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Abstract: Price limits are applied to control risks in various futures mar-
kets. In this research, we proposed an adapted autoregressive model for
the observed futures return by introducing dummy variables that represent
limit moves. We also proposed a stochastic volatility model with dummy
variables. These two models are used to investigate the existence of price de-
layed discovery effect and volatility spillover effect from price limits. We give
an empirical study of the impact of price limits on copper and natural rubble
futures in Shanghai Futures Exchange (SHFE) by using MCMC method. It
is found that price limits are efficient in controlling copper futures price,
but the rubber futures price is distorted significantly. This implies that the
effects of price limits are significant for products with large fluctuation and
frequent limits hit.
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1. Introduction

More than two thirds of the organized markets in the world have price limits
(Hall and Kofman, 2001). Price limits describe the highest and lowest prices that
a commodity or option is permitted to reach in a given trading session. It is
an important regulation to control risks and to inhibit excessive fluctuation of
futures price.

The use of price limits in futures markets has generated a great deal of discus-
sion since the global market crash of 1987. After a study of the U.S Treasury Bond
Futures behavior, Ma and Rao and Sears (1989a, 1989b) found that price limits
could prevent the overreaction of futures markets to the fundamental markets in-
formation. Price may deviate from the true equilibrium price after reaching the
limit. But the deviation is temporary and will disappear soon. Therefore, it will
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not affect the price-discovery process. Brennan (1986) and Moser (1990) pointed
out that price limits could serve to reduce the potential reneging of the contracts.
The references that consider positive effects of price limits can also be found from
Anderson (1984), Greewald and Stein (1991), Arak and Cook (1997) and so on.
However, most of the studies do not support the theory of positive effects of price
limits. They showed that by preventing price from converging to the equilibrium
price effectively, price limits would slow down the price-discovery process and
make markets inefficient. Therefore, price limits are useless. Such studies include
Figlewsk (1984), Lehmman (1989), Fama (1989) and Kim and Rhee (1997) etc.
Jiang and Konstantinidi and Skiadopoulos (2012) also proposed a novel approach
to examine the effect of US and European news announcements on the spillover
of volatility across US and European Stock markets.

The effectiveness of price limits are usually examined according to price de-
layed discovery effect, volatility spillover effect and trading disturbance effect.
When a limit is reached, trading stops and the equilibrium price is not observed.
Under hypothesis of price delayed discovery effect, price will continue to reach
equilibrium price during the following trading days. Under hypothesis of volatil-
ity spillover effect, trading following a limit move will reflect unrealized fluctua-
tions of that day. Therefore the period of price fluctuation extends to a longer
one. Generally, if the hypotheses of price delayed discovery effect and volatility
spillover effect are accepted, it is considered that price limits are useless.

In this paper, we proposed an autoregressive model for the observed futures
return by introducing dummy variables that represent limit moves. We also
proposed a stochastic volatility model with dummy variables. Using these two
models, we investigate the existence of price delayed discovery effect and volatility
spillover effect of copper and natural rubber futures in SHFE. Due to the diffi-
culty of data collection, we didn’t discuss trading disturbance effect. This paper
consists of five Chapters. Chapter 2 discusses the realization of price delayed
discovery effect and volatility spillover effect. Chapter 3 proposes adapted time
series models and discusses parameter estimation and hypothesis testing. Chap-
ter 4 presents an empirical study of the effects of price limits in SHFE. Lastly,
we give a conclusion in Chapter 5.

2. The Influence of Price Limits on Futures Price

In this section, first, we review futures return under price limits. We decom-
pose the true equilibrium futures return in three parts: the observed return, the
unrealized part of that trading day and the unrealized equilibrium return carried
over from the previous trading day. Based on our decomposition, we discuss price
delayed discovery effect. Then we discuss volatility spillover effect.
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2.1 Futures Return under Price Limits

In a market with a daily price limit, trading is permitted only at prices within
limits determined by the settlement price of the previous day. In Chinese futures
markets, the absolute variation is 3% around settlement price of the previous
day under normal situation. If the bid is outside the allowed trading range, it is
considered invalid. Therefore if equilibrium price moves outside the limits, price
limits are the price we observe. The relationship between the observed futures
price and equilibrium price at tth trading day can be described as the following:

