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Abstract:
The Lee-Carter model and its extensions are the most popular methods

in the field of forecasting mortality rate. But, in spite of introducing several
different methods in forecasting mortality rate so far, there is no general
method applicable to all situations.

Singular Spectrum Analysis (SSA) is a relatively new, powerful and non-
parametric time series analysis that its capability in forecasting different time
series has been proven in the various sciences. In this paper, we investigate
the feasibility of using the SSA to construct mortality forecasts. We use the
Hyndman-Ullah model, which is a new extension of Lee-Carter model, as a
benchmark to evaluate the performance of the SSA for mortality forecasts
in France data sets.
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1. Introduction

Mortality rate is of the most prominent demographic indicators that national
statistical offices and United Nations routinely consider in their reports. Mortal-
ity rates have many applications in governmental agencies and insurance com-
panies. For example, insurance companies and social security systems use the
projections of future mortality rates in order to construct life tables and deter-
mine annuity prices.

Of course, we notice that the human mortality rate has declined substantially
over the last century by progress in the health systems which cause to additional
stress in support-systems for the elderly, such as pension provision. This change
also affects on the population size and structure, as well as social security systems.
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852 Rahim Mahmoudvand, Fatemeh Alehosseini and Mohammad Zokaei

Therefore, modelling and projecting of disease incidence and mortality rates is a
problem of fundamental importance in the insurance and pensions industry and
has been attracting the interest of researchers in the last decade.

Over the past century, researchers have introduced various methods to model
and forecast mortality rate. The methods being used by demographers and actu-
aries up to the early 1990s were found to be deficient in that they systematically
underestimated this downward trend (Haberman, 2010). The reason for this un-
derestimation is that the estimations are computed for a specific time period and
do not account for the decreasing trend in mortality. The systematic underes-
timation of mortality rates for pricing and reserving, particularly with respect
to guaranteed annuity and pension benefits, may lead to serious financial conse-
quences for insurance companies and pension plans in the long term.

In 1992, Lee and Carter proposed a new method which used the technique of
singular value decomposition to represent the log of mortality rates in terms of
two age-dependent factors and a single time-dependent one. The time-dependent
factor could then be extracted and modelled using conventional time series meth-
ods so that forecasts could be made. This model is typically intended for making
long-term predictions of aggregate mortality indicators like future life expectan-
cies or annuity costs. The popular method of Lee and Carter (1992) to model
and forecast mortality rate has undergone various extensions and modifications.
For a review and recent developments, see Hyndman and Ullah (2007), Hynd-
man et al. (2011) and references therein. These methods have been improved
the performance of mortality rate forecasts, however, there is no general method
applicable to all situations.

Recently, Hyndman and Ullah have introduced a modified version of Lee-
Carter model and have shown that the performance of their method is more
accurate than other extensions of Lee-Carter model.

Singular Spectrum Analysis (SSA) is a relatively new non-parametric ap-
proach for analysing time series data which incorporates elements of classical time
series analysis, multivariate statistics, multivariate geometry, dynamical systems
and signal processing (Golyandina et al., 2001). The aim of SSA is to decompose
the original series into the sum of a small number of independent and inter-
pretable components such as a slowly varying trend, oscillatory components and
a structureless noise. The literature review on SSA shows that there are more
than hundred papers on the application of SSA in the different areas and in the
majority of them, superiority of SSA compared to other time series analysis tech-
niques has been demonstrated (see, for example, Hassani et al., 2009; Hassani
and Thomakos, 2010 and references therein). Most recent developments in the
theory and methodology of SSA can be found in Zhigljavsky, 2010. In this paper,
we investigate the feasibility of using SSA to construct mortality forecasts.
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As we mentioned, the method of Hynman and Ullah (2007) achieves better
forecasting results to mortality forecasting than other approaches. Therefore, we
just compare our results with the method of Hyndman and Ullah (2007).

The rest of the paper is structured as follows: in Section 2, we give a brief
description of Hyndman and Ullah model and go over the generic SSA methodol-
ogy in Section 3. Empirical results are presented in Section 4. Finally, in Section
5, we offer some concluding remarks and directions for future research.

