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Abstract: We group approaches to modeling correlated binary data accord-
ing to data recorded cross-sectionally as opposed to data recorded longi-
tudinally; according to models that are population-averaged as opposed to
subject-specific; and according to data with time-dependent covariates as
opposed to time-independent covariates. Standard logistic regression mod-
els are appropriate for cross-sectional data. However, for longitudinal data,
methods such as generalized estimating equations (GEE) and generalized
method of moments (GMM) are commonly used to fit population-averaged
models, while random-effects models such as generalized linear mixed mod-
els (GLMM) are used to fit subject-specific models. Some of these methods
account for time-dependence in covariates while others do not. This paper
addressed these approaches with an illustration using a Medicare dataset
as it relates to rehospitalization. In particular, we compared results from
standard logistic models, GEE models, GMM models, and random-effects
models by analyzing a binary outcome for four successive hospitalizations.
We found that these procedures address differently the correlation among
responses and the feedback from response to covariate. We found marginal
GMM logistic regression models to be more appropriate when covariates are
classified as time-dependent in comparison to GEE models. We also found
conditional random-intercept models with time-dependent covariates decom-
posed into components to be more appropriate when time-dependent covari-
ates are present in comparison to ordinary random-effects models. We used
the SAS procedures GLIMMIX, NLMIXED, IML, GENMOD, and LOGIS-
TIC to analyze the illustrative dataset, as well as unique programs written
using the R language.
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1. Introduction

There are not many suitable models for binary responses taken over time,
when the data include correlation between responses and covariates that are
time-dependent. Such longitudinal data are useful as they allow the researchers
to study the time course of change and the long-term effects of the covariates.
They also offer increased statistical power and robustness for model selection
(Zeger and Liang, 1992). Hu et al. (1998) summarized the modeling of binary
outcomes that arise from repeated measures. Most of the models can be grouped
into two classes (Zeger et al., 1988; Neuhaus et al., 1991): the “subject-specific”
approaches and the “population-averaged” approaches.

Random-effects logistic models (Stiratelli et al., 1984; Wong and Mason, 1985;
Lee and Nelder, 1996) are commonly used to estimate subject-specific effects,
while the generalized estimating equations (GEE) method of Liang and Zeger
(1986) is often used to provide population-averaged effects. Hu et al. (1998)
claimed that while both the GEE and random effects approaches are extensions
of models for independent observations to time-dependent data, they addressed
the problem of time-dependency differently. Also, the regression coefficients or
odds ratios obtained from the two approaches are numerically different, as are
their interpretations (TenHave et al., 1995; McCulloch et al., 2008; Pendergrast
et al., 1991). Lee and Nelder (2004) provide a discussion that favors conditional
models, arguing that marginal inferences can be made from conditional models.
However, Senn (2004) responds that there are many situations in which a statisti-
cian would choose to apply a marginal model, including some situations in which
the simplification of a marginal model is necessary.

Population-averaged models allow researchers to make conclusions that com-
pare populations defined by different characteristics according to the covariates
in a model. Within such models the response at a given time is often expected to
be affected by covariates observed at the same time. For a population-averaged
logistic regression model, the interpretations of parameter estimates relate to
the odds ratio comparing two populations defined by different covariate values.
Subject-specific models allow researchers to make conclusions that compare the
effects of successive responses by the same subject. Through random-effects,
baseline values are allowed to vary by individual, and distinctions can be made
between odds ratios defined across subjects and odds ratios defined within mul-
tiple responses by individuals. For a subject-specific logistic regression model,
the interpretations of parameter estimates relate to the odds ratio comparing
two different covariate values for a single subject, given an individual baseline
propensity for the response of interest.

The interpretations provided by these two types of models can be affected
by the presence of time-dependent covariates. When a model contains covariates
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that change through repeated observations of the same subject, it is possible to
evaluate directly the effects of different covariate values on the response for in-
dividuals, in addition to making comparisons using odds ratios across different
populations. However, when time-dependent covariates are present it is impor-
tant to account for possible feedback effects between responses and covariates
at different times. Some of the models we present account for these types of
relationships, while others do not.

Figure 1 provides a summary of the models discussed and used in this paper
for the illustrative example. We have constructed this decision tree using methods
presented previously in the literature. Based on study intentions, researchers have
the choice to select between population-averaged and subject-specific models,
while also considering whether time-dependent covariates are present. If time-
dependent covariates are present, there are many modeling options.

Correlated Binary Response

Population 
Average

Subject 
Specific

Time 
Independent

Time 
Dependent

Time 
Independent

Time 
Dependent

GEE Model GMM YWL GEE with 
Indepedendent HGLM (h-Likelihood) GLMM with TDC 

DecompositionGLMM (REPL)

Figure 1: Options for fitting logistic models with correlated binary responses

In this paper we considered the population-averaged and the subject-specific
models, as well as time-dependent versus time-independent covariate models. We
addressed these modeling decisions in the context of predicting rehospitalization
probabilities using a Medicare dataset. For illustrative purposes we utilized data
extracted from the Arizona State Inpatient databases pertaining to Medicare ben-
eficiaries admitted to a hospital for a period of four visits. These data contain
information on patient discharges from Arizona hospitals between 2003 and 2005.
The dataset analyzed includes information on 1,625 patients, each of which has
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three responses and complete information on the covariates at each admission
time. Our response variable of interest is an indicator of rehospitalization within
30 days of discharge for the same condition for which they were initially hospital-
ized. Rehospitalizations are relevant because Medicare will pay for all subsequent
visits for patients, except in the case where readmission occurs within thirty day
for the same procedure (Jencks et al., 2009). In particular, we chose to consider
the effects on rehospitalization of total number of diagnoses, length of stay, total
number of procedures, and the existence of coronary atherosclerosis. We found
these data attractive in that the responses are correlated and the covariates were
time-dependent. Yin et al. (2013) first examined these data when exemplifying a
new procedure to address time-dependent covariates with the generalized method
of moments.