Ft =


Ft−1(1 + l), if F e

t ≥ Ft−1(1 + l),
F e
t , if Ft−1(1− l) < F e

t < Ft−1(1 + l),
Ft−1(1− l), if F e

t ≤ Ft−1(1− l),
(1)

where F e
t is the equilibrium price at time t, Ft is the observed price and l is the

maximum daily limit imposed on the absolute change in futures price within a
trading day. In Chinese futures markets l = 3%. The observed futures price
is equal to the true equilibrium price only if the futures equilibrium price falls
within the price limits. If the futures price we observe is equal to the limits, the
true equilibrium price must be higher (or lower) than the price observed.

The Log returns log(Ft/Ft−1) is commonly used during empirical study. It
can be written as the following:

rt =


ru, if F e

t ≥ Ft−1(1 + l),
ln(F e

t /Ft−1), if Ft−1(1− l) < F e
t < Ft−1(1 + l),

rd, if F e
t ≤ Ft−1(1− l),

(2)

where rt = Ft/Ft−1, r
u = ln(1 + l), and rd = ln(1− l). ru and rd are the limit-up

and limit-down of futures log return respectively. We can see that the observed
return is not necessarily equal to the true equilibrium return. This is determined
by the fact whether futures price of the previous trading day reaches the limits
or not.

2.2 Price Delayed Discovery Effect

Chou and Wu (1998) decomposed the equilibrium return as the sum of the
observed return and the unrealized parts from the current trading day. They
didn’t consider the part carried over from the previous trading day. Therefore
their conclusion is not suitable for the situation of consecutive limit hits.

In the following, we decompose the true equilibrium futures return as three
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parts:

ret = ln(F e
t /F

e
t−1)

= ln(Ft/Ft−1) + ln(F e
t /Ft)− ln(F e

t−1/Ft−1) (3)

= rt + Et − Et−1,

where Et = ln(F e
t /Ft) denotes the unrealized part of equilibrium return at the

tth trading day because of the existence of price limits. From (3), we see that
equilibrium return is equal to the sum of the observed return and the unrealized
part of that trading day subtracting the unrealized equilibrium return carried
over from the previous trading day. Particularly, if there is no limit move at
(t − 1)th trading day, Et−1 = 0; if there is no limit move at tth trading day,
Et = 0. Otherwise, the unrealized part of equilibrium return will be carried over
to the next trading day. This is called price delayed discovery effect (see Figure
1).

Where )/ln( t
e

tt FFE =  denotes the unrealized part of equilibrium return at the tth trading 
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                                                             Figure 1 

The distribution on the right is the futures equilibrium return of the day following a limit-

up. The unrealized part of equilibrium return from the previous trading day is carried over 

to the next trading day. 

    If price reaches the upper limit at the tth-trading day, the estimated equilibrium return 

with price limits at that day is:               

.                        ˆ [ | ]e e e u
t t tr E r r r= >                                                         (4) 

Equilibrium  
Return 
 

Equilibrium return 
distribution with limit-
up in the previous 
trading day 
 

Equilibrium return 
distribution without 
limit-up in the previous 
trading day 
 

Unrealized part of 
equilibrium return 
from the previous 
trading day 

Figure 1

The distribution on the right is the futures equilibrium return of the day following
a limit-up. The unrealized part of equilibrium return from the previous trading
day is carried over to the next trading day.

If price reaches the upper limit at the tth-trading day, the estimated equilib-
rium return with price limits at that day is:

r̂et = E[ret |ret > ru], (4)

(4) is the conditional expected return given the equilibrium return greater than
the limit-up return (see Figure 2).
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(4) is the conditional expected return given the equilibrium return greater than the limit-up 
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                                                               Figure 2 

In Figure 2, between the two straight lines, we see the distribution under the price limits. 

The curve on the right indicates the conditional equilibrium return distribution under limit-

up.   

 

The equilibrium return of the next trading day is: 
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Suppose equilibrium return follows the simple stochastic model: 
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Figure 2

In Figure 2, between the two straight lines, we see the distribution under the
price limits. The curve on the right indicates the conditional equilibrium return
distribution under limit-up.

