on the Wright function (Wright, 1935). We are unable
to obtain a closed-form expression for Mα,τ,k(s) when τ < 0. We can write

Mα,τ,k(s) =
|τ |

ατk Γ(k)

∫ ∞
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Setting u = t/α, we have
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Now, we assume τ > 0. Expanding the first exponential in Taylor series and
using
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τ
du = τ−1 Γ(m/τ + k), we obtain
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Γ
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. (9)

(9) holds for any real τ > 0. However, for τ > 1, it can be simplified by con-
sidering the Wright generalized hypergeometric function (Wright, 1935) defined
by
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This function exists if 1 +
∑q

j=1Bj −
∑p

j=1Aj > 0. By combining the last two
equations, we have

Mα,τ,k(s) =
1

Γ(k)
1Ψ0

[ (
k, τ−1

)
− ; s α

]
. (10)

Finally, the mgf of T (for τ > 1) can be written from (7) and (10) as

M(s) =

∞∑
d,q=0

wd,q
Γ(k[1 + q] + d)

1Ψ0

[ (
k[1 + q] + d, τ−1

)
− ; s α

]
. (11)

(9)-(11) are the main result of this section.

3.3 Order Statistics

The density function fi:n(t) of the ith order statistic, say Ti:n, for i = 1, · · · , n,
from random variables T1, · · · , Tn having density (2), is given by

fi:n(t) =
1

B(i, n− i+ 1)
f(t)F (t)i−1 {1− F (t)}n−i,

where f(t) and F (t) are the pdf and cdf of the KGG distribution, respectively
and B(p, q) = Γ(p)Γ(q)/Γ(p + q) denotes the beta function. We readily obtain
using the binomial expansion

fi:n(t) =
1

B(i, n− i+ 1)
f(t)

n−i∑
j1=0

(−1)j1
(
n− i
j1

)
F (t)i+j1−1.

Now, we derive an expression for the density function of the KGG order statistics
in terms of the baseline density function multiplied by a power series of G(t) =
γ1(k, (t/α)τ ). Setting ϕ = λ = 1 in (3), it is clear that the cdf of the GG(α, τ, k)
distribution is G(t) = γ1(k, (t/α)τ ) for τ > 0 and 1−G(t) = 1− γ1(k, (t/α)τ ) for
τ < 0. This result enables us to obtain the ordinary moments of the KGG order
statistics as infinite weighted sums of convenient quantities defined by

δs,r =

∫ ∞
0

ts γ1

[
k,

(
t

α

)τ]r
gα,τ,k(t)dt.

These quantities δs,r can be easily integrated numerically. They represent the
probability weighted moments (PWMs) of Y when τ > 0. We shall consider two
distinct cases: τ > 0 and τ < 0.
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• For τ > 0

An expansion for F (t)i+j1−1 follows from (3) as
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for r, u = 0, 1, · · · . The density function of Ti:n becomes
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and then

fi:n(t) =
1
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Then, for τ > 0, E (T si:n) can be expressed as
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• For τ < 0

From (3), we can write
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For m1λ > 0, we have G(t)m1λ =
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r=0 sr(m1λ)G(t)r, where sr(m1λ) is
given by (28) for r = 0, 1, · · · . Further,

F (t)i+j1−1 =

∞∑
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where
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The density function of the KGG order statistics becomes

fi:n(t) =
1

B(i, n− i+ 1)
f(t)

n−i∑
j1=0

(−1)j1
(
n− i
j1

) ∞∑
r=0

qr(i, j1, λ, ϕ)G(t)r,

and then

fi:n(t) =
1

B(i, n− i+ 1)

∞∑
d,q,r=0

n−i∑
j1=0

(−1)j1
(
n− i
j1

)
wd,q qr(i, j1, λ, ϕ)γ1

×
[
k,

(
t

α

)τ]r
gα,τ,k(1+q)+d(t).

The last equation can be rewritten as

fi:n(t) =
∞∑

d,q,r=0

n−i∑
j1=0

m(d, q, i, j1, n) tτ(kq+d)qr(i, j1, λ, ϕ)γ1

×
[
k,

(
t

α

)τ]r
gα,τ,k(t), (14)

where m(d, q, i, j1, n) is given by (13). So, the moments of the KGG order
statistics for τ < 0 can be expressed as

E (T si:n) =
∞∑

d,q,r=0

n−i∑
j1=0

m(d, q, i, j1, n)qr(i, j1, λ, ϕ) δs+τ(kq+d),r.

(12) and (14) are the main results of this section.

4. The LKGG Distribution

Henceforth, let T be a random variable following the KGG density function (2)
and let Y = log(T ). Setting k = q−2, τ = (σ

√
k)−1 and α = exp

[
µ− τ−1 log(k)

]
,

the density function of Y can be expressed as

f(y) =
λϕ|q|(q−2)q

−2

σΓ(q−2)
exp
{
q−1
(y − µ

σ

)
− q−2exp

[
q
(y − µ

σ

)]}
×
{
γ1

[
q−2, q−2exp

{
q
(y − µ

σ

)}]}λ−1{
1−

[
γ1

(
q−2, q−2exp

{
q
(y − µ

σ

)})]λ}ϕ−1
,
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where −∞ < y, µ < ∞, σ > 0, λ > 0, ϕ > 0 and q is different from zero. We
consider an extended form including the case q = 0 (Lawless, 2003). Thus, the
density of Y can be expressed as

f(y) =



λϕ|q|(q−2)q
−2

σΓ(q−2)
exp
{
q−1
(
y−µ
σ

)
− q−2exp

[
q
(
y−µ
σ

)]}
×
{
γ1

[
q−2, q−2exp

{
q
(
y−µ
σ

)}]}λ−1

×
{

1−
[
γ1

(
q−2, q−2exp

{
q
(
y−µ
σ

)})]λ}ϕ−1
, if q 6= 0,

λϕ√
2πσ

exp
{
− 1

2

(y−µ
σ

)2}
Φ(λ−1)

(y−µ
σ

)[
1− Φλ

(y−µ
σ

)]ϕ−1
, if q = 0,

(15)

where Φ(·) is the standard normal cumulative distribution. We refer to (15)
as the log-Kumaraswamy generalized gamma (LKGG) distribution, say Y ∼
LKGG(µ, σ, q, λ, ϕ), where µ ∈ R is the location parameter, σ > 0 is the scale
parameter and q, λ and ϕ are shape parameters. For q = 0 and λϕ = 1 and q = 1,
we have from (15) the skew normal and extreme value distributions, respectively.
For ϕ = 1 and λ = ϕ = 1, we obtain the log-exponentiated generalized gamma
(Ortega et al., 2012) and log-gamma generalized distributions, respectively. The
case λ = ϕ = 1 and q = −1 corresponds to the log-inverse Weibull distribution.
Thus,

if T ∼ KGG(α, τ, k, λ, ϕ) then Y = log(T ) ∼ LKGG(µ, σ, q, λ, ϕ).