In Section 2, we discuss the standard logistic regression model, which ignores
correlation of any kind among the observations and the correlation inherent due
to the time-dependent covariates. Further, we examine correlated logistic re-
gression models, which model the correlation among the responses but ignore the
correlation due to the time-dependent covariates. We present marginal logistic re-
gression models suitable for population-averaged inferences, including standard
GEE models and the GMM models which we present for analyzing correlated
logistic regression models with time-dependent covariates based on Yin et al.
(2013). In Section 3, we discuss conditional logistic regression models suitable
for subject-specific inferences, such as the random intercept model, the random
slopes model, and models including decompositions of time-dependent covariates.
In Section 4 we fit correlated logistic regression models to the Medicare data for il-
lustrative purposes. We fit the GEE models using SAS PROC GENMOD, and we
fit the GMM models using SAS PROC IML and using programs in R. We fit the
random-intercept model and models including decompositions of time-dependent
covariates using SAS PROC GLIMMIX. In Section 5, we provide some discus-
sion pertaining to appropriate conclusions, model complexity and convergence,
and relative advantages and disadvantages of the options presented.

2. Standard Logistic Regression Model

2.1 Standard Logistic Regression

It is popular as it indirectly models the odds of an outcome through the log-
odds. Logistic regression is most often utilized for testing a relationship between
a binary response and one or more continuous or categorical predictor variables.
It relies on the use of the logit through the natural logarithm of the odds ratio
in a linear relation. The logit transformation is applied to the probability of the
outcome, making it possible to predict the probability of the response of interest
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from a set of independent variables in a linear form such that the population-
averaged model is written

ln

(
πi

1− πi

)
= β0 + β1xi1 + · · ·+ βJxiJ ,

where βj is the coefficient associated with the jth predictor variable, j = 1, · · · , J .
This model does not differentiate among the times of the response for each unit,
as the standard logistic regression model assumes that all observations are inde-
pendent. The outcomes Yi are assumed to follow the Bernoulli distribution with
success probability πi, and as such the variance depends on the mean (Agresti,
2002). Each coefficient βj can be interpreted as the log-odds ratio for the probabil-
ity of success associated with two populations that differ by one unit of predictor
xij , with all other predictors constant.

The standard logistic regression model is a member of the class of generalized
linear models (GLM) and as such can be modeled as having three components;
a random component, a systematic component, and a link component. As a
generalized linear model, logistic regression serves as an expansion upon tradi-
tional linear models to allow for the analysis of non-normal data. This particular
extension is especially useful in analyzing models with binary responses. How-
ever, these standard logistic regression models do not maintain precision when
the responses are correlated as a result of clustering or repeated measurements
taken on a single subject. With correlated observations we need a model with
the capability of accounting for the correlation that may be present in the re-
sponse and possibly in the predictors. As positively correlated binary data show
greater variation than independent binary data, such models are often referred
to as overdispersed logistic regression models.

2.2 Longitudinal Studies

Longitudinal studies can address how each subject changes over time, and
what variables predict differences among subjects and within subjects in their
changes over time. In fact, one major advantage of a longitudinal study is its
capacity to separate change over time within subjects and differences among
subjects (cohort effects) (Diggle et al., 2002; Fitzmaurice et al., 2004). Lon-
gitudinal data often contain repeated measurements of each subject at multiple
points in time. Such correlated observations are commonly encountered in studies
of clinical trials, healthcare surveys, population polling, marketing, educational
outcomes effectiveness, and other types of behavioral research. Standard gener-
alized linear models are often inappropriate in analyzing such sample data due
to the clustering and hence non-independence, which leads to overdispersion.
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For longitudinal data, marginal models are appropriate when inferences about
the population average are our primary interest (Diggle et al., 2002; Fitzmaurice
et al., 2004) or when we require the expectation of the response variable to
be a function of current covariates in order to make future applications of the
results (Pepe and Anderson, 1994). Marginal regression models are useful in
characterizing the expectation of a response at a specific time as a function of
the respective covariates observed at that same time and are useful when the goal
of the analysis is to model the population average. In contrast to the population-
averaged model, the subject-specific model can distinguish observations belonging
to the same or different subjects. Random-effect models are commonly used to
estimate subject-specific effects. Two key methods used to estimate the subject-
specific effects in the random-effects models: maximum likelihood and conditional
likelihood procedures (Diggle et al., 2002; Fitzmaurice et al., 2004).

When dealing with longitudinal data, in addition to the responses changing
over time, we can also have covariate values that change over time. Using data
with such characteristics, it is possible to model the differing effects of different
covariate values on the changing response at an individual level, in addition to
making comparisons of effects on the response across populations defined by co-
variate values. Thus the treatment of time-dependent covariates in the analysis of
longitudinal data allows strong statistical inferences about dynamic relationships
and provides more efficient estimators than can be obtained using cross-sectional
data (Zeger and Liang, 1992; Hedeker and Gibbons, 2006). For this reason we
will consider the effectiveness of both marginal and conditional logistic regression
models with respect to time-dependent covariates.

