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Combining Paired and Two-Sample Data Using a Permutation
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Abstract: This paper presents a permutation test for the incomplete pairs
setting. This situation arises in both observational and experimental studies
when some of the data are in the form of a paired sample and the rest of
the data comprise two independent samples. The proposed method uses
the data from the two types of samples to test the difference between the
mean responses. Our test statistic combines the observed mean difference
for the complete pairs with the difference between the two means of the
independent samples. The randomizations are carried out as is typically
done with standard permutation tests for paired and independent samples.
We show by a simulation study that our statistic performs well in comparison
to other methods.

Key words: Equality of means, incomplete pairs, paired t-test, permutation
test.

1. Introduction

In paired data situations it is often the case that some of pairs are missing
one or the other piece of data. Consider, for example, a pre-test post-test study
involving a quantitative dependent variable where some of the subjects are absent
during the pre-test and others during the post-test. A common way to handle
the resulting data is to discard the incomplete pairs and carry out a paired t-test
using only the complete pairs. This approach is recommended in the textbooks
by Motulsky (2010, p. 237), Ling (2012, Section 11.1), and Ha and Ha (2012,
p. 173), but sacrifices potentially useful information contained in the discarded
data. An alternative approach (Ha and Ha, 2012, p. 173) is to keep all the data
and run the two-sample t-test, treating the pre-test and post-test data as two
independent samples. However, this is an incorrect analysis, since the data from
the complete pairs are clearly dependent.
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Since the 1970’s various methods have been proposed for combining the
data from the complete pairs and incomplete pairs in order to compare means.
Early work in this area was done by Morrison (1973), Lin and Stivers (1974),
Ekbohm (1976), Woolson, Leeper, Cole and Clark (1976), Bhoj (1978), and
Hamdan, Khuri and Crews (1978). Bhoj (1989) introduced additional meth-
ods and provided a summary and an empirical power comparison of many of
these approaches, all of which are parametric in nature. Dubnicka, Blair and
Hettmansperger (2002) developed nonparametric procedures for the incomplete
pairs situation and showed that their methods, which combine Wilcoxon one and
two-sample procedures, compare favorably in terms of efficiency to the paramet-
ric approaches of Bhoj, Ekbohm, and Lin and Stivers. A permutation test for
the incomplete pairs setting was given by Maritz (1995). However, that method
treats the incomplete pairs in a non-standard fashion, and does not reduce to the
usual permutation-based alternative to the two-sample t when all the pairs are
incomplete.

In this paper we propose a permutation-based method in which the complete
pairs and incomplete pairs are handled in the standard ways associated with ran-
domization testing and then combined into one statistic by optimally weighting
the complete and incomplete portions of the data set, taking into account the
relative sample sizes and the correlation coefficient for the complete pairs.We be-
gin by presenting our method and then show its application to an experimental
study to compare two methods of DNA extraction. Next, we apply our method
to compare the times of runners at two 5K races. Finally, we review some of the
alternative statistics that have been proposed for the incomplete pairs situation,
and show through simulations that our statistic performs well in comparison to
the alternative methods.

2. Development of the Test Statistic

We consider the situation where two variables X and Y are both observed
for some of the cases, but for other cases only X or only Y is observed. Letting
FX and FY be the distributions of X and Y , we test the null hypothesis that
FX = FY against the alternative that the distributions differ by a location shift.
(See Good, 2006; Efron and Tibshirani, 1993, for details.) Thus, we are testing
the equality of the means of the X’s and Y ’s under the assumption of constant
variance and constant shape for the underlying distributions. Let np represent
the number of complete pairs where both observations (x, y) are present. Let nux
be the number of unpaired observations where only the first value (x) is present
and nuy be the number of unpaired observations where only the second value (y)
is present. For the complete pairs portion of the data, the standard permutation
test considers each of the 2np possible interchanges of x and y within each of
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the np (x, y) pairs. (See, for example, Moore and McCabe, 2005.) The mean
difference statistic, d̄p = x̄p − ȳp, where x̄p and ȳp are the means of the x’s and
y’s for the complete pairs only, is calculated for the actual data as well as for as
each of the possible (x, y) permutations. The p-value for the paired data test is
the fraction of the 2np d̄p’s that are greater to the value of d̄p for the actual data.
In cases where np is large, a sample of the possible permutations is used rather
than every possible permutation.