The equilibrium return of the next trading day is:

r̂et+1|ret = E[ret+1|ret > ru]. (5)

Suppose equilibrium return follows the simple stochastic model:

ret = µ+ εt, (6)

where εt is a sequence of independent, identically distributed, random variables
with mean 0 and variance σ2t . By (4) and (5) we obtain (7):

E[ret+1|ret > ru] = 2µ+ φ(Ξt)/[1− Φ(Ξt)]− ru

≥ µ = E[ret+1], (7)

where Ξt = (ru − µ)/σt. (7) indicates that futures price tends to go up following
a limit-up day. On average, equilibrium return is greater than the equilibrium
return without the enforcement of price limits. This is due to the price delayed
discovery effect. Similarly, the futures price following a limit-down day tends to
go down. Expected equilibrium return is lower than the expected equilibrium
return without price limits. The same conclusion can be derived even we replace
(6) by a more complicated model such as autoregressive processes. Trading stops
when price reaches the limits. Under hypothesis of price delayed discovery effect,
futures price will continue to go up or fall to reach equilibrium price in the
following trading days, at least the next trading day.
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2.3 Volatility Spillover Effect

Consider model (6) again. When price reaches the upper limit at the tth day,
variance of conditional equilibrium return of the next trading day is given as the
following:

Var[ret+1|ret > ru] = σ2t+1 + σ2t

{
1− φ(Ξt)

1− Φ(Ξt)

[
φ(Ξt)

1− Φ(Ξt)
− Ξt

]}
≥ σ2t = Var[ret ]. (8)

The result is similar even with a more complicated model. Because of the high
volatility at the limit-hit-day, large fluctuation will continue in the following days.
This indicates that futures return sequence is volatility clustering. Price fluctu-
ation of the next trading day following a limit-hit-day will be larger than the
fluctuation without price limits. This is called volatility spillover effect.

Volatility spillover effect and price delayed discovery effect is highly related.
The unrealized part of the equilibrium return because of price limits will de-
liver to the next trading day. This part of return is uncertain. Consequently,
the uncertainty of return of the following trading day will increase, resulting in
fluctuation increscent. Price limits impede price fluctuation that should be com-
pleted within one trading day. This results in a longer period of price fluctuation
and volatility spillover. As a result, price limits could prevent price slump and
price jump, could reduce risk and could make markets more rational.

3. Testing Hypothesis and Methods

In this section, we discuss how to test price delayed discovery effect and
volatility spillover effect. In literature, many researchers adopt case study. They
investigate the effect of price limits by comparing futures return and fluctuation
before the limit move to those after the limit move. These methods work well
for stock markets, where a lot of limit moves are observed and different stocks
can be studied together. However, it is not efficient in futures markets, where
a single futures product is unlikely to have lots of limit moves and different
futures are not supposed to study together because of different features. For
example, there are only about 20 limit moves of copper futures in SHFE within
four years (1999-2003). A futures product has several contracts at the same
time, but they may have similar behavior because of arbitrage. If we consider
these contracts together, it is actually duplicate computations on the same price.
Furthermore, case studies are hard to deal with the phenomena of consecutive-
limit moves. Therefore, we propose a means model for the observed futures return
with introducing dummy variables that represent limit moves. We also propose
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a stochastic volatility model with dummy variables. MCMC sampling method is
used to estimate the parameters and test hypothesis.

3.1 Adapted Autoregressive Model

Generally we assume that the equilibrium return sequence is an autoregressive
process (AR(1)), i.e.,

ret = µ+ ϕret−1 + εt,

where, (µ, ϕ) are parameters, εt is the error term with mean zero. MCMC method
and EM algorithm can be used to analyze the above model (Wei, 2002). There
are some other researchers who consider dummy variables that reflect price limits
in the above model (Chou and Wu, 1998). We believe the true equilibrium return
is inherent, which would not be affected by the existence of price limits. What
has been affected is the observed return. As a result, in order to examine if
price limits have impact on price delayed discovery effect, it is not appropriate
to introduce dummy variable in equilibrium return model. We need to construct
a model for the observed return and introduce dummy variable. The model we
proposed is as follows:

rt = µ+ ϕrt−1 + γδut−1 + κδdt−1 + εt, εt ∼ N (0, σ2t ), (9)

where σt is volatility; δut−1 and δdt−1 are the dummy variables reflecting whether
there is a limit up or a limit down respectively. They are given as follows:

δut−1 =

{
1, rt−1 = ru,
0, rt−1 < ru,

δdt−1 =

{
1, rt−1 = rd,
0, rt−1 > rd.