3. Marginal Correlated Logistic Regression

In the following sections we present some marginal logistic regression models
for correlated data. For the purposes of discussion, we will describe interpre-
tations with respect to longitudinal data over time instead of the more general
correlated data situation. For subject i, let yi = [yi1, · · · , yiTi ]T be a Ti×1 vector
of binary responses with associated design matrix

Xi =

 xi11 · · · xi1J
...

xiTi1 · · · xiTiJ

 ,
where t = 1, · · · , Ti denotes different times and j = 1, · · · , J denotes different
covariates. For subject i at time t the row vector xit. = [xit1, · · · , xitJ ] gives the
J covariate values, and for the jth covariate for subject i the column vector xi.j =
[xi1j , · · · , xiTij ]T gives the Ti covariate values across times. The full response
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vector for all N subjects is given by the column vector y = [y1, · · · ,yN ]T , and
the full design matrix is similarly given by X = [XT

1 , · · · ,XT
N ]T . Notice that

each design matrix Xi may have a unique number of rows, as the number of
times observed for each subject may differ.

3.1 Generalized Estimating Equations

The generalized estimating equations (GEE), as presented by Zeger and Liang
(1986) and Liang and Zeger (1986), applies to marginal models for longitudinal
binary data. An important aspect of this approach is the specification of a work-
ing correlation structure by the researcher. The working correlation structure
represents the correlation believed to be present among responses within sub-
jects, and as such is incorporated into the random component of the model. For
subject i, let the working correlation structure be denoted by Ri(α), where α is a
s×1 vector of correlation parameters that fully describes the working correlation;
i.e. no other parameters are necessary. When fitting a logistic regression model

ln

(
πit

1− πit

)
= β0 + β1xi1 + · · ·+ βJxiJ ,

while accounting for the autocorrelation among responses, the marginal response
variance V i(α) for subject i can be defined in terms of the working correlation
Ri(α),

V i(α, φ) = φA
1/2
i Ri(α)A

1/2
i ,

where Ai is a diagonal matrix representing the response variance under the as-
sumption of independence and φ is the overdispersion factor. Thus the generalized
estimating equations for N independent subjects

U(β) =
N∑
i=1

(
∂πi(β)

∂β

)T
V −1i (α̂(β), φ̂(β))(yi − πi(β)) = 0,

with the dispersion parameters α and φ. Solving these estimating equations
provides parameter estimates β̂. Each coefficient βj can be interpreted similarly
to those of the standard logistic regression model, with the added condition that
the autocorrelation has been accounted for (Zeger and Liang, 1992).

Liang and Zeger (1986) showed that when Ri(α) = I, the GEE can be
simplified to the score functions as from a likelihood function that assumes in-
dependence among repeated observations from a subject. The GEE estimates
for β are consistent regardless of the choice of working correlation structure for
time-independent covariates, although a correct specification of the working cor-
relation structure does enhance efficiency. Liang and Zeger (1986) established
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that the vector β̂ that satisfies U(β) = 0 is asymptotically unbiased in the sense
that limN→∞ (Eβ [U(β)]) = 0, under suitable regularity conditions. Diggle et
al. (2002) showed that the GEE approach is usually satisfactory when the data
consist of short, essentially complete, sequences of measurements observed at a
common set of times on many subjects, and a conservative selection in the choice
of a working correlation matrix is applied.

In using GEE, the specified covariance structure takes into consideration the
correlation that arises as a result of repeated measurements on the same sub-
ject being related to each other, or due to clustering (Zeger and Liang, 1986;
Liang and Zeger, 1986; Diggle et al., 2002; Smith and Smith, 2006). In fact,
the GEE estimates with time-independent covariates produce efficient estimates
if the working correlation structure is correctly specified, and remain consistent
as well as providing correct standard errors if the working correlation structure
is incorrectly specified. Thus it is known that GEE can be used to appropriately
model correlated binary outcomes when there are time-independent covariates.
However, when there are time-dependent covariates, Hu et al. (1998) and Pepe
and Anderson (1994) have pointed out that the consistency of parameter esti-
mates using GEE is not assured with arbitrary working correlation structures
unless that a subject repeated measurements are independent, i.e., the indepen-
dent working correlation is satisfied as employed. Pepe and Anderson (1994)
suggested the use of the independent working correlation structure when using
GEE with time-dependent covariates as a “safe” choice of analysis. However,
Fitzmaurice (1995) discussed the losses in efficiency that arise from using the
independent working correlation structure with GEE when the data are, in fact,
not independent.

3.2 Generalized Method of Moments

The generalized method of moments (GMM), when time-dependent covari-
ates are involved, can provide more efficient estimates than using the GEE es-
timates based on the independent working correlation (Lai and Small, 2007).
Lai and Small (2007) maintained that the GEE approach with time-independent
covariates is an attractive approach as it provides consistent estimates under
all correlation structures for subjects repeated measurements. However, they
showed through a simulation study that when there are time-dependent covari-
ates, some of the estimating equations applied by using the GEE method with
an arbitrary working correlation structure are not valid. In other words, some
estimating equations will not have zero expected value. The “safe” choice of in-
dependent working correlation structure with GEE has been shown to produce
inefficient estimates when time-dependent covariates are present (Fitzmaurice,
1995). Therefore, GMM has become the preferred method of estimation for
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marginal correlated logistic regression models when time-dependent covariates
are present.