For the unpaired portion of the data, the standard permutation test considers

each of the
( nux + nuy

nux

)
possible ways the data can be partitioned into one set

of nux x-values and another set of nuy y-values. (See, for example, Moore and
McCabe, 2005.) For each partition, the value of d̄u = x̄u− ȳu is calculated, where
x̄u and ȳu are the means of the x’s and the y’s for the unpaired data. The p-value
for the standard two-sample permutation test is the fraction of the d̄u’s that are
greater than or equal to the value of d̄u for the actual data. Again, when the
number of partitions is extremely large, a random sample of partitions is used
rather than enumerating every possible partition.

In order to utilize information contained in both the paired and unpaired
data, we propose the following statistic, a linear combination of the standard
paired and unpaired statistics:

T = wd̄p + (1− w)d̄u,

where the weight w ∈ [0, 1] is chosen to minimize the variance of T . Let µX , µY ,
σ2X and σ2Y be the means and variances of the two variables X and Y , and ρ be
the correlation. We assume that the study design is such that the paired subjects
are independent of the unpaired subjects and that, among the unpaired subjects,
those with x values only are independent of those with y values only. Then T is
unbiased for µX − µY and the variance of T is

var(T ) = w2

(
σ2X + σ2Y − 2ρσXσY

np

)
+ (1− w)2

(
σ2X
nux

+
σ2Y
nuy

)
.

The variance of T is minimized when the weight is set to

w = (σ2X/nux + σ2Y /nuy)/[(σ2X + σ2Y − 2ρσXσY )/np + (σ2X/nux + σ2Y /nuy)].

When σ2X = σ2Y , which is the case under our null hypothesis, this reduces to

w = (1/nux + 1/nuy)/[(2− 2ρ)/np + (1/nux + 1/nuy)].

Note that when ρ = 1, then the weight is w = 1, so that in the case of perfect
correlation, the entire weight will be given to the complete pairs. If ρ = 0 and
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the number of unpaired x’s and y’s is the same, say nu = nux = nuy, then
w = np/(np + nu). Thus, when there is no correlation between the complete
pairs, the weights given to the complete and incomplete pairs are proportional to
the sample sizes. In practice the true value of ρ would be unknown and replaced
by the sample correlation. As the exact distribution of the statistic T is unknown,
this is the type of situation where a permutation approach may prove beneficial.
Our method is to compute T for the given data, using the sample to obtain the
weight w. Then we randomly permute the complete pairs, and we randomly re-

partition the incomplete pairs, as described above. There are 2np

( nux + nuy
nux

)
ways to do this, each resulting in a value of T . For a right-tailed alternative, the
p-value of our test is the proportion of these T ’s that are equal to or greater than
our observed value of T .

More formally, our algorithm goes as follows.

1. Compute the observed value of the statistic T using the original data; call
it Tobs.

2. For the paired observations generate np uniform random variables ui. Set
(x∗i = xi, y

∗
i = yi, if ui ≤ 0.5); otherwise, (x∗i = yi, y

∗
i = xi, if ui > 0.5),

for i = 1, · · · , np. For each permutation of the data calculate d̄p. Calculate
the correlation coefficient r for the permuted paired data and use this to
determine the weight w.

3. Let N = nux + nuy be the combined unpaired sample size and let Z =
(z1, · · · , zN ) be the combined vector of the N unpaired data values, where,
for convenience, the first nux of the zi’s are observed x’s in the original data
and the remaining zi’s are observed y’s in the original data. For a random
partition, choose nux of the N z’s at random and without replacement to
be x’s, with the remaining nuy z’s designated as y’s. Calculate d̄u.