2. Hyndman-Ullah Approach

The Hyndman-Ullah approach can be expressed using the following equation:

logmt(x) = a(x) +

K∑
j=1

kt,jbj(x) + et(x) + σt(x)εt(x), (1)

where mt(x) denotes the mortality rate for age x at time t, a(x) is the average
pattern of mortality by age across years, bj(x) is a basis function and kt,j is a time
series coefficient. The error term σt(x)εt(x) accounts for observational error that
varies with age; i.e., it is the difference between the observed rates and the spline
curves. The error term et(x) is modelling error; i.e., it is the difference between
the spline curves and the fitted curves from the model. It is worth mentioning
that in the Lee-Carter model:

logmt(x) = a(x) + ktb(x) + εt(x), (2)

we have one set of (kt, b(x)), whereas in the Hyndman-Ullah model more than
one set of components are used. This extension gives more flexibility to model;
because these additional components capture non-random patterns, which are
not explained by the first principal component. Other extension that Hyndman-
Ullah model has been added to the original Lee-Carter model are discussed in
Booth et al. (2006) and Shang et al. (2011).

3. SSA

The basic SSA method consists of three complementary stages: decomposi-
tion, reconstruction and forecasting. At the first stage, we decompose the series
and at the second stage, the noise free series would be reconstructed and the re-
constructed series would be used for forecasting new data points in the final stage.
A short description of the SSA technique is given below (for more information,
see; Golyandina et al., 2001 and Hassani, 2007).

Stage I. Decomposition
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1st step: Embedding. Embedding can be considered as a mapping that trans-
fers a one-dimensional time series YT = (y1, · · · , yT ) into the multi-dimensional
series X1, · · · , XK with vectors Xi = (yi, · · · , yi+L−1)

T ∈ RL , where L (2 ≤ L ≤
T − 1) is window length and K = T − L + 1. The result of this step is called
trajectory matrix:

X = [X1, · · · , XK ] = (xij)
L,K
i,j=1 . (3)

Note that the trajectory matrix X is a Hankel matrix, which means that all
elements along the diagonal i + j = const are equal. Let us show the results of
this step for Y = [1, 2, 3, 4, 5, 6] and L = 3. Trajectory matrix for this example is
given by:

X =

 1 2 3 4
2 3 4 5
3 4 5 6

 .
2nd step: Singular Value Decomposition (SVD). In this step, we perform
the SVD of X. Denote by λ1, · · · , λL the eigenvalues of XXT arranged in
the decreasing order and by U1, · · · , UL the corresponding eigenvectors. The
SVD of X can be written as X = X1 + · · · + XL, where Xi =

√
λiUiVi

T and
Vi = XTUi/

√
λi (if λi = 0 we set Xi = 0). Applying SVD on trajectory matrix

of the previous example provides bellow decomposition:

X =

 1 2 3 4
2 3 4 5
3 4 5 6

 = X1 + X2

=

 1.54 2.25 2.95 3.66
2.08 3.04 3.99 4.95
2.62 3.83 5.03 6.24

 +

 −0.54 −0.25 0.05 0.34
−0.08 −0.04 0.01 0.05

0.38 0.17 −0.03 −0.24

 .
Stage II. Reconstruction

1st Step: Grouping. The grouping step corresponds to splitting the elemen-
tary matrices into several groups and summing the matrices within each group.
Let I = {i1, · · · , ip} be a group of indices i1, · · · , ip. Then the matrix XI corre-
sponding to the group I is defined as XI = Xi1 + · · ·+Xip . The split of the set
of indices {1, · · · , L} into disjoint subsets I1, · · · , Im corresponds to the represen-
tation X = XI1 + · · · + XIm . The procedure of choosing the sets I1, · · · , Im is
called the grouping. Note that in the previous example we have only two non zero
components and therefore we can define at most two groups: I1 = {1}, I2 = {2}.