The GMM method generalizes the standard method of moments, which in-
volves constructing estimating equations by setting the expectation of known
functions of observable random variables equal to known functions of unknown
parameters Hansen (1982). The GMM estimators have become very popular be-
cause they have properties that are easy to characterize given a large sample,
which makes comparisons relatively easy. Further, these methods can be applied
without indicating the full data generating process. Therefore, GMM methods
of estimation can be adapted to a wide variety of applications (Hansen, 2007).

The general process of GMM estimation involves forming estimating equa-
tions as weighted linear combinations of “valid” moment conditions with zero
expected value (Hansen, 1982, 2007). It utilizes a positive definite weight ma-
trix that assigns different levels of importance to the moment conditions based
upon how informative each moment is with respect to the parameters β. These
moment conditions consist of products of residual terms (yit − µit) at time t and
covariate terms ∂µis/∂βj at time s. Parameter estimates β̂GMM are obtained
by minimizing the quadratic form Q(β) = GTW−1G, where G is a vector of
valid moment conditions (∂µis(yit − µit))/∂βj and W is a weight matrix typi-

cally chosen to be Cov(G). The resulting parameter estimates β̂j have the same
interpretations as with the GEE method.

Lai and Small (2007) used GMM estimators with time-dependent covariates
by selecting the linear combinations of moment conditions according to the nature
of the time-dependence. They defined Type I time-dependent covariates as those
covariates that do not involve any effects between covariate process and response
process, and consequently products of residual and covariate terms at all times
t and s are valid. Type II time-dependent covariates are defined as those that
may involve feedback from covariates to future responses, and so only residual
and covariate products with s ≥ t are valid. Type III time-dependent covariates
are defined as those that may involve feedback from responses to future covariate
values, and so only residual and covariate products with s = t are valid. Lai
and Small (2007) showed gains in efficiency over the “safe” choice of independent
GEE.

Yin et al. (2013) presented an extension of the approach of Lai and Small
(2007), first defining a Type IV time-dependent covariate in which responses may
affect future covariate values (but not the converse), so only products with s ≤ t
are valid. Additionally, Yin et al. (2013) proposed an extended classification
method in which the data determine individual combinations of residual and
covariate terms that form valid moment conditions instead of researcher-selected
classifications. Their process follows. In their process, it is of interest to fit a
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logistic regression model

ln

(
πit

1− πit

)
= β0 + β1xi1 + · · ·+ βJxiJ ,

while accounting for the autocorrelation among responses. They presented a
method of selecting valid moment conditions for time-dependent covariates based
on the observed correlation between residuals and covariate values. Let eit denote
the residual for subject i from a preliminary model fit using only the data from
time t, and let disj = ∂µis/∂βj represent the covariate term evaluated using
the parameter estimates from the same preliminary model, so that T different
preliminary models are fit, one for each time observed. Define ρsjt to be the
linear correlation between the standardized errors et = (e1t, · · · , eNt)T and the
standardized covariate values dsj = (d1sj , · · · , dNsj)T for the jth covariate. Under
certain regularity conditions, Yin et al. (2013) showed that

ρ̂sjt√
µ̂22/N

∼ N (0, 1),

where N is the number of subjects, and µ̂22 is the estimated mixed fourth moment
of et and ds for the jth covariate,

µ̂22 = (1/N)
∑
i

(d̃sji)
2(ẽti)

2.

In this way the correlation between residual terms and covariate terms can be
evaluated directly. Any pair with non-significant correlation will be treated as
forming a valid moment condition within the GMM process. One the valid mo-
ment conditions have been selected, estimation can proceed using either two-step
GMM (2SGMM) or continuously updating GMM (CUGMM) (Hansen et al.,
1996). 2SGMM proceeds by estimating the GMM weight matrix and parame-
ter estimates in two separate steps. CUGMM proceeds by maximizing a single
expression for both the weight matrix and the parameters of interest simultane-
ously.

3.3 Model Fitting

The marginal models presented in this section can be fit in some statistical
software, including SAS and R. The GEE models can be fit in SAS using PROC
GENMOD (Smith and Smith, 2006) and in R using the GEE function within the
packages GEE or GEEPACK. Our GMM models were fit using programs written
using SAS PROC IML and also using programs in R.
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4. Conditional Correlated Logistic Regression

4.1 Random Intercept Models

Consider the logistic regression model for binary responses with a random
intercept,

ln

(
πit

1− πit

)
= β0 + β1xi1 + · · ·+ βJxiJ + γi,

where γi is a random effect associated with the clustering by subjects. It is cus-
tomary to think of these random effects as distributed normally with mean 0 and
variance σ2γ . Because this random effect is additive within the model and is not
associated with any covariates, it is often referred to as a random intercept. When
we include a random intercept in the model, the interdependencies among the
repeated observations within subjects are fully taken into account. The variance-
covariance structure is analogous to the “compound symmetry” form assumed in
a generalized linear mixed model, and also the “exchangeable working correla-
tion” in the GEE model. Hu et al. (1998) pointed out that with the standard
logistic model, the baseline risk is simply the proportion of positive responses in
the control group at baseline, while in the random-intercept logistic model, the
baseline risk is assumed to follow a distribution. Therefore, the corresponding
change in absolute risk with and without the covariate varies from one subject
to another, depending on the baseline rate. In this sense conditional models that
include random subject terms are referred to as “subject-specific” models and
lend themselves to such interpretations.