4. Repeat Steps 2 and 3 a large number of times, say B, and compute the test
statistic T each time. Denote the results by T ∗

1 , · · · , T ∗
B. (Following Manly,

1997, we use B = 5000 permutations. See the Appendix for a justification.)

5. The approximate p-value for a two-tailed test is calculated as PH0(|T ∗| ≥
|Tobs|) ≈ [

∑B
j=1 I(|T ∗

j | ≥ |Tobs|)]/B. Here, I(·) = 1 if the argument is true;
0 otherwise. The test rejects H0 for small p-values.

This algorithm is implemented in R as a permutation test function, which may
be obtained at http://gozips.uakron.edu/dh52/.

3. Examples
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One of the goals of an honors research project conducted by Riordan (2012)
was to compare two methods for extracting DNA from coyote blood samples. A
total of 30 different coyotes were used for the study. One of the methods was the
QIAGEN DNeasyr Blood and Tissue Kit and the other was the more traditional
chloroform isoamyl alcohol method. The researcher wanted to determine whether
these extraction methods differ with respect to the mean concentration of DNA.
Due to time and cost considerations, DNA was measured using both methods
for only 6 of these coyotes, selected at random from the 30. Riordan decided
to use the kit method only for 8 of the coyotes and the chloroform method only
for the remaining 16 coyotes. These were randomly assigned by the researcher.
(The researcher chose twice as many for chloroform analysis in order to gain more
experience using this more widely used technique.)

In this example, np = 6, nux = 8, and nuy = 16. The data are the obtained
concentrations of DNA, and are shown in Table 1, where the first two lines are
for the six complete pairs. The mean difference statistic for the paired data
values is d̄p = −1.03 and the mean difference for the unpaired portion is d̄u =
x̄u− ȳu = 2.53− 2.82 = −0.29. As the permutation test requires equal variances,
we note that the standard deviations are 1.16 and 1.07 for the unpaired Kit and
Chloroform samples, respectively. Using only the unpaired data, Levene’s test
for equality of variances for the two DNA extraction methods yields a p-value of
0.467, suggesting that the equal variance assumption is tenable. We chose not
to use Levene’s test for the combined paired and unpaired data, as the paired
portion would violate the assumption of independent samples. Ideally, we could
test equality of variances using a method that is applicable for a combination of
complete and incomplete pairs. Bhoj (1979) and Ekbohm (1982) have proposed
tests for this situation, but their methods require normality, and are therefore
not applicable for the DNA data. We are unaware of the existence of any robust
test for equality of variance when some of the data are paired and the remaining
data are unpaired. Further research is needed to address this issue.

Table 1: DNA extraction concentrations (ng/µL) for Kit and Chloroform meth-
ods

Kit 7.27 4.17 2.21 3.68 12.07 5.06
Chlor. 7.60 0.16 3.60 0.04 6.16 23.08

Kit only 2.00 2.83 0.95 1.25 4.15 3.85 2.08 3.10

Chlor. only 3.24 1.80 2.72 2.36 3.23 3.80 3.20 4.80
2.96 3.00 2.56 0.24 1.16 3.16 3.68 3.12

With a correlation of r = 0.144 for the complete pairs, the resulting weight
is w = 0.397. The combined permutation statistic is T = −0.587, which has a
corresponding p-value of approximately 0.823 based on 5000 permutations. Thus,
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there is not a statistically significant difference between two the two techniques
with respect to DNA extraction concentration.