Following a limit up day, price return will move from µ+ϕrt−1 to µ+ϕrt−1 + γ;
following a limit down day, price return will move from µ+ϕrt−1 to µ+ϕrt−1+k.
The null hypothesis and alternative hypothesis are given below:

H1
0 : γ = 0, κ = 0 vs H1

1 : γ 6= 0, κ 6= 0. (10)

Whether γ equals zero or not indicates whether limit up has impact on price
delayed discovery effect or not. Similarly, whether k equals zero or not indicates
whether limit down has impact on price delayed discovery effect or not.

3.2 Volatility Model

When studying price volatility, Chou and Wu (1998) assume that volatility
is a constant when there are no limit moves. Although volatility spillover is one
of the reasons of volatility clustering and other heteroscedastic characteristics
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indicated from the financial asset return sequence, there exists volatility clustering
phenomena in some futures markets without price limits. So it is not ok to
consider heteroscedastic characteristics as the result of price limits. Therefore we
use heteroscedastic Volatility Model in our study.

The popular Volatility Models are GARCH (Engle, 1982) model and Stochas-
tic Volatility model (SV model) (Taylor, 1986). These models can accurately
describe the special characteristic of the financial data that has conditional fluc-
tuation depending on time. Comparing to GARCH model, SV model has the
following advantages: (1) SV model considers historical data and the newest in-
formation, which makes the prediction more acceptable; (2) SV model can easily
reflects leverage of different types of information. Although GARCH model can
also reach this goal after revising, it introduces more parameters; (3) SV model
is more flexible comparing to GARCH model with fewer restrains on parameter
estimation and testing hypothesis. In addition, SV model can show the fat tail
characteristic of asset return sequence. With the recent development of MCMC
computing techniques, parameter estimation of SV model is no longer a problem.
Therefore, we use SV model to be futures return volatility model.

Generally, suppose volatility follows the SV(1) process:

σt = exp(ht/2),

ht = ω + ψ(ht−1 − ω) + ηt, ηt = N (0, τ2),

where ψ ∈ (−1, 1), ηt and εt are mutually independent. Stochastic volatility
model considers the logarithm of volatility as an autoregressive process, which is
time-dependent. Autoregressive coefficient ψ shows sustained status of fluctua-
tion. ηt denotes the potential information from trading day t−1 to trading day t.
In order to investigate the impact on futures price volatility due to price limits,
we introduce a dummy variable that represents whether there is a limit move or
not. The above model becomes:

ht = ω + ψ(ht−1 − ω) + ζδut−1 + λδdt−1 + ηt. (11)

The coefficients of dummy variables show the influence of price limits on volatility.
ζ > 0 (λ > 0) indicates that volatility increases because of limit move, resulting
volatility spillover. ζ < 0 (λ < 0) indicates that volatility decreases after limit
move. Otherwise, ζ = 0 (λ = 0) indicates no influence on volatility from price
limits. The null hypothesis and alternative hypothesis are as the following:

H2
0 : ζ = 0, λ = 0 vs H2

1 : ζ 6= 0, λ 6= 0. (12)

If H2
0 is rejected, we conclude that ζ and λ differ from 0 significantly and there

exists volatility spillover effect.
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3.3 Parameter Estimation and Testing Methods

Parameter estimation is the major problem that restricts the application of
SV model. Methods such as least square estimation, maximum likelihood esti-
mation and other methods do not work. Current popular methods for parameter
estimation of SV model include pseudo likelihood method, generalized moment
method and MCMC sampling method. All of these methods require a lot of
computation. MCMC sampling method is one of the efficient ways to estimate
the parameters of SV model. The basic idea of MCMC is from Bayes method.
MCMC sampling method considers the parameters as random variables, assigns
parameters certain prior distributions and calculates their posterior distributions.
Random numbers are drawn from conditional posterior distribution to estimate
the parameters.