Setting µ = 0 and σ = 1, the plots of the density function (15) for selected
values of λ and ϕ, when q < 0, q > 0 and q = 0, are displayed in Figure 2.
These plots clearly indicate that the LKGG distribution could be very flexible
for modeling its kurtosis.

−4 −3 −2 −1 0 1 2 3

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

y

f(
y
)

q=0.4; λ=0.6; ϕ=0.9
q=4; λ=3; ϕ=0.5
q=0.2; λ=0.4; ϕ=1.2
q=0.5; λ=1.9; ϕ=0.8
q=0.1; λ=0.7; ϕ=5

−3 −2 −1 0 1 2 3 4

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

y

f(
y
)

q=−0.4; λ=0.6; ϕ=0.9
q=−4; λ=3; ϕ=0.5
q=−0.2; λ=0.4; ϕ=1.2
q=−0.5; λ=1.9; ϕ=0.8
q=−0.1; λ=0.7; ϕ=5

−4 −2 0 2 4

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

y

f(
y
)

λ=0.6; ϕ=0.9
λ=3; ϕ=0.5
λ=0.4; ϕ=1.2
λ=1.9; ϕ=0.8
λ=0.7; ϕ=5

Figure 2: The LKGG density curves: (a) For some values of q > 0. (b) For
some values of q < 0. (c) For some values of q = 0
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• For q > 0, the survival function of Y is given by

S(y) = 1− F (y) = P (Y > y) = P (µ+ σZ > y) = P (Z > z)

=
λϕq(q−2)q

−2

Γ(q−2)

∫ ∞
z

exp
{
q−1u− q−2exp(qu)

}{
γ1

[
q−2, q−2exp(qu)

]}λ−1
du[

1−
{
γ1

[
q−2, q−2exp(qu)

]}λ]−(ϕ−1)
;

• For q < 0, the survival function of Y is given by

S(y) = 1− F (y) = P (Y > y) = P (µ+ σZ > y) = P (Z > z)

=
−λϕq(q−2)q

−2

Γ(q−2)

∫ ∞
z

exp
{
q−1u− q−2exp(qu)

}{
γ1

[
q−2, q−2exp(qu)

]}λ−1
du[

1−
{
γ1

[
q−2, q−2exp(qu)

]}λ]−(ϕ−1)
.

These integrals can be reduced to

S(y) =



{
1−

[
γ1

(
q−2, q−2exp

[
q(y−µσ )

])]λ}ϕ
, if q > 0,

1−
{

1−
[
γ1

(
q−2, q−2exp

[
q(y−µσ )

])]λ}ϕ
, if q < 0,

[
1− Φλ

(y−µ
σ

)]ϕ
, if q = 0.

(16)

Now, we derive the rth moment of Y ∼ LKGG(µ, σ, q, λ, ϕ), say µ′r.

• For q 6= 0, we obtain

µ′r =

∫ ∞
−∞

yr
λϕ|q|

(
q−2
)q−2

σΓ(q−2)
exp

(
q−2
{
q
(y − µ

σ

)
− exp

[
q
(y − µ

σ

)]})
×
(
γ1

{
q−2, q−2 exp

[
q
(y − µ

σ

)]})λ−1

×
[
1−

(
γ1

{
q−2, q−2 exp

[
q
(y − µ

σ

)]})λ]ϕ−1
dy.

Setting x = q−2 exp
[
q
(y−µ

σ

)]
and using (5), µ′r reduces to

µ′r =
λϕ sgn(q)

Γ (q−2)

∫ ∞
0

{
σ

q
[log(x) + 2 log(|q|)] + µ

}r
xq

−2−1e−x

×
∞∑
j=0

(−1)j
(
ϕ− 1

j

)[
γ1

(
q−2, x

)]λ(j+1)−1
dx.
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Applying expansion (27) in Appendix A for
[
γ1

(
q−2, x

)]λ(j+1)−1
, we obtain

µ′r =

∫ ∞
0

λϕ sgn(q)

Γ (q−2)

{
σ

q
[log(x) + 2 log(|q|)] + µ

}r
xq

−2−1e−x

×
∞∑

j,m=0

(−1)j sm(λ(j + 1)− 1)

(
ϕ− 1

j

)
γ1

(
q−2, x

)m
dx.

Using expansion (31) in Appendix A for γ1

(
q−2, x

)m
, we have

µ′r =

∫ ∞
0

λϕ sgn(q)

Γ (q−2)

{
σ

q
[log(x) + 2 log(|q|)] + µ

}r
e−x

×
∞∑

j,m,i=0

(−1)j sm(λ(j + 1)− 1) cm,i
Γ(q−2)m

(
ϕ− 1

j

)
xq

−2(m+1)+i−1dx.

Note that{
2σ

q
log(|q|) + µ+

σ

q
log(x)

}r
=

r∑
l=0

(
r

l

)[
2σ

q
log(|q|) + µ

]r−l(σ
q

)l
l log(x),

and then

µ′r =
λϕ sgn(q)

Γ(q−2)

∞∑
j,m,i=0

r∑
l=0

(−1)j sm(λ(j + 1)− 1) cm,i
Γ (q−2)m

(
ϕ− 1

j

)(
r

l

)

×
[

2σ

q
log(|q|) + µ

]r−l (σ
q

)l
l

∫ ∞
0

log(x)e−x xq
−2(m+1)+i−1dx.

The last integral is given in Prudnikov et al. (1986, Vol 1, Section 2.6.21)
and then

µ′r =
λϕ sgn(q)

Γ(q−2)

∞∑
j,m,i=0

r∑
l=0

(−1)j sm(λ(j + 1)− 1) cm,i
Γ (q−2)m

(
ϕ− 1

j

)(
r

l

)

×
[

2σ

q
log(|q|) + µ

]r−l [
Γ̇(q−2(m+ 1) + i)

](σ
q

)l
l
,

where Γ̇(p) = ∂Γ(p)/∂p.

• For q = 0, we can write

µ′r = E(Y r) =
λϕ√
2πσ

∫ ∞
−∞

yr exp
[
− 1

2

(y − µ
σ

)2]
Φ(λ−1)

(y − µ
σ

)
×
[
1− Φ(λ)

(y − µ
σ

)]ϕ−1
dy.
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Using (5), we have

µ′r =
λϕ√
2πσ

∫ ∞
−∞

yrexp
[
− 1

2

(y − µ
σ

)2] ∞∑
m=0

(−1)m
(
ϕ− 1

m

)
Φ(λ(m+1)−1)

×
(y − µ

σ

)
dy.

The PWM (for j and p non-negative integers) of the standardized normal
distribution is

νj,p =

∫ ∞
−∞

zj φ(z) Φp(z)dz,

where φ(z) is the standard normal density. Setting y = µ + σz and using
(27) in Appendix A for Φ(λ(m+1)−1)(z), we obtain

µ′r = λϕ
∞∑

m,p=0

r∑
j=0

(−1)m
(
ϕ− 1

m

)(
r

j

)
sp(λ(m+ 1)− 1)σj µr−j νj,p, (17)

The standard cumulative normal can be expressed as

Φ(x) =
1

2

{
1 + erf

(
x√
2

)}
, x ∈ R.