For a second example, we compare the runners’ times for two local 5K races.
As one course (Kent) tends to have more hills, we expect that runners in that race
will take about one minute longer to finish, on average, than for the race with
a flatter 5K course (Tallmadge). There were 32 runners who competed in both
of these races, 478 who competed in only the Kent race, and 541 who competed
in only the Tallmadge race. The runners’ times were found online at the races’
websites. We merged the data using the runners’ names and converted their times
to seconds. The resulting data set is provided at http://gozips.uakron.edu/dh52/.
We wish to test H0 : µX − µY = 60 sec. versus a two-tailed alternative. For the
32 complete pairs, the mean difference d̄p = 89.1 sec. and the paired t-test has a
p-value of 0.183. For the incomplete pairs the mean difference is d̄u = 105.5. The
standard deviations are 382.6 and 429.0 for the unpaired Kent and Tallmadge
data, respectively. Levene’s test for equality of variance gives a p-value of 0.216,
suggesting that the equal variance assumption may be valid. The pooled two-
sample t-test performed on the incomplete pairs yields a p-value of 0.076. If
the paired nature of the 32 complete pairs is ignored and a two-sample t-test
is used for all of the data, the resulting p-value for this (improper) approach is
0.083. Thus, none of these methods produce statistically significant results at
the α = 0.05 level. However, our permutation test gives an approximate p-value
of 0.044 based on 5000 permutations. Therefore, at the 5% significance level we
conclude that times for runners at the Kent 5K tend to be more than a minute
slower than for the Tallmadge 5K.

4. Alternative Approaches

Bhoj (1978) proposed using a weighted average of the paired t-statistic com-
puted for the complete pairs and the pooled two-sample t-statistic computed
for the incomplete pairs. However, the distribution of that statistic and other
straight-forward statistics, such as our own, is unknown for small sample sizes.
Therefore, much of the early research consisted of attempts to derive related
statistics that have known distributions. For example, Bhoj (1984) came up with
a method for transforming the paired t and the two-sample t such that a combi-
nation of those transformed statistics is approximately normal. Lin and Stivers
(1974) and Bhoj (1989, p. 283) developed statistics of the form (x̄− ȳ)/D, where
x̄ and ȳ are based on all of the paired and unpaired data without distinction.
Thus, as pointed out in Dubnicka et al. (2002), these statistics ignore the actual
design of the study. The denominator D in each case is a complex expression,
leading to statistics with approximate t-distributions under the assumptions of
normality and equal variances. Details for both of these statistics are provided
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in Bhoj (1989). Another statistic proposed by Bhoj (1989, p. 282), referred to
as ZB, performed well in a simulation study. Dubnicka et al. (2002) showed that
ZB is equivalent to a statistic based on a linear model approach.

As the early research into this problem took place prior to the resurgence of
permutation methods, it seems that a permutation approach was overlooked in
the 1970’s and 1980’s. Because, straight-forward statistics based on combining
d̄p and d̄u do not have known distributions, these were bypassed in favor of
complex and non-intuitive expressions developed in order to have approximate t
or Z distributions. Instead, we believe that this is exactly the type of setting for
which a permutation test may be an attractive alternative.

In 1995, Maritz proposed a permutation test for the incomplete pairs problem.
For that test, the complete pairs are permuted in the standard fashion. That is,
the complete (x, y) pairs are randomly interchanged. However, the incomplete
pairs are not handled in the standard way which fixes nux and nuy for all ran-
domizations. (See, for example, Good, 2006, p. 37.) Maritz’ approach does not
maintain fixed sample sizes for the unpaired data for the randomizations. De-
noting the incomplete pairs as either (x, ·) or (·, y), Maritz’ method randomly
interchanges the x or y with the missing value. Thus, the set of permutations
includes the extreme cases where all of the incomplete data are x’s or all are y’s.
Maritz’ combined statistic is d̄ = x̄− ȳ, where x̄ and ȳ are based on the entire set
of x’s and y’s. Note that there are 2np+nux+nuy total permutations. We believe
that this approach is especially inappropriate for experimental studies, such as
the Coyote DNA extraction example, where the values of nux and nuy are fixed
by the experimental design.

A rank-based approach was developed by Dubnicka et al. (2002). They
suggested using a combination of the Wilcoxon Signed Rank Statistic for the
complete pairs and the Mann-Whitney U Statistic for the incomplete pairs. They
gave a simple version that is just the sum of the Signed Rank and U statistics as
well as a more complex version that is a weighted sum of these two nonparametric
statistics.