Let ξ be a vector of random variables with (µ, ϕ, γ, κ, ω, ψ, ζ, λ, τ). We set up
the prior distribution as the following non-informative improper prior:

π0(µ, ϕ, γ, κ, ω, ψ, ζ, λ, τ) ∝ 1,

where

µ ∈ (−∞,+∞), ϕ ∈ (−1, 1), γ ∈ (−∞,+∞), κ ∈ (−∞,+∞),

ω ∈ (−∞,+∞), ψ ∈ (−1, 1), ζ ∈ (−∞,+∞), λ ∈ (−∞,+∞), τ ∈ (0,∞).

To ensure model stability of (9) and (11), we restrict ϕ and ψ between −1 and
1. Let r = {rt, t = 1, · · · , T} be the return vector and h = {ht, t = 1, · · · , T}
be the log volatility vector. Based on (9), we can get the likelihood function of
the return sequence {rt} as the following:

L(ξ,h|r) =
T∏
t=1

p(rt|rt−1, ht, ξ)p(ht|ht−1, ξ).

Under the condition that the prior distribution is non-informative, the joint pos-
terior distribution function of the parameters and h is

π(ξ,h|r) = L(ξ,h|r)/

∫
L(ξ,h|r)dr. (13)

Therefore, Bayes estimator of the parameters are given by:

ξ̂ =

∫ ∫
ξπ(ξ,h|r)dhdξ.

Notice the dimension of the vector h is the same as the number of the observed
data, calculating the above integral directly is impossible. MCMC sampling
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method, Berger (1985) is a recently developed efficient Bayes computational
method. Its basic idea is to obtain a sample π(ξ,h|r) by constructing a Markov
Chain with stationary distribution π(ξ,h|r). Various statistical inferences are
then derived based on these samples and large number theory.

The most popular MCMC sampling method is Gibbs sampling. Let θ =
(µ, ϕ, κ, γ, ω, ψ, ζ, λ, τ,h), following is the basic steps:

Step 1 : Calculate the stationary distribution π(θi|θ 6=i, r), where θ 6=i denotes the
vector without θi.

Step 2 : Choose a starting point θ(0) such that θ(0) = (θ
(0)
1 , · · · , θ(0)k ), where k is

the length of vector θ;

Step 3 : Draw θ
(j)
i from stationary distribution π(θi|θ(j−1)6=i , r)(i = 1, 2, · · · , k);

Step 4 : Repeat Step 3, sampling N times after convergence;

Step 5 : Use the N samples after convergence to perform statistical inference.

Based on the sample obtained by MCMC method, we can estimate the param-
eters of model (9) and (11) and perform hypothesis testing and other statistical
inference. In the later empirical study, besides estimating the parameters, we
also calculate the highest posterior density (HPD) interval of the coefficients of
dummy variables at certain significance level. In terms of HPD interval (Berger,
1985), we use observed data and the resulted posterior distribution to find a
minimum interval within the domain of parameters such that the probability of
the parameters in the interval reaches the required confidence level. If the HPD
interval includes null hypotheses H1

0 and H2
0 , we have no reason to reject H1

0 and
H2

0 .

4. Empirical Studies

4.1 Data

Currently there are three futures products: copper, aluminum and natural
rubber futures in SHFE. Aluminum futures price is quite stable with seldom
limits hit. Therefore copper and natural rubber is used in our study. Data we
use for study consists daily closing price and settlement price during three-month
contract. Table 1 gives the information of the dataset. During the period (1999-
2003), each product experienced from recession to market bubble. Therefore,
data is representative.