2nd Step: Diagonal averaging (Hankelization). The purpose of diagonal
averaging is to transform a matrix to the form of a Hankel matrix which can
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be subsequently converted to a time series. Using diagonal averaging, we have:
X = X̃I1 + · · ·+X̃Im , where X̃Ij is the hankelized form of XIj for j = 1, · · · ,m.

Denoting {ỹj1 , · · · , ỹjT }, the series correspond to the matrix X̃Ij for j = 1, · · · ,m
show the reconstructed components of the original series. If x

(Ij)
m,n is the (m,n)th

entry of the estimated matrix XIj then applying diagonal averaging formula
follows that:

ỹji =
1

s2 − s1 + 1

s2∑
n=s1

x
(Ij)
n,i+1−n, (4)

where s1 = max{1, i+ 1−K}, s2 = min{L, i}.
Diagonal averaging on the components of previous example are given by:

X =

 1 2 3 4

2 3 4 5

3 4 5 6

 = X̃1 + X̃2

=

 1.54 2.17 2.87 3.83

2.17 2.87 3.83 4.99

2.87 3.83 4.99 6.24

 +

 −0.54 −0.17 0.13 0.17

−0.17 0.13 0.17 0.01

0.13 0.17 0.01 −0.24

 .
Accordingly, reconstructed components are as follow:

Y =



1

2

3

4

5

6


=



1.54

2.17

2.87

3.83

4.99

6.24


+



−0.54

−0.17

0.13

0.17

0.01

−0.24


.

Stage III. Forecasting

The basic requirement for having SSA forecasting is that the series satisfies
in a linear recurrent formula (LRF). Recall that series YT = [y1, · · · , yT ] satisfies
LRF of order d if:

yt = a1yt−1 + a2yt−2 + · · ·+ adyt−d, t = d+ 1, · · · , T. (5)

The series governed by LRFs admits natural recurrent continuation since each
term of such a series is equal to a linear combination of several preceding terms. Of
course, the coefficients of this linear combination can be used for the continuation
as well.
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An essential result for SSA forecasting was obtained in Danilov (1997a, 1997b)
and developed in Nekrutkin (1999). There are several versions of univariate SSA
forecasting algorithm, however, we consider the main version called Recurrent
SSA (Introduced by Danilove, 1997a, 1997b). Here, we use abbreviation RSSA
for this approach. In what follows, we give a brief description of this method, for
more information see Golyandina et al. (2001).

Assume UO
j denotes the vector of the first L−1 components of the eigenvector

Uj and πj is the last component of Uj (j = 1, · · · , r). Define coefficient vector R
as bellow:

R =
1

1− υ2
r∑

j=1

πjU
O
j ,

where υ2 =
∑r

j=1 π
2
j .

Considering the above notations, the RSSA forecasts (ŷT+1, · · · , ŷT+M ) can
be obtained by the following formula:

ŷi =

{
ỹi, i = 1, · · · , T,
RTZi, i = T + 1, · · · , T +M,

(6)

where Zi = [ŷi−L+1, · · · , ŷi−1]
T and ỹ1, · · · , ỹT are the values of reconstructed

series and can be obtained by (4) with XIj =
∑r

i=1Xi. For the considered
numerical example, let r = 1. Then we have obtained R = [0.60, 0.81]T which
produces the first ahead forecasts by ŷ7 = 0.81ŷ6 + 0.60ŷ5 = 0.81× 6.24 + 0.6×
4.99 = 7.99.

3.1 Forecast Accuracy

To evaluate the accuracy and reliability of the forecasts, one can use a suitable
combination of the following three approaches:

(a) Construction of confidence intervals;

(b) Assessment of retrospective forecasts;

(c) Checking the stability of forecasts.