Using the binomial expansion and interchanging terms, we obtain

νj,p =
1

2p
√

2π

p∑
l=0

(
p

l

) ∫ ∞
−∞

xje−x
2/2 erf

(
x√
2

)p−l
dx.

From the power series for the error function erf(·)

erf(x) =
2√
π

∞∑
m=0

(−1)m x2m+1

(2m+ 1)m!
,

the last integral follows from (9)-(11) of Nadarajah (2008b). When j+p− l
is even, we have

νj,p = 2j/2π−(p+1)/2
p∑
l=0

(j+p−l) even

(
p

l

)
2−l πl/2 Γ

(
j + p− l + 1

2

)

×F (p−l)
A

(
j + p− l + 1

2
;
1

2
, · · · , 1

2
;
3

2
, · · · , 3

2
;−1, · · · ,−1

)
, (18)
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where F
(p−l)
A is given in terms of the Lauricella function of type A (Exton, 1978;

Aarts, 2000) defined by

F
(n)
A (a; b1, · · · , bn; c1, · · · , cn;x1, · · · , xn)

=

∞∑
m1=0

· · ·
∞∑

mn=0

(a)m1+···+mn (b1)m1
· · · (bn)mn

(c1)m1
· · · (cn)mn

xm1
1 · · ·xmnn
m1! · · ·mn!

,

and (a)i = a(a + 1) · · · (a + i − 1) is the ascending factorial with the convention
that (a)0 = 1. Numerical routines for the direct computation of the Lauricella
function of type A are available, see Exton (1978) and Mathematica (Trott, 2006).

Plots of the skewness and kurtosis for selected values of µ, σ, q, λ and ϕ are
displayed in Figures 3 and 4, respectively.
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Figure 3: Skewness and kurtosis of the LKGG distribution as a function of λ
for some values of ϕ with µ = 1.5, σ = 2 and q = 0.5
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5. The LKGG Regression Model

In many practical applications, the lifetimes are affected by explanatory vari-
ables such as the cholesterol level, blood pressure, weight and many others. Para-
metric models to estimate univariate survival functions for censored data regres-
sion problems are widely used. A parametric model that provides a good fit
to lifetime data tends to yield more precise estimates of the quantities of in-
terest. If Y ∼ LKGG(µ, σ, q, λ, ϕ), we define the standardized random variable
Z = (Y − µ)/σ having density function given by

f(z) =


λϕ |q|
Γ(q−2)

(q−2)q
−2

exp
{
q−1z − q−2exp(qz)

}{
γ1

[
q−2, q−2exp(qz)

]}λ−1

×
{

1−
(
γ1

[
q−2, q−2exp(qz)

])λ}ϕ−1
, if q 6= 0,

λϕ√
2π

exp
(
− z2

2

)
Φ(λ−1)(z)[1− Φλ(z)]ϕ−1, if q = 0.

(19)

We write Z ∼ LKGG(0, 1, q, λ, ϕ). Further, we propose a linear location-scale
regression model linking the response variable yi and the explanatory variable
vector xTi = (xi1, · · · , xip) by

yi = xTi β + σzi, i = 1, · · · , n, (20)

where the random error zi has density function (19), β = (β1, · · · , βp)T , σ > 0,
λ > 0 and −∞ < q < ∞ are unknown parameters. The parameter µi = xTi β is
the location of yi. The location parameter vector µ = (µ1, · · · , µn)T is defined by
a linear model µ = Xβ, whereX = (x1, · · · ,xn)T is a known model matrix. The
LKGG model (20) opens new possibilities for fitted many different types of data.
It contains as special models some well-known regression models. For ϕ = 1,
we obtain the log-exponentiated generalized gamma (LEGG) regression model
(Ortega et al., 2012). The case λ = 1 leads to the log-exponentiated complement
generalized gamma (LECGG) regression model, whereas ϕ = λ = 1 yields the
log-gamma generalized (LGG) regression model. For ϕ = λ = q = 1, we obtain
the classical log-Weibull (or extreme value) regression model (see, Lawless, 2003).
If σ = 1 and σ = 0.5, in addition to ϕ = λ = q = 1, the new regression model
reduces to the exponential and Rayleigh regression models, respectively. The
case λ = ϕ = q = 1 refers to the log-exponentiated Weibull (LEW) regression
model (Mudholkar et al., 1995). See, also, Cancho et al. (1999, 2009), Ortega
et al. (2006) and Hashimoto et al. (2010). If σ = 1, in addition to q = 1, it
coincides with the log-exponentiated exponential regression model. If σ = 0.5,
in addition to q = 1, it gives the log-generalized Rayleigh regression model. For
λ = 1, we have the log-gamma generalized (LGG) regression model (Lawless,
2003). Recently, the LGG distribution has been used in several research areas.
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See, for example, Ortega et al. (2003, 2008, 2009). For q = −1, we obtain the
log-generalized inverse Weibull regression model. If λ = 1, in addition to q = −1,
it follows the log-inverse Weibull regression model. For q = 0, we have the log-
exponentiated normal regression model. Finally, for λ = 2, the LKGG regression
model reduces to the skew normal regression model.

5.1 Maximum Likelihood Estimation

Consider a sample (y1,x1), · · · , (yn,xn) of n independent observations, where
each random response is defined by yi = min{log(ti), log(ci)}. We assume non-
informative censoring such that the observed lifetimes and censoring times are
independent. Let F and C be the sets of individuals for which yi is the log-lifetime
or log-censoring, respectively. Conventional likelihood estimation techniques can
be applied here. The log-likelihood function for the vector of parameters θ =

(q, λ, ϕ, σ,βT )T from model (20) has the form l(θ) =
∑
i∈F

li(θ) +
∑
i∈C

l
(c)
i (θ), where

li(θ) = log[f(yi)], l
(c)
i (θ) = log[S(yi)], f(yi) is the density function (15) and S(yi)

is the survival function (16) of Yi. The total log-likelihood function for θ can be
partitioned as

l(θ) =



v log
[
λϕ q (q−2)q

−2

σΓ(q−2)

]
+ q−1

∑
i∈F

zi − q−2
∑
i∈F

exp(qzi)

+(λ− 1)
∑
i∈F

log{γ1[q−2, q−2 exp(qzi)]}

+(ϕ− 1)
∑
i∈F

log
{

1− {γ1[q−2, q−2 exp(qzi)]}λ
}

+ϕ
∑
i∈C

log
{

1− {γ1[q−2, q−2 exp(qzi)]}λ
}
, if q > 0,

v log
[
λϕ (−q) (q−2)q

−2

σΓ(q−2)

]
+ q−1

∑
i∈F

zi − q−2
∑
i∈F

exp(qzi)

+(λ− 1)
∑
i∈F

log{γ1[q−2, q−2 exp(qzi)]}

+(ϕ− 1)
∑
i∈F

log
{

1− {γ1[q−2, q−2 exp(qzi)]}λ
}

+
∑
i∈C

log
{

1−
[
1− {γ1[q−2, q−2 exp(qzi)]}λ

]ϕ}
, if q < 0,

v log
[

λϕ

σ
√

2π

]
− 1

2

∑
i∈F

z2
i + (λ− 1)

∑
i∈F

log[Φ(zi)]

+(ϕ− 1)
∑
i∈F

log[1− Φλ(zi)] + ϕ
∑
i∈C

log[1− Φλ(zi)], if q = 0,

(21)

where v is the number of uncensored observations (failures) and zi = (yi−xTi β)/σ.