We compare the performance of our statistic to some of these competing
statistics. Specifically, we consider the ZB statistic Bhoj (1989, p. 282), the
statistic TLS by Lin and Stivers (1974), and Maritz (1995) permutation statistic
TM . Applying these to 5K data, we obtain p-values: 0.035 for ZB, 0.074 for
TLS , and 0.067 for TM . We also consider the simple and weighted rank-based
statistics of Dubnicka et al. denoted R and RW , respectively. For the 5K data,
these give p-values of 0.162, and 0.240. Thus, only our method and Bhoj’s ZB

statistic achieve significance at the 5% level.

Tables 2-5 show the results of simulation studies to compare these statistics.
We tested H0 : µX −µY = 0 against H0 : µX −µY > 0, where the true difference
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δ = µX − µY was varied among 0, 0.5, and 1.0, and the correlation was varied
among ρ = 0.1, 0.5, and 0.9. Each empirical size and power calculation is based
on 1000 data sets, using a significance level of α = 0.05. For Tables 2 and 3,
the x’s and y’s were generated from normal distributions; for Tables 4 and 5
we use exponential distributions. In all cases, we assume equal variances with
σ2X = σ2Y = 1.0. For our statistic T and Maritz’ statistic TM , 5000 permutations
were used for each data set. The R program used to perform these simulations
is available from the authors.

Table 2: Empirical size and power of our test (T ) and several competing meth-
ods. Normal distribution; np = 10, nux = 5, and nuy = 10

δ ρ T TM TLS ZB R RW

0 0.1 0.052 0.050 0.049 0.047 0.051 0.052

0 0.5 0.048 0.060 0.052 0.051 0.051 0.052

0 0.9 0.058 0.052 0.050 0.051 0.051 0.052

0.5 0.1 0.312 0.308 0.315 0.298 0.298 0.292

0.5 0.5 0.577 0.475 0.456 0.552 0.517 0.557

0.5 0.9 0.999 0.582 0.583 1.000 0.883 0.943

1.0 0.1 0.825 0.835 0.825 0.803 0.793 0.785

1.0 0.5 0.979 0.943 0.951 0.986 0.951 0.974

1.0 0.9 1.000 0.977 0.993 1.000 0.980 0.993

Table 3: Empirical size and power of our test (T ) and several competing meth-
ods. Normal distribution; np = 20, nux = 30, and nuy = 10

δ ρ T TM TLS ZB R RW

0 0.1 0.047 0.056 0.042 0.043 0.041 0.045

0 0.5 0.045 0.040 0.033 0.035 0.041 0.045

0 0.9 0.046 0.047 0.041 0.037 0.041 0.045

0.5 0.1 0.587 0.629 0.586 0.602 0.538 0.554

0.5 0.5 0.903 0.806 0.772 0.922 0.798 0.896

0.5 0.9 1.000 0.853 0.857 1.000 0.984 1.000

1.0 0.1 0.995 0.998 0.996 0.997 0.988 0.993

1.0 0.5 1.000 1.000 1.000 1.000 1.000 1.000

1.0 0.9 1.000 1.000 1.000 1.000 1.000 1.000

In each of the four settings, our statistic T maintained its size close to the
nominal 0.05 level, as did all of the other tests. With smaller samples from
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Table 4: Empirical size and power of our test (T ) and several competing meth-
ods. Exponential distribution with scale parameter = 1; np = 10, nux = 5, and
nuy = 10