Consequently, the odds ratios estimated from a random-effect logistic model
are adjusted for the heterogeneity of the subjects, which can be considered to be
due to unmeasured variables. In the illustrative Medicare example we can think of
the random intercept as a patient’s constant propensity to be rehospitalized across
the four time points of the study, which is independent of the effects of the time-
dependent covariates. If we were to include additional random subject effects
into the model, then this propensity will be allowed to vary across time and any
other factors included, Hu et al. (1998). As a consequence of such properties, the
random effects are sometimes thought of as omitted subject-dependent covariates,
Longford (1994).

4.2 Random Slopes Models

The random slopes model can be thought of as including an additional random
error term for the intercept of the model. As such it is also reasonable to include
random error terms associated with the coefficients of each of the predictors. In
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this case the model is referred to as a “random slopes” model,

ln

(
πit

1− πit

)
= (β0 + γ0i) + (β1 + γ1i)xi1 + · · ·+ (βJ + γJi)xiJ ,

where each γji represents an “error” associated with a model coefficient. This
type of model is also commonly referred to as a hierarchical logistic regression
model and may be written using multiple equations,

ln

(
πit

1− πit

)
= β0i + β1ixi1 + · · ·+ βJixiJ ,

βji = δj0 + γji.

In this formulation δj0 can be thought of as an intercept term in the model for βji,
with random error γji. Using this notation it is clear that additional predictors
can be included to model each regression coefficient. In this way the regression
coefficient can be modeled over time, thus allowing for a subject’s propensity
of success to change over time with a time-dependent covariate. Specifically,
addition of a time covariate into the regression model would allow for a covariate-
averaged time adjustment,

ln

(
πit

1− πit

)
= β0i + β1ixi1 + · · ·+ βJixiJ + βtt,

βji = δj0 + γji,

while inclusion of a time covariate into the coefficient models would allow for a
covariate-specific time adjustment,

ln

(
πit

1− πit

)
= β0i + β1ixi1 + · · ·+ βJixiJ ,

βji = δj0 + δtt+ γji.

In this way a random slopes model can account for time-dependent covariates
within a longitudinal logistic regression model.

4.3 Decomposition of Time-Dependent Covariates

While the random intercept and random slopes models can be used to effec-
tively account for interdependencies among responses within subjects, and also
to account for subject-to-subject heterogeneity due to potential latent variables,
the models may not properly account for the different effects of time-dependent
covariates. Specifically, Neuhaus and Kalbfleisch (1998) argued that the standard
subject-specific model will produce an odds ratio for time-dependent covariates
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that is challenging to interpret. Its effect will be an unknown combination of the
effect of varying covariate values within subjects, and the effect of varying covari-
ate values between subjects. To identify these different time-dependent covariate
effects, Neuhaus and Kalbfleisch proposed a decomposition of any time-dependent
covariate factor in a model into two terms; one term accounting for the “within”
variation and the other term accounting for the “between” variation. Then the
random intercept logistic regression model is

ln

(
πit

1− πit

)
= β0 + (β1Bx̄i.1 + β1W (xit1 − x̄i.1)) + · · ·

+(βJBx̄i.J + βJW (xitJ − x̄i.J)) + γi,

where each βjB corresponds to the “between” contribution of the time-dependent
covariate, and βjW corresponds to the “within” contribution. Time-independent
covariates are analyzed without any change, as there will be no variation “within”.
The coefficient βjB is associated with the change in log-odds for subjects from
different populations defined by xitj , while βjW is associated with the change
in log-odds for a single subject at different values of xitj . For example, con-
sider the illustrative Medicare example, in which we model the probability of
rehospitalization within 30 days, using the time-dependent cocovariate number
of procedures. The associated between-subjects coefficient βjB would represent
the expected change in the log-odds of rehospitalization for different populations
of subjects, for a unit increase in the average number of procedures. The as-
sociated within-subjects coefficient βjW would represent the expected change in
the log-odds of rehospitalization, for a single subject, for a unit increase in the
number of procedures on different hospital visits.

Neuhaus and Kalbfleisch argued that, without this decomposition, the single
parameter associated with any time-dependent covariate will be a biased combi-
nation of the within and between parameters. Neuhaus and Kalbfleisch (1998),
and also Scott and Holt (1982), have shown that for time-dependent covariates
with equivalent subject averages (x̄i.j = x̄..j for all i, no between-subject varia-
tion), the effect of the covariate will be completely described by βjW . Similarly,
for time-dependent covariates with individual subject values equivalent to the
subject average (xitj = x̄i.j for all i, no within-subject variation), the effect of
the covariate will be completely described by βjB.

4.4 Model Fitting

Conditional logistic regression models can be fitted using SAS and R. In SAS,
PROC GLIMMIX can be used to fit the conditional models, using the restricted
pseudo-likelihood (REPL) (Wolfinger and O’Connell, 1993; Dai et al., 2006).
Alternatively, PROC NLMIXED can be used directly to fit a nonlinear mixed
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model (Wolfinger, 2000). In R, the GLMER function within the LME4 package
can be used to fit the models using REPL, which implicitly assumes normal
random effects. Additionally, the packages HGLMMM, HGLM, and DHGLM
can be used to apply the h-Likelihood of Lee and Nelder (1996) and Lee et al.
(2006). The function HGLM can be applied from the package HGLM, and the
function DHGLMMODELING can be applied from the package DHGLM.