The maximum likelihood estimate (MLE) θ̂ of the vector of the model parameters
can be calculated by maximizing the log-likelihood (21). Initial values for β and
σ are obtained by fitting the Weibull regression model with λ = 1, ϕ = 1 and
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q = 1. If ẑi = (yi − xTi β̂)/σ̂, the fit of the LKGG model yields the estimated
survival function for yi

Ŝ(yi; λ̂, ϕ̂, σ̂, q̂, β̂
T

) =



{
1− {γ1[q̂−2, q̂−2 exp(q̂ẑi)]}λ̂

}ϕ̂
, if q > 0,

1−
{

1− {γ1[q̂−2, q̂−2 exp(q̂ẑi
)
]}λ̂
}ϕ̂
, if q < 0,

[
1− Φλ̂(ẑi)

]ϕ̂
, if q = 0.

(22)

Under conditions that are fulfilled for the parameter vector θ in the interior
of the parameter space but not on the boundary, the asymptotic distribution of√
n(θ̂−θ) is multivariate normal Np+3(0,K(θ)−1), where K(θ) is the information

matrix. The asymptotic covariance matrix K(θ)−1 of θ̂ can be approximated by
the inverse of the (p + 3) × (p + 3) observed information matrix −L̈(θ). The
elements of −L̈(θ), namely −Lλλ, −Lλϕ, −Lλσ, −Lλβj , −Lϕϕ, −Lϕσ, −Lϕβj ,
−Lσσ, −Lσβj and −Lβjβs for j, s = 1, · · · , p, are given in Appendix B. The

approximate multivariate normal distribution Np+3(0,−L̈(θ)−1) for θ̂ can be
used in the classical way to construct approximate confidence regions for some
components of θ.

Further, we can use the likelihood ratio (LR) statistic for comparing some
sub-models with the LKGG model. We consider the partition θ = (θT1 ,θ

T
2 )T ,

where θ1 is a subset of parameters of interest and θ2 is a subset of remaining

parameters. The LR statistic for testing the null hypothesis H0 : θ1 = θ
(0)
1 versus

the alternative hypothesis H1 : θ1 6= θ
(0)
1 is given by w = 2{`(θ̂)−`(θ̃)}, where θ̃

and θ̂ are the estimates under the null and alternative hypotheses, respectively.
The statistic w is asymptotically (as n → ∞) distributed as χ2

k, where k is the
dimension of the subset of parameters θ1 of interest.

5.2 A Bayesian Analysis

As an alternative analysis, we use the Bayesian method which allows for
the incorporation of previous knowledge of the parameters through informative
priori density functions. When this information is not available, we can consider a
noninformative prior. In the Bayesian approach, the information referring to the
model parameters is obtained through a posterior marginal distribution. In this
way, two difficulties usually arise. The first refers to attaining marginal posterior
distribution, and the second to the calculation of the moments of interest. Both
cases require numerical integration that, many times, do not present an analytical
solution. Here, we use the simulation method of Markov Chain Monte Carlo
(MCMC), such as the Gibbs sampler and Metropolis-Hastings algorithm.
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Since we have no prior information from historical data or from previous
experiment, we assign conjugate but weakly informative prior distributions to
the parameters. Since we assume informative (but weakly) prior distribution,
the posterior distribution is a well-defined proper distribution. Here, we consider
that the elements of the parameter vector are independent and that the joint
prior distribution of all unknown parameters has density function given by

π(λ, ϕ, σ, q,β) ∝ π(λ)× π(ϕ)× π(σ)× π(q)× π(β). (23)

Here, λ ∼ Γ(a1, b1), ϕ ∼ Γ(a2, b2), σ ∼ Γ(a3, b3), q ∼ N (µ1, σ
2
1) and βs ∼

N (µs, σ
2
s), where Γ(ai, bi) denotes a gamma distribution with mean ai/bi, variance

ai/b
2
i and density function

f(υ; ai, bi) =
baii υ

ai−1 exp(−υbi)
Γ(ai)

,

where υ > 0, ai > 0 and bi > 0, N (µs, σ
2
s) denotes the normal distribution with

mean µs, variance σ2
s and density function given by

f(x;µs, σs) =
1√

2πσ2
s

exp

[
−(x− µs)2

2σ2
s

]
,

where x, µs ∈ R and σ2
s > 0. All hyper-parameters are specified. Combining

the likelihood function (21) and the prior distribution (23), the joint posterior
distribution for λ, ϕ, σ, q and βTs reduces to

π(λ, ϕ, σ, q,β|y) ∝

[
λϕ(−q)(q−2)q

−2

σΓ(q−2)

]υ
exp

[
q−1

∑
i∈F

(yi − xTi β)

σ

]

× exp

(
−q−2

∑
i∈F

exp

{
q

[
(yi − xTi β)

σ

]})

×
∏
i∈F

[
γ1

(
q−2, q−2 exp

{
q

[
(yi − xTi β)

σ

]})]λ−1

×
∏
i∈F

{
1−

[
γ1

(
q−2, q−2 exp

{
q

[
(yi − xTi β)

σ

]})]λ}ϕ−1

×
∏
i∈C

1−

{
1−

[
γ1

(
q−2, q−2 exp

{
q

[
(yi − xTi β)

σ

]})]λ}ϕ
(24)

×π(λ, ϕ, σ, q,β).
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The joint posterior density above is analytically intractable because the in-
tegration of the joint posterior density is not easy to perform. So, the inference
can be based on MCMC simulation methods such as the Gibbs sampler and
Metropolis-Hastings algorithm, which can be used to draw samples, from which
features of the marginal distributions of interest can be inferred. In this direction,
we first obtain the full conditional distributions of the unknown parameters given
by

π(λ|y, ϕ, σ, q,β) ∝ λυ
∏
i∈F

[
γ1

(
q−2, q−2 exp

{
q

[
(yi − xTi β)

σ

]})]λ

×
∏
i∈F

{
1−

[
γ1

(
q−2, q−2 exp

{
q

[
(yi − xTi β)

σ

]})]λ}ϕ−1

×
∏
i∈C

1−

{
1−

[
γ1

(
q−2, q−2 exp

{
q

[
(yi − xTi β)

σ

]})]λ}ϕ
×π(λ),

π(ϕ|y, λ, σ, q,β) ∝ ϕυ
∏
i∈F

{
1−

[
γ1

(
q−2, q−2 exp

{
q

[
(yi − xTi β)

σ

]})]λ}ϕ

×
∏
i∈C

1−

{
1−

[
γ1

(
q−2, q−2 exp

{
q

[
(yi − xTi β)

σ

]})]λ}ϕ
×π(ϕ),

π(σ|y, λ, ϕ, q,β)