Table 1: Description of data
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Beginning and Trading Minimum
Days Days Frequency

ending date days volatility unit
of up of lower of
limits limits limits

hit hit hit

Copper 1999/2/23−
1096 10 RMB 13 9 2.02%

futures 2003/11/20

Natural
1999/5/19−

1029 5 RMB 34 28 6.03%rubber
2003/11/20

futures

In practice, when judging whether there is a limit hit or not, we do not
strictly follow the described percentage, but consider the minimum tick size of
the contracts. If we use ∆ to denote the minimum tick size and use SPt to
represent settlement price of tth trading day, the price limits of (t+ 1)th trading
day is:

P u
t+1 = ∆× int

(
SPt(1 + l)

∆

)
, P d

t+1 = ∆× ceil

(
SPt(1− l)

∆

)
, (14)

where function int(x) is the largest integer not greater than x and ceil(x) is the
smallest integer not less than x. If the price is higher than P u

t+1, a limit up
happens. If the price is lower than P d

t+1, a limit down happens. This rule is
slightly different from the rule of the futures exchange.

Table 1 gives the beginning and ending dates of the data in our study, number
of trading days and information on limit hits of both futures products.

From Table 1, we notice that frequency of limits hit is quite different between
the two futures products, indicating the difference of fluctuation and risk between
these two products. The high frequency of limits hit of natural rubber indicates
high price volatility and high risk of this product. The relatively lower frequency
of limits hit of copper futures indicates relative stability and relative lower risk
of this product.

4.2 Empirical Results and Analysis

We generate MCMC samples for the parameters of models (9) and (11) us-
ing BUGS and SAS software. The result indicates that the sequence converges
around 4000 times sampling (Figure 3). We then continue with another 16000
sampling. The converged sampling sequence is used to estimate the parameters.
Figure 4 gives the distributions of sampling sequences of dummy variables af-
ter convergence, which are asymptotically symmetric. So we can determine 90%
HPD confidence interval by calculating its 5% and 95% quartiles.
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Table 2 gives the estimator, standard deviation, MCMC sampling error and
HPD confidence interval of each parameter. Table 3 gives a summary of the
effects of price limits on copper and natural rubber.

Table 2: The results of MCMC estimation

Parameter Mean
Standard

Sampling error 90% HPD interval
deviation

Copper

µ(10−2) -0.0046 0.0214 0.0007
ϕ(10−2) -9.2380 3.4450 0.1172
γ(10−2) 0.5560 0.3730 0.0086 (-0.0512, 1.1720)
κ(10−2) -0.2478 0.3879 0.0077 (-0.8778, 0.3810)

ω -9.7370 0.1964 0.0085
ψ 0.9379 0.0262 0.0023
ζ 0.1317 0.2351 0.0195 (-0.2464, 0.5244)
λ -0.3547 0.2999 0.0232 (-0.8462, 0.1385)
τ 0.2646 0.0537 0.0052

Natural rubber

µ(10−2) 0.0014 0.0241 0.0008
ϕ(10−2) -8.1730 3.5620 0.1004
γ(10−2) 1.0800 0.3350 0.0099 (0.5322, 1.6370)
κ(10−2) -0.6022 0.4060 0.0136 (-1.2700, 0.0599)

ω -9.4560 0.2010 0.0076
ψ 0.9039 0.0281 0.0022
ζ 0.1633 0.1843 0.0118 (-0.1228, 0.4826)
λ 0.1931 0.2168 0.0145 (-0.1441, 0.5657)
τ 0.4753 0.0590 0.0054

Table 3: A summary of the effect of price limits on copper and natural rubber
futures

Upper Limit Lower Limit

Price Discovery Volatility Price Discovery Volatility

Copper Slightly delay
Slightly Slightly pulling

Slightly decreasing
spillover back

Natural rubber
Significantly Slightly Slightly pulling

Slightly spillover
delay spillover back

4.2.1 Price Delayed Discovery Effect

For copper futures, although both the estimated coefficients of dummy vari-
ables γ and k in the means model are not equal to zero, both of the 90% HPD con-
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fidence intervals include zero, so we don’t reject the null hypotheses H1
0 : γ = 0,

κ = 0. Price limits didn’t have significant price delayed discovery effect on copper
futures. Coefficient γ is greater than zero, indicating slight price delayed discov-
ery effect. Coefficient κ is less than zero, indicating that price will be pulled back
in the following trading days. Overreaction exists in copper futures markets,
which is corrected in the following trading days.