5. Illustrative Example: Rehospitalization

5.1 Modeling Rehospitalization Data

For illustrative purposes, we revisited data from the Arizona State Inpatient
Database (SID), Yin et al. (2013). The dataset contained patient information
from Arizona hospital discharges for 3-year period from 2003 through 2005, of
those who were admitted to a hospital exactly 4 times. There were 1625 patients
in the dataset with complete information; each has three observations indicating
three different times to rehospitalizations. We classified those who returned to
the hospital within 30-days as “one” opposed to “zero” for those who did not
return within 30 days. Table 1 provides the percentage of the patients who were
readmitted to the hospital within 30 days of discharge against the percentages of
the patients who were not readmitted for each of their first three hospitalizations.

Table 1: Cross-classification of re-admit by time

Time
Total

1 2 3

Re-Admit
No

231 272 253 756
46.48% 54.73% 50.91%

Yes
266 225 244 735

53.52% 45.27% 49.09%

For the sake of simplicity, we ignored the intraclass correlations due to hospitals.
In particular, in our models we chose to consider the following as predictors of the
probability of rehospitalization within 30 days: total number of diagnoses, total
number of procedures performed, length of patient hospitalization, the existence
of coronary atherosclerosis, and indicators for time 2 and time 3.

5.2 Marginal Logistic Regression Models for Rehospitalization

In this section we present marginal models for the probability of rehospital-
ization within 30 days. Some of the models account only for the correlation inher-
ent in repeated observation of individuals, while others additionally included the
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feedback due to the time varying aspect of some covariates. We present a stan-
dard logistic regression model, a correlated model fit using GEE with compound
symmetry, unstructured, and independent working correlation structures, and a
correlated model fit using GMM as presented by Yin et al. (2013), using both
continuously updating GMM (CUGMM) as well as two-step GMM (2SGMM).

We first utilized a standard logistic regression model to analyze the data.
This model assumes that the information used was taken from 4,875 independent
observations. However, we have 1,625 independent sampling units, each measured
three times. Our results are provided in Table 2 in the column labeled “Standard”
(* indicates significance at the 0.05 level, ** indicates significance at the 0.01
level, and *** indicates significance at the 0.001 level). We found that length
of hospitalization and number of diagnoses each have a significant increasing
impact on rehospitalization. Specifically, a population with an increase of one
night of length of hospitalization over another population gives an odds ratio of
exp(0.0344) ≈ 1.067 for probability of rehospitalization, while a population with
an increase of one diagnosis gives an odds ratio of exp(0.0648) ≈ 1.035. We see
significant differences between the first and second times, and the first and third
times. Number of procedures showed marginal significance at the 0.10 level, but
this result is not compelling as these results provided standard errors that were
smaller than expected because of the independence model that was used.

Table 2: Parameter estimates and standard errors. Marginal logistic regression
models

Parameter Estimate
(Standard Error)

Standard UGEE CSGEE IGEE CUGMM2SGMM

Number of 0.0648 0.0686 0.0664 0.0648 0.0543 0.0642
Diagnoses (0.0154)∗∗∗ (0.0160)∗∗∗ (0.0160)∗∗∗ (0.0160)∗∗∗ (0.0154)∗∗∗ (0.0151)∗∗∗

Number of -0.0306 -0.0272 -0.0268 -0.0306 -0.0453 -0.0315
Procedures (0.0186) (0.0190) (0.0190) (0.0192) (0.0187)∗ (0.0187)

Length of 0.0344 0.0314 0.0314 0.0344 0.0531 0.0396
Hospitalization (0.0056)∗∗∗ (0.0075)∗∗∗ (0.0075)∗∗∗ (0.0077)∗∗∗ (0.0058)∗∗∗ (0.0049)∗∗∗

Existence of -0.1143 -0.1260 -0.1327 -0.1143 0.0133 -0.0517
C. A. (0.0913) (0.0934) (0.0934) (0.0937) (0.0942) (0.0929)

Time 2
-0.3876 -0.3868 -0.3859 -0.3876 -0.4419 -0.3840
(0.0716)∗∗∗ (0.0710)∗∗∗ (0.0710)∗∗∗ (0.0711)∗∗∗ (0.0695)∗∗∗ (0.0672)∗∗∗

Time 3
-0.2412 -0.2390 -0.2390 -0.2413 -0.2674 -0.2686
(0.0721)∗∗∗ (0.0688)∗∗∗ (0.0688)∗∗∗ (0.0688)∗∗∗ (0.0683)∗∗∗ (0.0672)∗∗∗

QIC 6648.73 6648.75 6648.52
QICu 6646.87 6646.87 6646.56
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To address the non-independence of the observations, we allowed the correlation
in the response to be accounted for by applying marginal logistic regression mod-
els with different working correlation structures fit using GEE. The unstructured
and compound symmetry working correlation structures were applied. Our find-
ings are given in Table 2 in the columns labeled “UGEE” and “CSGEE”. The
signs of parameter estimates and their interpretations remain consistent, as does
the significance of number of diagnoses and length of hospitalization. We con-
tinue to see differences in the probability of rehospitalization among the three
times. The marginal significance of number of procedures is no longer present,
as the standard errors have been corrected to account for repeated observation
of patients. However, these estimates and standard errors do not account for
possible feedback due to the time-dependent covariates.