Despite we do not dismiss the approaches (a) and (c), in the present paper we
only concentrate on the approach (b); that is, on the assessing the retrospective
forecasts. For more information on approach (a), we refer to Golyandina et al.
(2001). Moreover, for approach (c), Pepelyshev et al. (2010) formalized the
problem of assessing the stability of long-horizon forecasting of a given family
of forecasting techniques and argued that SSA could be a suitable family of
techniques to consider in some applications.
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Retrospective forecasts (approach (b)) are performed by truncating the series
and forecasting values at the points temporarily removed. These forecasts can
then be compared with the observed values of the time series for making an
assessment of the quality of the forecasts. Let eT,h(x) = yT+h(x)− ŷT,h(x) denote
the forecast error, where ŷT,h(x) shows the forecasts of yT+h(x) using SSA (h =
1, · · · ,M). Then, we define the Integrated Squared Forecast Error as bellow:

ISFET,h =
∑
x

e2T,h(x), (7)

and use as a measure of accuracy.

3.2 SSA Parameter Selection

The SSA steps show that it depends upon two basic, but very important,
parameters:

• the window length, L,

• the number of singular values, r, that need to be selected for filtering time
series.

Choosing improper values of parameters L or r yields incomplete reconstruction
and misleading results in forecasting. In spite of the importance of the choosing
parameters, no theoretical solution has yet been proposed to this problem. Of
course, there are worthwhile efforts and various techniques for selecting the ap-
propriate value of L (see, for example, Golyanidina, 2010; Hassani et al., 2011;
Mahmoudvand and Zokaei, 2012 and Mahmoudvand et al., 2013). Considering
theoretical results for the structure of the trajectory matrix and separability, it
seems mostly suitable for decomposition stage to propose L as close as one-half
of the time series length but it can not guaranteed you the best predictions (See
for example, Mahmoudvand et al., 2013).

Accordingly, as mentioned above, there are not enough algebraic and theoret-
ical materials for choosing optimal L and r. Certainly, the choice of parameters
depends on the available data and the analysis that we want to perform. Here,
we would like to use SSA as a method of forecasting. Therefore, one of the best
criteria is based on the forecasting errors.

However, note that different approaches can be considered in order to find
the error of forecasts. We propose to use a typical Mean Squared Forecast Error,
defined as:

MSET,h(x) =
1

MT,h

MT,h∑
j=1

e2T+j−1,h(x), (8)

where MT,h is the number of h-step forecasts that can be obtained by using T



858 Rahim Mahmoudvand, Fatemeh Alehosseini and Mohammad Zokaei

observations of mortality series for age x. To choose the parameters of the SSA,
we will apply the values of the SSA parameters that minimize this measure, i.e:

(L, r) = argmin
r<L<T−1

MSET,h(x). (9)

Therefore, we may obtain different parameters for every year and age.

4. Results

We demonstrate the feasibility of SSA for forecasting mortality rates using
one application involving demographic data age specific mortality rates. In this
case, we have yt(x) = log (mt(x)) where mt(x) denotes the mortality rate for age
x in year t.

4.1 Empirical Results: The Case of France

Annual French mortality rates (1899-2001) for single years of age were ob-
tained from the Human Mortality Database (http://www.mortality.org/). These
rates are simply the ratio of death counts to population exposure in the relevant
interval of age and time. Figure 1 shows the variant pattern of log mortality rates
for several ages and years in France.
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Figure 1: Changes in the total log death rates with respect to both age and
year over the period 1899-2001

Depicted plots in Figure 1 show that from 1900 to 2000, there was a general
pattern of decline in mortality rates for all ages. Comparison of curves in left
plot shows that the severity of decline in infant mortality is higher than adults.
Moreover, the effect of two world war I and II on increasing the death rates have
appeared in the form of outliers in series 25 years old in the left plot. But this
effect is not meaningful in other series. Structural changes can be seen from the
shape of the log death rates for the younger ages; whereas deviation from linear
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models decreases by age. This means that we may need to use more components
in SSA to capture non-linearity of the series of younger ages. Right plot in Figure
1 shows the difference among overall death rates in 1899, 1918, 1945, 1989 and
2001. This plot indicates that the overall death rates have declined by years over
these periods. Relationship between death rate and age is non-linear from age
0 to about 55 and the models seem to be close to the linear forms for the other
ages.