∝ σ−υ exp

[
q−1

∑
i∈F

(yi − xTi β)

σ

]
exp

(
−q−2

∑
i∈F

exp

{
q

[
(yi − xTi β)

σ

]})

×
∏
i∈F

[
γ1

(
q−2, q−2 exp

{
q

[
(yi − xTi β)

σ

]})]λ−1

×
∏
i∈F

{
1−

[
γ1

(
q−2, q−2 exp

{
q

[
(yi − xTi β)

σ

]})]λ}ϕ−1

×
∏
i∈C

1−

{
1−

[
γ1

(
q−2, q−2 exp

{
q

[
(yi − xTi β)

σ

]})]λ}ϕ
×π(σ),
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π(q|y, λ, ϕ, σ,β) ∝

[
(−q)(q−2)q

−2

Γ(q−2)

]υ
exp

[
q−1

∑
i∈F

(yi − xTi β)

σ

]

× exp

(
−q−2

∑
i∈F

exp

{
q

[
(yi − xTi β)

σ

]})

×
∏
i∈F

[
γ1

(
q−2, q−2 exp

{
q

[
(yi − xTi β)

σ

]})]λ−1

×
∏
i∈F

{
1−

[
γ1

(
q−2, q−2 exp

{
q

[
(yi − xTi β)

σ

]})]λ}ϕ−1

×
∏
i∈C

1−

{
1−

[
γ1

(
q−2, q−2 exp

{
q

[
(yi − xTi β)

σ

]})]λ}ϕ
×π(q)

and

π(β|y, λ, ϕ, σ, q) ∝ exp

[
q−1

∑
i∈F

(yi − xTi β)

σ

]
exp

(
−q−2

∑
i∈F

exp

{
q

[
(yi − xTi β)

σ

]})

×
∏
i∈F

[
γ1

(
q−2, q−2 exp

{
q

[
(yi − xTi β)

σ

]})]λ−1

×
∏
i∈F

{
1−

[
γ1

(
q−2, q−2 exp

{
q

[
(yi − xTi β)

σ

]})]λ}ϕ−1

×
∏
i∈C

1−

{
1−

[
γ1

(
q−2, q−2 exp

{
q

[
(yi − xTi β)

σ

]})]λ}ϕ

×π(β).

Since the full conditional distributions for λ, ϕ, σ, q and β do not have closed-
form, we require the use of the Metropolis-Hastings algorithm. The joint posterior
density for q > 0 is defined analogously, considering the likelihood function (21)
for q > 0 and the prior distribution (23). Combining the likelihood function (21)
and the prior distribution (23), the joint posterior distribution for λ, ϕ, σ and
βTs for q = 0 reduces to
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π(λ, ϕ, σ,β|y) ∝

(
λϕ√
2π

)υ
exp

[
−1

2

∑
i∈F

(
yi − xTi β

σ

)2]∏
i∈F

[
Φ

(
yi − xTi β

σ

)]λ−1

×
∏
i∈F

{
1−

[
Φ

(
yi − xTi β

σ

)]λ}ϕ−1∏
i∈C

{
1−

[
Φ

(
yi − xTi β

σ

)]λ}ϕ
×π(λ, ϕ, σ,β).

The conditional distributions for these parameters taking q = 0 are given by

π(λ|y, ϕ, σ,β) ∝ λυ
∏
i∈F

[
Φ

(
yi − xTi β

σ

)]λ∏
i∈F

{
1−

[
Φ

(
yi − xTi β

σ

)]λ}ϕ−1

×
∏
i∈C

{
1−

[
Φ

(
yi − xTi β

σ

)]λ}ϕ
×π(λ),

π(ϕ|y, λ, σ,β) ∝ ϕυ
∏
i∈F

{
1−

[
Φ

(
yi − xTi β

σ

)]λ}ϕ∏
i∈C

{
1−

[
Φ

(
yi − xTi β

σ

)]λ}ϕ
×π(ϕ),

π(σ|y, λ, ϕ,β) ∝ exp

[
−1

2

∑
i∈F

(
yi − xTi β

σ

)2]∏
i∈F

[
Φ

(
yi − xTi β

σ

)]λ−1

×
∏
i∈F

{
1−

[
Φ

(
yi − xTi β

σ

)]λ}ϕ−1∏
i∈C

{
1−

[
Φ

(
yi − xTi β

σ

)]λ}ϕ
×π(λ),

and

π(β|y, λ, ϕ, σ) ∝ exp

[
−1

2

∑
i∈F

xTi β(1− 2yi)

σ2

]∏
i∈F

[
Φ

(
yi − xTi β

σ

)]λ−1

×
∏
i∈F

{
1−

[
Φ

(
yi − xTi β

σ

)]λ}ϕ−1∏
i∈C

{
1−

[
Φ

(
yi − xTi β

σ

)]λ}ϕ
×π(β).

The MCMC computations were implemented in the statistical software pack-
age R.
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6. Application: Chemical Dependency Data

We demonstrate the potentiality of the LKGG regression model applied to
chemical dependency patients as investigated by Pascoa (2008). The data were
provided by the Association Mother Brave, localized in the city of Caratinga, MG,
Brazil, where n = 141 residents were considered drug addicts from 2000 to 2005.
The response variable was the time spent in the community until the withdraw
of the treatment, considering that each resident remains in the community for a
maximum period of 270 days without any contact with drugs or free drugs. The
resident who achieves this goal was regarded as a censored observation. Chemical
dependency is a chronic disease of the brain (Kalivas and Volkow, 2005). One of
its main characteristics is the relapse phenomenon, whereby sufferers return to
their consumption of the problem substance, followed by a renewed attempt to
stop or reduce this consumption (Brandon et al., 2007; Koob and Le Moal, 1997).
Relapse does not mean failure of treatment. Rather it is a part of the rehabili-
tation process (Marlatt, 2001). The patient is in relapse when he or she presents
all or part of the dysfunctional behavior patterns that were present before treat-
ment. Thus, relapse starts before actual renewed consumption. It is marked by
the occurrence of facilitating stimuli with cognitive, emotional, physical and so-
cial aspects (Maisto et al., 2003). Behavioral changes and exposure to high-risk
situations generally precede resumed consumption of the substance (Miller et al.,
1996). Even the most motivated patients can present relapse episodes (Baker
et al., 2004). Nevertheless, relapse is predictable and avoidable (Brandon et al.,
2007). As the time of abstinence increases, the chance of relapse decreases, al-
though this risk is never totally eliminated during the lifetime of a person with
an addiction. Studies of the risk factors associated with relapse in chemical de-
pendency are very important, because their findings can increase the probability
of suitable early clinical interventions. Furthermore, risk studies allow identifi-
cation of protective factors to reduce vulnerability and favor resistance to the
temptation to relapse. The variables involved in the study are:

• ti : the time spent in the community until the withdrawal of treatment
(days);

• δi : the censoring indicator (0 = censoring, 1 = lifetime observed);

• xi1 : the marital status (0 = single, 1 = married);

• xi2 : schooling (0 = no education or incomplete bases, 1 = elementary
education and higher education);

• xi3: age (0 =< 30 years, 1 =≥ 30 years).
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We fit the LKGG regression model

yi = β0 + β1xi1 + β2xi2 + β3xi3 + σzi,

where the errors z1, · · · , z141 are independent random variables having density
function (19).