δ ρ T TM TLS ZB R RW

0 0.1 0.051 0.064 0.064 0.039 0.051 0.049

0 0.5 0.050 0.074 0.063 0.044 0.051 0.049

0 0.9 0.048 0.070 0.051 0.039 0.051 0.049

0.5 0.1 0.384 0.377 0.372 0.337 0.471 0.447

0.5 0.5 0.571 0.520 0.488 0.611 0.692 0.709

0.5 0.9 0.993 0.636 0.618 1.000 0.915 0.964

1.0 0.1 0.827 0.843 0.818 0.811 0.876 0.871

1.0 0.5 0.965 0.923 0.925 0.965 0.964 0.972

1.0 0.9 1.000 0.966 0.971 1.000 0.983 0.994

Table 5: Empirical size and power of our test (T ) and several competing meth-
ods. Exponential distribution with scale parameter = 1; np = 20, nux = 30,
and nuy = 10

δ ρ T TM TLS ZB R RW

0 0.1 0.057 0.059 0.052 0.047 0.051 0.054

0 0.5 0.061 0.038 0.031 0.043 0.051 0.054

0 0.9 0.058 0.044 0.033 0.046 0.051 0.054

0.5 0.1 0.625 0.634 0.594 0.623 0.792 0.774

0.5 0.5 0.882 0.778 0.751 0.915 0.953 0.968

0.5 0.9 1.000 0.837 0.839 1.000 1.000 1.000

1.0 0.1 0.987 0.994 0.990 0.995 1.000 0.999

1.0 0.5 1.000 1.000 1.000 1.000 1.000 1.000

1.0 0.9 1.000 0.998 0.999 1.000 1.000 1.000

normal distributions, our test showed higher power than the competitors when the
correlation for the complete pairs was moderate to high, as would typically be the
case in practice. As expected, the rank-based procedures tended to have higher
power than the other methods when the underlying distributions were exponen-
tial. Among the parametric procedures, the ZB statistic tended to outperform
TLS . Comparing the two permutation approaches, our statistic demonstrated
higher power than Maritz’ statistic for all cases where the correlation for the
complete pairs was moderate (0.5) to high (0.9).
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5. Application and Summary

For many actual situations where a paired t would apply, we find that some of
the pairs are incomplete. Rather than discarding the incomplete data, it makes
sense to use that information in the analysis. Compared to other methods, the
permutation test we propose is both straightforward and maintains a competitive
degree of power across a variety of settings. It is easily implemented in R. How-
ever, caution must be taken when our statistic or one of the competing statistics
is used with observational data. Conclusions may be misleading if there is a lurk-
ing factor related to the response variable that is also linked whether subjects
have missing x or y values. In an experimental setting such as the coyote DNA
example, this is not a problem, because the assignment of subjects to complete
(x, y) pairs, only x’s, or only y’s, was completely randomized.

Appendix: Number of Permutations Needed

When the null hypothesis is true the two sided significance level of the per-
mutation test is

αp = PH0(|T ∗| ≥ |Tobs|) =

∑A
i=1 I(|T ∗

i | ≥ |Tobs|)
A

, where A = 2np

(
nux + nuy

nux

)
.

For small sample sizes it is feasible to compute T ∗ for every possible permutation
and thereby obtain αp exactly. For large sample sizes T ∗ is calculated for only
B < A of these permutations. Following Efron and Tibshirani (1993, pp. 209-
211), the number of permutations B is estimated as follows. Let α̂p be the
estimated p-value based on the selected value of B. Then Bα̂p equals the number
of absolute values of T ∗

B exceeding the absolute value of Tobs for the actual data,
where T ∗

B is the value of test statistic based on the B permuted samples. Then

Bα̂p ∼ Bin(B,αp), and var(α̂p) =
αp(1− αp)

B
.

The coefficient of variation of α̂p is therefore

cvB(α̂p) =

√(
(1− αp)/αp

B

)
.

Now suppose we want Monte Carlo error to affect the estimated coefficient of
variation of αp by no more than 0.10 or 0.05, that is, cvB(α̂p) ≤ 0.10 or cvB(α̂p) ≤
0.05. When αp = 0.05, the number of permutation replications required for the
above two cases are 1900 and 7900, respectively. Based on these two values, we



Permutation Test for Incomplete Pairs 777

use B = 5000, which is close to the average of the two. This value was also
supported by Manly (1997).
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