A more complete description and comparison of France mortality over the
past century can be found for example in Caselli et al. (1987).

Comparison

We compare our results with those obtained using the method of Hyndman
and Ullah (2007). So, we consider the data and cases that Hyndman and Ullah
have used in their comparisons. The methods are applied to the French mortality
data for years 1899−m and we forecast years m+ 1, · · · ,min(2001,m+ 10). In
order to do a comprehensive comparison, we have considered three different cases,
as follows:

(i) Death rates for all ages, over period 1899-m, are considered and the results
of forecasting by both Hyndman-Ullah model and SSA have compared.

(ii) Death rates for each ages, over period 1899-m, are considered as an indi-
vidual time series and the results of forecasting by both Hyndman-Ullah
model and SSA for several ages have compared individually.

(iii) A ten-ahead forecasts for period 1992-2001 are obtained by both methods
for several ages and compared.

In the cases (i) and (ii), we have done analysis by considering m = f, f +
1, · · · , 2000 for f = 1959, 1969, 1979 and 1989. Calculations of the Hyndman-
Ullah model have done using package demography for R and for SSA we provided
several codes in R. The forecasts are compared with actual values and we average
the MISE, which is the mean of squared errors that integrated by age, (on the log
scale) over m = f, f+1, · · · , 2000 and can be computed by the following formula:

MISET,h =
maxx∑
x=0

MSET,h(x). (10)

The way of obtaining MSET,h(x) is explained by an example in Table 1. Note
that, the last considered year for this study is 2001. Therefore, only forecasts
till this year were obtained. Notation n.a in Table 1 is an abbreviation of not
applicable.
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ŷ
1
99

6,3 (x
)

ŷ
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ŷ

19
93
,4 (x

)
ŷ
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ŷ

1991,7 (x
)

ŷ
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ŷ
19

90
,9 (x

)
ŷ
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ŷ

1
98

9
,10 (x

)
ŷ
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The results for the first case are shown in Figure 2. This figure shows that
our approach are more accurate than Hyndman-Ullah approach in all considered
periods for both short and long term forecasting. A similar results can be found
in Figure 3 for case (ii). In this case, comparisons have been done for ages 0, 25,
50, 75 and 100. However, we did this analysis on the other ages and observed
similar results in almost all ages. These ages are just representatives for all ages.
It should be mentioned that, MSET,h(x) have obtained by using the method of
Table 1 for case (ii).

2 4 6 8 10

1
2

3
4

Forecast horizen

M
IS

E

1899 to 1959+m with m=0,..,41 have used for modeling

Hyndman−Ullah
RSSA

2 4 6 8 10

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

Forecast horizen

M
IS

E

1899 to 1969+m with m=0,..,31 have used for modeling

Hyndman−Ullah
RSSA

2 4 6 8 10

1
2

3
4

5

Forecast horizen

M
IS

E

1899 to 1979+m with m=0,..,21 have used for modeling

Hyndman−Ullah
RSSA

2 4 6 8 10

0.
5

1.
0

1.
5

Forecast horizen

M
IS

E

1899 to 1989+m with m=0,..,11 have used for modeling

Hyndman−Ullah
RSSA

Figure 2: France total log mortality rates forecast accuracy

For the last case, forecasts of log mortality rate for period 1991-2001, using
dataset 1899-1991, for both SSA and Hyndman-Ullah approaches, are computed
and compared. Here, MSE was obtained by using the last row of Table 1. Fig-
ure 4 shows the forecast by both methods as well as real log mortality rates
for ages 0, 25, 50, 75 and 100 over the period 1992-2001. This figure indicates
that the RSSA is more accurate than Hyndman-Ullah. It also shows that the
SSA can distinguishes structural changes of the log mortality series in almost
all cases better than Hyndman-Ullah method. In other hand, MSE of forecast
in the mentioned ages are computed and reported in Table 2. According to the
MSE values, improvements in the mortality forecasts by RSSA are significantly
in comparison to the results of Hyndman-Ullah method. Ratios of MSE in the