To account for the time-dependent covariates and the associated feedback we
fitted a marginal GEE logistic regression model with independent working cor-
relation structure, presented in Table 2 in the column labeled “IGEE”. While
this method is an appropriate choice for logistic regression with time-dependent
covariates, independent GEE does not take advantage of all possible estimating
equations and as a consequence can lack efficiency as compared to the GMM ap-
proach. Therefore we also fitted a marginal correlated logistic regression model
using GMM methods, Lai and Small (2007), also based on the recent work of
Yin et al. (2013). The GMM estimates were obtained using both CUGMM and
2SGMM, presented in Table 2 in the columns labeled “CUGMM” and “2SGMM”.
The parameter estimates and interpretations remain consistent with other mod-
els, with the exception of a change in sign on the coefficient for existence of
coronary atherosclerosis using CUGMM, which was not found significant. There
is a significant increase in the probability of rehospitalization with increased num-
ber of diagnoses and length of hospitalization. There are also differences across
the three times. Using the GMM approach, there is a significant decrease in
probability of rehospitalization associated with the number of procedures using
CUGMM, and marginal significance using 2SGMM. The method of Yin et al.
(2013) applies a greater number of valid moment conditions with respect to num-
ber of procedures than when using independent GEE.

Comparison of GEE models is often made using information criteria such as
QIC and QICu (Panm, 2001). In this case both QIC and QICu are nearly iden-
tical for all three correlation structures, with the lowest values associated with
the independent GEE model. This suggests the independent GEE model is most
appropriate among the GEE models, as expected for data with time-dependent
covariates. The QIC summary measure is not appropriate for GMM estimation,
and in fact there is no current fit statistic appropriate for both GEE and GMM
estimation. But Lai and Small (2007) have shown GMM methods may gain effi-
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ciency over GEE in the presence of time-dependent covariates, if the correlation
within subjects is sufficiently large or if the working correlation structure has
been misspecified. Therefore we prefer GMM as a marginal estimation method
for data with strong within-subject correlation, with CUGMM slightly preferred
over 2SGMM due to more consistent convergence properties. When there is not
strong within-subject correlation, we prefer independent GEE.

5.3 Conditional Logistic Regression Models for Rehospitalization

In this section we present the results of fitting conditional logistic regression
models to the Medicare rehospitalization data. We present models with a random
intercept, with a random intercept and a random slope, and with a random
intercept that includes a decomposition of the time-dependent covariates.

First consider a subject-specific logistic regression model with a random inter-
cept term. In fitting this model we allowed each patient to have his/her own level
of propensity but with common correlation. The results of this analysis are given
in Table 3 in the column labeled “Random Intercept”. We found that number of
diagnoses and length of hospitalization were both significant and associated with
an increase in probability of rehospitalization. Accounting for different baseline
propensity for rehospitalization, a unit increase in length of hospitalization for
an individual gives an odds ratio of exp(0.0327) ≈ 1.033 for probability of rehos-
pitalization, while a unit increase in diagnoses for an individual gives an odds
ratio of exp(0.0706) ≈ 1.073. There are significant differences across different
times. Further we found that the random intercept variation was also significant,
indicating that it is necessary to allow the patients to have different baseline
propensities for rehospitalization.

In addition we wanted the model to allow the rate of change associated with
length of hospitalization to be allowed to vary among patients, thus we included a
random slope for this variable. The results of this analysis are given in Table 3 in
the column labeled “Random Slope”. When accounting for both the random slope
as well as the random intercept we found that the number of diagnoses and length
of hospitalization were both significant. Both times remain significant. We also
found that the intercept variation and the length of hospitalization slope variation
were significant at the 0.05 level in this model, indicating that it is necessary to
allow the patients to have different baseline propensities for rehospitalization and
to allow patients to have different impacts of length of hospitalization.

In order to further investigate the dynamic relationships between time-
dependent covariates and the probability of rehospitalization, a random inter-
cept model was fit including a decomposition of each time-dependent covariate
into “within” and “between” components. Results of this analysis are presented
in Table 3 in the columns labeled “TDC (Within)” and “TDC (Between)”. The
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Table 3: Parameter estimates and standard errors. Conditional logistic regres-
sion models

Parameter Estimate
(Standard Error)

Standard
Random Random TDC TDC
Intercept Slope (Within) (Between)

Number of 0.0648 0.0663 0.0589 0.0780 0.0444
Diagnoses (0.0154)∗∗∗ (0.0159)∗∗∗ (0.0167)∗∗∗ (0.0220)∗∗∗ (0.0229)

Number of -0.0306 -0.0279 -0.0354 0.0188 -0.0824
Procedures (0.0186) (0.0191) (0.0201) (0.0251) (0.0302)∗∗

Length of 0.0344 0.0322 0.0498 0.0008 0.0736
Hospitalization (0.0056)∗∗∗ (0.0056)∗∗∗ (0.0082)∗∗∗ (0.0074) (0.0085)∗∗∗

Existence of -0.1143 -0.1278 -0.0992 -0.2607 0.2223
C. A. (0.0913) (0.0937) (0.0981) (0.1270)∗ (0.1435)