Table 1 lists the MLEs of the parameters for the LKGG regression model fitted
to the current data using the NLMixed procedure in SAS. This model involves
an extra parameter which gives it more flexibility to fit these data. Initial values
for β, q and σ are taken from the fit of the LGG regression model with λ = 1
and ϕ = 1. The explanatory variables x1, x2 and x3 are marginally significant
for the LKGG model at the significance level of 5%.

Table 1: MLEs of the parameters, standard errors, p-values and 95% confidence
intervals for the LKGG model fitted to the chemical dependency data

Parameter Estimate SE p-value CI 95%

q -0.8911 0.0001 - (-0.8913; -0.8910)
λ 2.1286 0.5408 - (1.0595; 3.1977)
ϕ 0.3558 0.0387 - (0.2792; 0.4324)
σ 1.9210 0.0299 - (1.8620; 1.9800)
β0 6.0879 0.1336 < 0.001 (5.8238; 6.3520)
β1 0.4814 0.0279 < 0.001 (0.4263; 0.5365)
β2 -0.7097 0.0759 < 0.001 (-0.8598; -0.5597)
β3 0.7033 0.0176 < 0.001 (0.6686; 0.7380)

Cox (1972) proposed a very useful regression model for analyzing censoring
failure times, where the random variable of interest represents failure time and
the failures times are assumed identically distributed in some specified form. He
noted that if the proportional hazards assumption holds (or, is assumed to hold)
then it is possible to estimate the effect parameter(s) without any consideration
of the hazard function (non-parametric approach). This approach to survival
data is called proportional hazards model. The Cox model may be specialized if
a reason exists to assume that the baseline hazard follows a parametric form. In
this case, the baseline hazard can be replaced by a parametric density. Typically,
we can then maximize the full likelihood which greatly simplifies model-fitting
and provides interpretability at the cost of flexibility.

Let R(ti) be the set of individuals at risk at time ti. Conditionally on the risk
sets, the required likelihood L(β) can be expressed as

L(β) =

n∏
i=1

[
exp(xTi β)∑

j∈R(ti)

exp(xTi β)

]δi
, (25)



806 Pascoa, M. A. R., de Paiva, C. M. M., Cordeiro, G. M. and Ortega, E. M. M.

where δi is the censoring indicator.

The MLE β̂ of β can be calculated by maximizing the likelihood function (25)
using the R software. In Table 2, we list the estimates, corresponding standard
errors and p-values for the fitted Cox regression model. Explanatory variables x2

and x3 are marginally significant at the 5% significance level.

Table 2: Estimates of the Cox model fitted to the data of chemical dependency
and corresponding hazard ratios (HRj)

covariate Estimate SE p-value HRj CI 95% (HRj)

β1 -0.1639 0.2164 0.4488 0.8488 (0.5554; 1.2973)
β2 0.6074 0.2128 0.0043 1.8356 (1.2096; 2.7855)
β3 -0.4916 0.2162 0.0230 0.6117 (0.4004; 0.9345)

Further, Table 3 gives the Akaike Information Criterion (AIC), Consistent
Akaike Information Criterion (CAIC) and Bayesian Information Criterion (BIC)
to compare the LKGG model and Cox proportional hazard regression models.
The LKGG regression model outperforms the other models irrespective of the
criteria and it can be used effectively in the analysis of these data. So, the
proposed model is a great alternative to model survival data.

Table 3: The AIC, CAIC and BIC statistics for comparing the LKGG model
and Cox proportional hazard regression models

Model AIC CAIC BIC

LKGG 462.7 463.8 486.3
Cox 877.1 877.5 885.9

In order to assess if the model is appropriate, we fit the LKGG regression
model for each explanatory variable. In Figures 5a, b, c, d, we plot the empirical
survival function and the estimated survival function (22) for each explanatory
variable. We can conclude that the LKGG regression model provides a good fit
to these data.

Bayesian analysis

The following independent priors were considered to perform the Metropolis-
Hastings algorithm: λ ∼ Γ(0.01, 0.01), ϕ ∼ Γ(0.01, 0.01), σ ∼ Γ(0.01, 0.01), q ∼
N (0, 10) and βs ∼ N (0, 10), so that we have a vague prior distribution. Consid-
ering these prior density functions, we generate two parallel independent runs of
the Metropolis-Hastings with size 100, 000 for each parameter, disregarding the
first 10, 000 iterations to eliminate the effect of the initial values and, to avoid
correlation problems, we consider a spacing of size 10, obtaining a sample of size
9, 000 from each chain. To monitor the convergence of the Metropolis-Hastings,
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Figure 5: Kaplan-Meier curves stratified by explanatory variable and estimated
survival functions to the chemical dependency data: (a) The marital status
explanatory variable. (b) Schooling explanatory variable. (c) Age explanatory
variable

we perform the methods suggested by Cowles and Carlin (1996). We use the
between and within sequence information, following the approach developed in
Gelman and Rubin (1992), to obtain the potential scale reduction, R̂. In all cases,
these values were close to one, indicating the convergence of the chain. The ap-
proximate posterior marginal density functions for the parameters are presented
in Figure 6. In Table 4, we report posterior summaries for the parameters of the
LKGG model. We note that the values for the means a posteriori (Table 4) are
quite close (as expected) to the MLEs given in Table 1. SD denotes the standard
deviation from the posterior distributions of the parameters and HPD represents
the 95% highest posterior density (HPD) intervals.
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Figure 6: Approximate posterior marginal densities for the parameters from
the LKGG model for the chemical dependency data
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Table 4: Posterior summaries for the parameters from the LKGG model for
the chemical dependency data

Parameter Mean SD HPD (95%) R̂

q -0.9169 0.1140 (-1.1564; -0.7172) 1.0013

λ 2.1383 0.3423 (1.4634; 2.7906) 1.0006

ϕ 0.3737 0.1076 (0.1777; 0.6277) 1.0069

σ 1.9012 0.1129 (1.6758; 2.1115) 1.0020

β0 6.1413 0.3479 (5.5224; 6.8593) 1.0153

β1 0.4904 0.0962 (0.3015; 0.6741) 1.0043

β2 -0.7138 0.2418 (-1.1878; -0.2378) 0.9998

β3 0.7090 0.0972 (0.5220; 0.9063) 1.0025

7. Concluding Remarks

We introduce an extended form of the Kumaraswamy generalized gamma
(KGG) distribution (Pascoa et al., 2011) for which the hazard rate function ac-
commodates the four types of shape forms, i.e. increasing, decreasing, bathtub
and unimodal. The KGG model includes as special cases several useful lifetime
models. We derive explicit expressions for its moments, generating function,
order statistics and their moments. Further, we also introduce the called log-
Kumaraswamy generalized gamma (LKGG) distribution and obtain explicit ex-
pressions for its moments. Based on this new distribution, we define the LKGG
regression model which is very suitable for modeling censored and uncensored
lifetime data. The new regression model allow us to test as special models the
goodness of fit of some widely known regression models. Hence, it represents a
good alternative for lifetime data analysis. We estimate the model parameters
using maximum likelihood and a Bayesian approach. We demonstrate by means
of an application to real data that the LKGG model can produce better fits than
some well-known models.
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Appendix A