862 Rahim Mahmoudvand, Fatemeh Alehosseini and Mohammad Zokaei

2 4 6 8 10

0
.0

0
0

.0
5

0
.1

0
0

.1
5

Forecast horizen

M
S

E

1899 to 1959+m with m=0,..,41 have used for modeling

Age = 0

Hyndman−Ullah
RSSA

2 4 6 8 10
0

.0
0

0
.0

5
0

.1
0

0
.1

5

Forecast horizen

M
S

E

1899 to 1969+m with m=0,..,31 have used for modeling

Age = 0

Hyndman−Ullah
RSSA

2 4 6 8 10

0
.0

0
0

.0
2

0
.0

4
0

.0
6

0
.0

8
0

.1
0

Forecast horizen

M
S

E

1899 to 1979+m with m=0,..,21 have used for modeling

Age = 0

Hyndman−Ullah
RSSA

2 4 6 8 10

0
.0

0
0

.0
2

0
.0

4
0

.0
6

0
.0

8
0

.1
0

0
.1

2
0

.1
4

Forecast horizen

M
S

E

1899 to 1989+m with m=0,..,11 have used for modeling

Age = 0

Hyndman−Ullah
RSSA

2 4 6 8 10

0
.0

1
0

.0
2

0
.0

3
0

.0
4

Forecast horizen

M
S

E

1899 to 1959+m with m=0,..,41 have used for modeling

Age = 25

Hyndman−Ullah
RSSA

2 4 6 8 10

0
.0

1
0

.0
2

0
.0

3
0

.0
4

0
.0

5

Forecast horizen

M
S

E

1899 to 1969+m with m=0,..,31 have used for modeling

Age = 25

Hyndman−Ullah
RSSA

2 4 6 8 10

0
.0

1
0

.0
2

0
.0

3
0

.0
4

0
.0

5

Forecast horizen

M
S

E

1899 to 1979+m with m=0,..,21 have used for modeling

Age = 25

Hyndman−Ullah
RSSA

2 4 6 8 10

0
.0

0
5

0
.0

1
0

0
.0

1
5

Forecast horizen

M
S

E

1899 to 1989+m with m=0,..,11 have used for modeling

Age = 25

Hyndman−Ullah
RSSA

2 4 6 8 10

0
.0

0
2

0
.0

0
3

0
.0

0
4

0
.0

0
5

0
.0

0
6

0
.0

0
7

0
.0

0
8

Forecast horizen

M
S

E

1899 to 1959+m with m=0,..,41 have used for modeling

Age = 50

Hyndman−Ullah
RSSA

2 4 6 8 10

0
.0

0
2

0
.0

0
4

0
.0

0
6

0
.0

0
8

0
.0

1
0

Forecast horizen

M
S

E

1899 to 1969+m with m=0,..,31 have used for modeling

Age = 50

Hyndman−Ullah
RSSA

2 4 6 8 10

0
.0

0
5

0
.0

1
0

0
.0

1
5

Forecast horizen

M
S

E

1899 to 1979+m with m=0,..,21 have used for modeling

Age = 50

Hyndman−Ullah
RSSA

2 4 6 8 10

0
.0

0
1

0
.0

0
3

0
.0

0
5

0
.0

0
7

Forecast horizen

M
S

E

1899 to 1989+m with m=0,..,11 have used for modeling

Age = 50

Hyndman−Ullah
RSSA

2 4 6 8 10

0
.0

0
5

0
.0

1
0

0
.0

1
5

0
.0

2
0

0
.0

2
5

0
.0

3
0

0
.0

3
5

Forecast horizen

M
S

E

1899 to 1959+m with m=0,..,41 have used for modeling

Age = 75

Hyndman−Ullah
RSSA

2 4 6 8 10

0
.0

0
0

.0
1

0
.0

2
0

.0
3

0
.0

4

Forecast horizen

M
S

E

1899 to 1969+m with m=0,..,31 have used for modeling

Age = 75

Hyndman−Ullah
RSSA

2 4 6 8 10

0
.0

0
0

.0
1

0
.0

2
0

.0
3

0
.0

4
0

.0
5

0
.0

6

Forecast horizen

M
S

E

1899 to 1979+m with m=0,..,21 have used for modeling

Age = 75

Hyndman−Ullah
RSSA

2 4 6 8 10

0
.0

0
0

.0
1

0
.0

2
0

.0
3

0
.0

4
0

.0
5

Forecast horizen

M
S

E

1899 to 1989+m with m=0,..,11 have used for modeling

Age = 75

Hyndman−Ullah
RSSA

2 4 6 8 10

0
.0

0
1

5
0

.0
0

2
0

0
.0

0
2

5
0

.0
0

3
0

0
.0

0
3

5

Forecast horizen

M
S

E

1899 to 1959+m with m=0,..,41 have used for modeling

Age = 100

Hyndman−Ullah
RSSA

2 4 6 8 10