For natural rubber futures, the estimated coefficient of γ in the means model
is not equal to zero and zero is outside its 90% HPD confidence interval. The
hypothesis γ = 0 is therefore rejected. There is significant price delayed discovery
effect on natural rubber futures due to limit up. Coefficient k is less than zero, but
zero is inside its 90% HPD confidence interval, indicating slight delayed discovery
effect of natural rubber futures price after limit down.

4.2.2 Volatility Spillover Effect

For copper futures and natural rubber volatility model, all the 90% HPD
confidence intervals of dummy variables include zero. We can’t reject hypothesis
H2

0 for both products. This indicates that no significant volatility spillover effect
on copper futures and natural rubber futures is due to price limits. Both of the
dummy variables of limit up are not equal to zero, indicating slight volatility
spillover effect on copper futures and natural rubber futures because of limit
up. Coefficients of limit down of copper futures and natural rubber futures are
less than zero and greater than zero respectively, indicating that there is slight
decrease of copper futures return volatility following limit down. This means that
price limits have cooling-effect on the copper investors. While natural rubber
futures return volatility has slight spillover phenomena.

From the above analysis, price limits have no adverse impact on copper futures
price. It is efficient to control risks for copper futures. For natural rubber, limit
down has no adverse impact, while the limit up hinder futures price-discovery
process.

The difference between the effects of price limits on natural rubber futures and
copper futures is related to the different markets behavior of these two products.
Copper futures are relatively stable with few limits hit. The frequency of limits
hit is only 2.02%. While the frequency of limits hit of natural rubber futures
is 6.03%. Price limits have more influence on active futures products than the
relatively stable ones.

When studying the effect of price limits on stock price, Kim and Limpaphayom
(2000) pointed out those different effects from price limits existed because of
different characteristics of stocks. Based on our study, their conclusions can be
extended to futures markets.

Table 2 gives the estimator, standard deviation, MCMC sampling error of
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each parameter and HPD confidence interval of the dummy variables.
Table 3 gives a summary of the effect of price limits on copper and natural

rubber. Price limits have no adverse impact on copper futures price. It is efficient
to control risks for copper futures. For natural rubber, limit down has no adverse
impact, while the limit up hinder futures price-discovery process.

5. Conclusions

This paper studies the effect of price limits on SHFE theoretically and empir-
ically using autoregressive model, stochastic volatility model and MCMC sam-
pling techniques. The authors have the following findings: (1) Price limits have
no adverse impact on copper futures price. They are efficient to control risks.
For natural rubber futures, although price limits efficiently control risks, it im-
pede futures price discovery process. (2) The influence on futures price from
price limits relies on characteristics of futures products. Influence is significant
for products with large fluctuation and frequent limits hit. This finding implies
that the effect of price limits on futures price relies heavily on nature of futures
products and the price limits on rubber futures should be adjusted.

Appendix: Sampling Sequences and Sampling Distributions of the Co-
efficients of Dummy Variables for Natural Rubber Futures

kappa

iteration
2000 2500 3000 3500 4000

gamma

iteration
2000 2500 3000 3500 4000

zeta

iteration
2000 2500 3000 3500 4000

20. Wei, S.X. (2002). A censored GARCH model of asset returns with price limits. Journal 

of Empirical Finance, 9, 197-223. 
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Figure 3 gives a description of the convergence of the sampling sequences of the 

coefficients of dummy variables for Natural Rubber Futures. The sequences converge 

around 3100 sampling.  
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Figure 3

Figure 3 gives a description of the convergence of the sampling sequences of
the coefficients of dummy variables for Natural Rubber Futures. The sequences
converge around 3100 sampling.
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zeta sample: 16000

    0.0     1.0

lambda sample: 16000

    0.0     1.0

gamma sample: 16000

    0.0    0.01    0.02

kappa sample: 16000

  -0.02     0.0

 

 

 

 

       

 

 

 

 

 

Figure 4 

Figure 4 gives the sampling Distribution of Dummy Variables’ Coefficients for Natural 

Rubber Futures. All the distributions are asymptotically symmetric. 
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Figure 4 gives the sampling Distribution of Dummy Variables’ Coefficients for
Natural Rubber Futures. All the distributions are asymptotically symmetric.
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