We derive an expansion for γ1(k, x)λ−1 for any real λ > 0. We can write
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γ1(k, x)λ−1 = [1− {1− γ1(k, x)}]λ−1 =
∞∑
j=0

(−1)j
(
λ− 1

j

)
{1− γ1(k, x)}j ,

which always converges since 0 < γ1(k, x) < 1. Hence,

γ1(k, x)λ−1 =

∞∑
j=0

j∑
m=0

(−1)j+m
(
λ− 1

j

)(
j

m

)
γ1(k, x)m. (26)

We can substitute
∑∞

j=0

∑j
m=0 for

∑∞
m=0

∑∞
j=m to obtain

γ1(k, x)λ−1 =
∞∑
m=0

sm(λ− 1) γ1(k, x)m, (27)

where

sm(λ− 1) =
∞∑
j=m

(−1)j+m
(
λ− 1

j

)(
j

m

)
. (28)

We use the power series for the incomplete gamma ratio function given by

γ1(k, x) =
xk

Γ(k)

∞∑
d=0

(−x)d

(k + d) d!
.

By application a result by Gradshteyn and Ryzhik (2000, Section 0.314) for a
power series raised to a positive integer q, we obtain( ∞∑

d=0

ad x
d

)q
=
∞∑
d=0

cq,d x
d. (29)

Here, the coefficients cq,d (for d = 1, 2, · · · ) are determined from the recurrence
equation

cq,d = (da0)−1
d∑
p=1

[p (q + 1)− d] ap cq,d−p, (30)

where cq,0 = aq0 and ap = (−1)p/[(k + p)p!]. So, the coefficient cq,d can be
calculated from cq,0, · · · , cq,d−1, and then it can be expressed as a function of the
quantities a0, · · · , ad, although it is not necessary for programming numerically
the expansions. Further, using (29), we obtain

γ1(k, x)q =
xkq

Γ(k)q

∞∑
d=0

cq,d x
d. (31)
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Appendix B: Matrix of second derivatives −L̈(θ)

Here, we provide formulas for the second-order partial derivatives of the log-
likelihood function. After some algebraic manipulations, we obtain

Lσ,σ =
υ

σ2
− q−1

σ2

∑
i∈F

zi{−2[1− exp(qzi)] + qzi exp(qzi)} −
q−1

σΓ(q−2)

×
∑
i∈F

wq
−2−1
i zi exp(qzi − wi)[γ1(q−2, wi)]

−1

{(
− 2

σ
+ zi exp(qzi)

×
{
− q−1(q−2 − 1)

σ
w−1
i −

zi
σ

+
q−1

Γ(q−1)
wq

−2−1
i zi exp(−wi)[γ1(q−2, wi)]

−1

})

×
(
λ− 1 + λ(1− ϕ)[γ1(q−2, wi)]

λ
{

1− [γ1(q−2, wi)]
λ
}−1

+ wq
−2−1
i zi

× exp(qzi − wi)[γ1(q−2, wi)]
−1

)}
− q−1

σ2Γ(q−2)

∑
i∈C

wq
−2−1
i zi exp(qzi − wi)

×[γ1(q−2, wi)]
λ−1

{
1− [γ1(q−2, wi)]

λ
}ϕ (

1−
{

1− [γ1(q−2, wi)]
λ
}ϕ)−1

×
{
− 2− q−1(q−2 − 1)zi exp(qzi)

{
q−2 − 1 + zi +

wq
−2−1
i

Γ(q−2)
exp(−wi)

×[γ1(q−2, wi)]
−1

[
λ− 1− λ[γ1(q−2, wi)]

λ
{

1− [γ1(q−2, wi)]
λ
}−2

×
(
ϕ− 1 + ϕ

{
1− [γ1(q−2, wi)]

λ
}ϕ(

1−
{

1− [γ1(q−2, wi)]
λ
}ϕ)−1

)]}}
,

Lσ,λ = − q−1

σΓ(q−2)

∑
i∈F

wq
−2−1
i zi exp(qzi − wi)[γ1(q−2, wi)]

−1

{
1 + (1− ϕ)

×[γ1(q−2, wi)]
λ−1

{
1− [γ1(q−2, wi)]

λ
}−1

[
1 + λ log[γ1(q−2, wi)]

×
(

1 + [γ1(q−2, wi)]
λ
{

1− [γ1(q−2, wi)]
λ
}−1

)]}
− ϕq−1

σΓ(q−2)

∑
i∈C

wq
−2−1
i zi

× exp(qzi − wi)[γ1(q−2, wi)]
λ−1

{
1− [γ1(q−2, wi)]

λ
}ϕ−1

×
(

1−
{

1− [γ1(q−2, wi)]
λ
}ϕ)−1

{
1 + λ log[γ1(q−2, wi)]
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×
(

1 + (1− ϕ)[γ1(q−2, wi)]
λ
{

1− [γ1(q−2, wi)]
λ
}−1

)
− λϕ[γ1(q−2, wi)]

λ

×
{

1− [γ1(q−2, wi)]
λ
}−1 (

1−
{

1− [γ1(q−2, wi)]
λ
}ϕ)−1

}
,

Lσ,ϕ =
λq−1

σΓ(q−2)

∑
i∈F

wq
−2−1
i zi exp(qzi − wi)[γ1(q−2, wi)]

λ−1

×
{

1− [γ1(q−2, wi)]
λ
}−1
− λq−1

σΓ(q−2)

∑
i∈C

wq
−2−1
i zi exp(qzi − wi)

×[γ1(q−2, wi)]
λ−1
{

1− [γ1(q−2, wi)]
λ
}ϕ−1 (

1−
{

1− [γ1(q−2, wi)]
λ
}ϕ)−1

×
{

1 + ϕ

(
log
{

1− [γ1(q−2, wi)]
λ
}

+
{

1− [γ1(q−2, wi)]
λ
}ϕ

×
(

1−
{

1− [γ1(q−2, wi)]
λ
}ϕ)−1

)}
,

Lσ,βj = − q

σ2

∑
i∈F

xij [(1 + qzi) exp(qzi)− 1]− q−1

σ2Γ(q−2)

∑
i∈F

xijw
q−2−1
i zi exp(qzi)

×[γ1(q−2, wi)]
−1

{[
− 1 + λ

(
1 + (1− ϕ)[γ1(q−2, wi)]

λ

×
{

1− [γ1(q−2, wi)]
λ
}−1

)][
− 1− q−1(q−2 − 1)w−1

i zi exp(qzi)− qzi

×
(

exp(−wi) + q−2(q−2 − 1)wq
−2−1
i exp(qzi)