Time 2
-0.3876 -0.3881 -0.4206 -0.3730
(0.0716)∗∗∗ (0.0718)∗∗∗ (0.0748)∗∗∗ (0.0727)∗∗∗

Time 3
-0.2412 -0.2405 -2588 -0.2130
(0.0721)∗∗∗ (0.0723)∗∗∗ (0.0750)∗∗∗ (0.0740)∗∗

Intercept – 0.1578 0.1748 0.1472
Variance (0.0532)∗∗ (0.0826)∗ (0.0541)∗∗

Slope – – 0.0025 –
Variance (0.0013)∗

Generalized χ2/DF 1.19∗ 0.98 0.96 0.98

number of diagnoses remains significant, but only within patients. This suggests
that a change in the number of diagnoses on successive visits has a significant
and increasing impact on probability of rehospitalization for an individual patient,
but two individuals from populations with different mean numbers of diagnoses
are not expected to differ significantly in probability of rehospitalization. On
the other hand, the significance of length of hospitalization remains, but only
between subjects. This suggests that populations with different mean lengths
of hospitalization are expected to differ significantly in probability of rehospi-
talization, but for an individual patient an increase in length of hospitalization
on successive visits does not have an impact on rehospitalization. Additionally,
significance of number of procedures is found between subjects, implying that
populations with different mean numbers of procedures will differ significantly in
probability of rehospitalization. We found significance for existence of coronary



Modeling Correlated Binary Outcomes with Time-Dependent Covariates 733

atherosclerosis, within subjects only. For an individual patient, development
of coronary atherosclerosis on a follow-up visit is associated with a significant
decrease in probability of rehospitalization. This combination of subject-specific
and population-averaged conclusions was not possible using previous fitting meth-
ods.

Comparisons of conditional models using likelihood calculations such as re-
stricted log-likelihood or various information criteria should not be made be-
cause the estimates and consequently the likelihood values are based on different
pseudo-likelihoods (Wolfinger and O’Connell, 1993). For this reason we prefer
Generalized χ2/DF as a fit statistic for comparing these mixed logistic models.
Each of the three mixed logistic models presented has similar quality of fit based
on generalized chi-square divided by degrees of freedom. The value reported for
the standard logistic regression model is simply the Pearson χ2/DF , not the
Generalized χ2/DF , and shows evidence of overdispersion. The choice between a
model with decomposed time-dependent covariates and one without depends on
the relative trade-off between model parsimony and flexibility of available con-
clusions. We prefer to use the random-intercept model with decomposed time-
dependent covariates because both subject-specific and population-averaged con-
clusions are readily made. In this specific case, the decomposed time-dependent
covariate model shows that the significance of number of diagnoses is only within
subjects, while the significance of length of hospitalization is only between sub-
jects. Additionally, the decomposition allows us to see the significance of number
of procedures between subjects only, and also the significance of existence of coro-
nary atherosclerosis within subjects only. These specific conclusions cannot be
reached using the models without decomposed of time-dependent covariates, and
may be worth the cost of four additional parameters in the model.

6. Conclusions

We presented a survey of methods for fitting models to longitudinal data
with time-dependent covariates. Longitudinal models were classified according to
marginal models and conditional models, which differ with respect to parameter
interpretations. These models also differ with respect to handling time-dependent
covariates.

As an informative example, we analyzed data consisting of repeated measure-
ments giving rise to correlated responses with covariates that are time-dependent.
We found that the standard logistic regression model was inadequate for modeling
this type of data as it is not able to account for repeated measures on a single sub-
ject, resulting in standard errors that were smaller than expected. Through our
illustrative example we showed how the parameters of both population-averaged
logistic regression models and subject-specific logistic regression models can be
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interpreted. Consistent with the statistical literature our results show that re-
gression models ignoring the time-dependence of predictors tend to overestimate
the standard errors of time-dependent covariates.

The population-averaged approaches discussed include the moment-based
methods GEE and GMM with extended classification. These models allow re-
searchers to make interpretations based on comparisons of populations similar
to the interpretations of standard logistic regression coefficients. These methods
have the added benefit of accounting for the correlation in the response, which
does not affect the interpretations. Consistent with previous literature, the GMM
fitting methods showed evidence of smaller standard errors of parameter estimates
as compared to other methods that accounted for the time-dependent nature of
the data.

The subject-specific approaches discussed include the generalized linear mixed
models with random-intercept, random slopes, and decomposition of time-
dependent covariates. These models allow researchers to make interpretations
based on comparisons of multiple responses of the same individual. The resulting
odds ratios are averaged over all subjects observed, but are presented as con-
ditional on random-effects representing varying baseline values. These methods
account for the correlation in the response, but the assumed random-effect dis-
tributional properties affect parameter estimates and thus interpretations, and
these distributional assumptions are difficult to assess. The random-intercept
model with decomposed time-dependent covariates included the largest number
of parameters, but also provided the most informative conclusions about varying
relationships between time-dependent covariates and response. Using this decom-
position, significant covariates from other subject-specific models were shown to
have significance either within subjects or between subjects, but not both within
and between. Additionally, significance of some variables was detected using the
decomposition where it was not detected using other subject-specific models.

The choice between population-averaged and subject-specific models is often
driven by desired interpretations. Both types of models can be appropriate for
longitudinal data with time-dependent covariates. For our example data set,
the conditional model with decomposed time-dependent covariates revealed the
nature of the dynamic relationships between different time-dependent covariates
and response.
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