0
.0

0
1

0
0

.0
0

1
5

0
.0

0
2

0
0

.0
0

2
5

0
.0

0
3

0
0

.0
0

3
5

Forecast horizen

M
S

E

1899 to 1969+m with m=0,..,31 have used for modeling

Age = 100

Hyndman−Ullah
RSSA

2 4 6 8 10

0
.0

0
0

5
0

.0
0

1
0

0
.0

0
1

5
0

.0
0

2
0

0
.0

0
2

5
0

.0
0

3
0

Forecast horizen

M
S

E

1899 to 1979+m with m=0,..,21 have used for modeling

Age = 100

Hyndman−Ullah
RSSA

2 4 6 8 10

0
.0

0
0

5
0

.0
0

1
5

0
.0

0
2

5
0

.0
0

3
5

Forecast horizen

M
S

E

1899 to 1989+m with m=0,..,11 have used for modeling

Age = 100

Hyndman−Ullah
RSSA

Figure 3: France total log mortality rates forecast accuracy for ages 0, 25, 50,
75 and 100

last row of table shows that RSSA provides more than 52% improvement in log
mortality forecast in all cases, which confirms the superiority of SSA.
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Figure 4: France total log mortality rates forecast accuracy for ages 0, 25, 50,
75 and 100

Table 2: MSE of forecasts for ages 0, 25, 50, 75 and 100 by SSA and Hyndman-
Ullah methods

Age 0 25 50 75 100

HU 0.0120 0.0032 0.0019 0.0165 0.0026
RSSA 0.0049 0.0011 0.0009 0.0014 0.0004

RSSA/HU 0.4059 0.3354 0.4780 0.0858 0.1577

Finally, we have done sensitivity analysis with respect to the window length
in SSA and K in Hyndman-Ullah model for comparison plan (iii). Results are
displayed in Figure 5. As it can be seen from these plots, generally speaking,
the sensitivity of results to the window length parameter in SSA is low which
again add to the benefits of SSA as a method of mortality forecasting. Whereas,
variation in the results of Hyndman-Ullah model is very high in most cases.

5. Conclusion

In this paper, the feasibility of Singular Spectrum Analysis (SSA) for forecast-
ing mortality rates has been studied. The results of SSA have been compared
with those of Hyndman and Ullah method. According to the considered data
sets, we can conclude that the accuracy of SSA is more than Hyndman and Ullah
method.
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Figure 5: MSE of France total log mortality rates forecast by RSSA and
Hyndman-Ullah model for ages 0, 25, 50, 75 and 100

Since the aim of this paper is just introducing a new method, we do not
compare the proposed method with other competitive methods here. Hyndman-
Ullah, as a relatively powerful method, is considered as our benchmark, only.
Further comprehensive analysis is needed to cover all aspects of accuracy criteria
and model accuracy statistics. In addition, several other versions of SSA-based
forecasting method have been introduced in its literature that can be considered
in the future works. Finally, note that our proposed method don’t consider the
correlations among ages which certainly can add useful information for analyses.
Multivariate versions of SSA should be other option that can be applied in this
cases. This idea also need to be studied in the future studies.
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