)
+

q−1

Γ(q−2)
wq

−2−1
i zi

× exp(qzi − 2wi)[γ1(q−2, wi)]
−1

]
− q−1

Γ(q−2)
wq

−2−1
i zi exp(qzi − wi)

×
{

1− [γ1(q−2, wi)]
λ
}−1

(
1 + λ[γ1(q−2, wi)]

2λ−1 {1− [γ1

× (q−2, wi)]
λ
}−1

)}
− λ2ϕ(−q−2)

σ2[Γ(q−2)]2

∑
i∈C

xijw
q−2−1
i exp(qzi − wi)

×[γ1(q−2, wi)]
λ−1

{
1− [γ1(q−2, wi)]

λ
}ϕ−2 (

1−
{

1− [γ1(q−2, wi)]
λ
}ϕ)−1

×
{
− 1 + ϕ

(
1 +

{
1− [γ1(q−2, wi)]

λ
}ϕ(

1−
{

1− [γ1(q−2, wi)]
λ
}ϕ)−1

)}
,
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Lλ,λ = − υ

λ2
+ (1− ϕ)

∑
i∈F

{
log[γ1(q−2, wi)]

}2
[γ1(q−2, wi)]

λ
{

1− [γ1(q−2, wi)]
λ
}−1

×
{

1 + [γ1(q−2, wi)]
λ
{

1− [γ1(q−2, wi)]
λ
}−1

}
+ ϕ

∑
i∈C

{
log[γ1(q−2, wi)]

}2

×[γ1(q−2, wi)]
λ
{

1− [γ1(q−2, wi)]
λ
}ϕ−1 (

1−
{

1− [γ1(q−2, wi)]
λ
}ϕ)−1

×
{

1 + [γ1(q−2, wi)]
λ
{

1− [γ1(q−2, wi)]
λ
}−1

[
1− ϕ

(
1 + {1− [γ1

× (q−2, wi)]
λ
}ϕ (

1−
{

1− [γ1(q−2, wi)]
λ
}ϕ)−1

)]}
,

Lλ,ϕ = −
∑
i∈F

log[γ1(q−2, wi)][γ1(q−2, wi)]
λ
{

1− [γ1(q−2, wi)]
λ
}−1

+
∑
i∈C

log[γ1(q−2, wi)][γ1(q−2, wi)]
λ

{
1 +

{
1− [γ1(q−2, wi)]

λ
}ϕ−1

×
(

1−
{

1− [γ1(q−2, wi)]
λ
}ϕ)−1

[
− 1− ϕ log

{
1− [γ1(q−2, wi)]

}
×
(

1 +
{

1− [γ1(q−2, wi)]
λ
}ϕ (

1−
{

1− [γ1(q−2, wi)]
λ
}ϕ)−1

)]}
,

Lλ,βj = − q−1

σΓ(q−2)

∑
i∈F

xijw
q−2−1
i exp(qzi − wi)[γ1(q−2, wi)]

−1

{
1 + (1− ϕ)

×[γ1(q−2, wi)]
λ
{

1− [γ1(q−2, wi)]
λ
}−1

(
1 + log[γ1(q−2, wi)]

)}
− q−1

σΓ(q−2)

∑
i∈C

xijw
q−2−1
i exp(qzi − wi)[γ1(q−2, wi)]

λ−1

×
{

1− [γ1(q−2, wi)]
λ
}ϕ−1 (

1−
{

1− [γ1(q−2, wi)]
λ
}ϕ)−1

×
{

1 + log[γ1(q−2, wi)]

[
1 + λ[γ1(q−2, wi)]

λ
{

1− [γ1(q−2, wi)]
λ
}−1

×
(

1− ϕ
{

1 +
{

1− [γ1(q−2, wi)]
λ
}ϕ(

1−
{

1− [γ1(q−2, wi)]
λ
}ϕ)−1

})]}
,

Lϕ,ϕ = − υ

ϕ2
−
∑
i∈C

(
log
{

1− [γ1(q−2, wi)]
λ
})2 {

1− [γ1(q−2, wi)]
λ
}ϕ

×
(

1−
{

1− [γ1(q−2, wi)]
λ
}ϕ)−1

{
1 +

{
1− [γ1(q−2, wi)]

λ
}ϕ

×
(

1−
{

1− [γ1(q−2, wi)]
λ
}ϕ)−1

}
,
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Lϕ,βj =
λq−1

σΓ(q−2)

∑
i∈F

xijw
q−2−1
i exp(qzi − wi)[γ1(q−2, wi)]

λ−1

×
{

1− [γ1(q−2, wi)]
λ
}−1
− λq−1

σΓ(q−2)

∑
i∈C

xijw
q−2−1
i exp(qzi − wi)

×[γ1(q−2, wi)]
λ−1

{
1− [γ1(q−2, wi)]

λ
}ϕ−1(

1−
{

1− [γ1(q−2, wi)]
λ
}ϕ)−1

×
{

1 + log
{

1− [γ1(q−2, wi)]
λ
}[

ϕ

(
1 +

{
1− [γ1(q−2, wi)]

λ
}ϕ

×
(

1−
{

1− [γ1(q−2, wi)]
λ
}ϕ)−1

)]}
,

Lβj ,βs = − 1

σ2

∑
i∈F

xijxis exp(qzi)−
q−1

σ2Γ(q−2)

∑
i∈F

xijxisw
q−2−1
i exp(qzi − wi)

×[γ1(q−2, wi)]
−1

{(
− q + q−1 exp(qzi)

{
− (q−2 − 1)w−1

i +
wq

−2−1
i

Γ(q−2)

× exp(−wi)[γ1(q−2, wi)]
−1 + 1

})(
− 1 + λ

{
1 + (1− ϕ)[γ1(q−2, wi)]

λ

×
{

1− [γ1(q−2, wi)]
λ
}−1

})
− λq−1

Γ(q−2)
wq

−2−1
i exp(qzi − wi)

×[γ1(q−2, wi)]
λ−1

{
1− [γ1(q−2, wi)]

λ
}−1

(
1 + [γ1(q−2, wi)]

λ

×
{

1− [γ1(q−2, wi)]
λ
}−1

)}
− λϕq−1

σ2Γ(q−2)

∑
i∈C

xijxisw
q−2−1
i exp(qzi − wi)

×[γ1(q−2, wi)]
λ−1

{
1− [γ1(q−2, wi)]

λ
}ϕ−1(

1−
{

1− [γ1(q−2, wi)]
λ
}ϕ)−1

×
{
− q + q−1 exp(qzi)

[
− (q−2 − 1)w−1

i + 1 +
wq

−2−1
i

Γ(q−2)
exp(−wi)

×[γ1(q−2, wi)]
−1

(
1− λ

{
1 + [γ1(q−2, wi)]

λ
{

1− [γ1(q−2, wi)]
λ
}−1

[
1− ϕ

×
(

1 +
{

1− [γ1(q−2, wi)]
λ
}ϕ(

1−
{

1− [γ1(q−2, wi)]
λ
}ϕ)−1

)]})]}
,

where zi = (yi − xTi β)/σ and wi = q−2 exp(qzi).
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