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Abstract: We study the spatial distribution of clusters associated to the
aftershocks of the megathrust Maule earthquake My, 8.8 of 27 February
2010. We used a recent clustering method which hinges on a nonparametric
estimation of the underlying probability density function to detect subsets
of points forming clusters associated with high density areas. In addition,
we estimate the probability density function using a nonparametric kernel
method for each of these clusters. This allows us to identify a set of regions
where there is an association between frequency of events and coseismic
slip. Our results suggest that high coseismic slip is spatially related to high
aftershock frequency.
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1. Introduction

Recent applications of clustering techniques range over an enormous set of
disciplines, both in the natural sciences and in the social sciences. A standard
account is the book of Kaufman and Rousseeuw (1990), which is focused mainly
on the more classical methods, based of the notion of distance between objects.
An alternative, relatively more recent approach is the model-based clustering
formulation which regards the observed data as generated by a probability dis-
tribution of finite mixture of multivariate random variables having distribution
belonging to some parametric family. In the implementation of this approach,
the most common option is to adopt the multivariate Gaussian assumption for
each of the density components, and estimate their parameters using an EM-
type algorithm. An useful account to this approach is provided by Dasgupta and
Raftery (1998). By applying the model-based clustering approach to earthquake
data in the coastal area of central California, Dasgupta and Raftery (1998) have
obtained six clusters, some of which are clearly linked to active faults. However
one or two of their clusters do not correspond to some already identified area.
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In a further approach to the clustering problem, the notion of an underlying
density function f(x) is retained, but the assumption that f(z) as a finite mixture
of components is removed, and so also the connected parametric assumption of
the components. Therefore, this approach is based on the construction of a
nonparametric estimate f(x) of f(z), and the association of a cluster to each of
the observed modes of the density. We concentrate on the kernel-type estimate
formulation which is the most popular and conceptually very intuitive (Bowman
and Azzalini, 1997). In the univariate case, the kernel estimate is defined by

fla) = 3 ol — i), 1)
i=1

where ¢(z;h) denotes the normal density function with zero-mean and standard
deviation h evaluated at point z. The normal density is adopted for simplicity
and it could be replaced by another symmetric density without much effect on
the outcome. A much more important role is played by h which in this context is
called “smoothing parameter”. In the d-dimensional case, ¢(z;h) is replaced by
a multivariate density with a zero-mean vector; the simplest and most popular
choice is the product of d such terms, with a different smoothing parameter for
each of the d components. Clusters are then formed by the data points associated
to the modes of f (x), and the clusters are separated by regions of low density of
points. This logic procedure is referred as a nonparametric clustering (NPC).

The aim of the present work is to examine the spatial dependence between
areas of high coseismic slip and the aftershock frequency (seismic clusters). To
achieve this, we identify the distribution of clusters in the rupture area of the 2010
earthquake. The hypocenter data are taken from the SSN (Servicio Sismoldgico
Nacional, Chile) and we use the coseismic model of Moreno et al. (2012), which
includes all available geodetic data for the Maule earthquake. We adopted the
NPC formulation of Azzalini and Torelli (2007), which has the advantage of
not requiring specification of the number of existing clusters. We apply this
methodology to the SSN aftershock catalogue data of the Maule earthquake and
focus on the data of the area between Valparaiso and Tirta [33-38.5°S], aiming
the identification of seismic clusters and its spatial relationship with regions of
coseismic slip.

2. Methodology

We briefly describe the NPC method proposed by Azzalini and Torelli (2007).
This works by assuming that the available set of d-dimensional observations
S ={x1, -+ ,x,} represent a set of points drawn from a continuous multivariate
random variable having an unknown probability density function f(z), z € R
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Here, x = (latitude, longitude) denotes a geographical position (d = 2) and the
data points x1, - - - ,x, represent the positions of the observed seismic events.

For any given constant « such that 0 < o < max,cp2f(x), consider the high
density region defined by

Ra:{‘r: ‘TGR27 f(«T)ZCY}, (2)

which has an associated probability p(a) = [, RS (x)dx. The region R, is in
general, formed by a number m of connected sets, where m € {1,2,---}.

Now we let @ move along its range. This causes both m and p = p(«) to move
accordingly, and we can regard m as a function of p since p is monotonic with
respect to a, write m(p). Note that m(p) is instead a non-monotonic function.
With the additional conventional settings m(0) = m(1) = 0, it can be shown
that the total number of increments of the step function m(p) is equal to the
number M of modes of f(x), hence to the number of clusters, in the sense defined
earlier. As « varies along its range, and so does p(«), the corresponding connected
components of R(«) form a hierarchical tree structure.

Translating the above idea into a working methodology requires some addi-
tional specifications and algorithmic work. We have sketched here only the main
steps of the procedure. Full details of the method are given by Azzalini and
Torelli (1997) and its implementation in R language is provided by Azzalini et
al. (2011). This procedure will later referred to as the “pdfCluster method”.

1. A nonparametric estimate f (x) of the density is obtained from the observed
sample S.

2. For any « in the range 0 < o < max; f (z;), it considers the sample analogue
of (2) given by S, ={x;: z; € S, f(z;) > a}.

3. The above step is replicated for a grid of values spanning the admissible
range of «, from 0 to max; f(z;). This generates a mode function m(p) and
a tree structure of the modes.

4. At the end of the earlier step we have obtained a tree structure of the
modes of f(x). Moreover, for each of the M modes, we have allocated some
elements of the sample S to the given mode. For each unallocated point x,
we must select one of distributions fi(z),- -, far(z) which represent the
estimated densities of the cluster cores. This allocation is most naturally
based on the likelihood ratio, that is we allocate xg to the j-th cluster core
such that the ratio fj((l?())/man;ﬁjfk(wo) is highest.

The final outcome of the clustering process is represented by the a partition
of the sample S into a set of clusters, say C1,--- ,Chy.
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2.1 Density-Based Silhouette Diagnostic

In classical cluster analysis, the term ‘silhouette’ refers to a diagnostic tool
for the validation of the outcome of the clustering process (Rousseeuw, 1987).
This technique provides a graphical representation of how appropriately the data
has been clustered. The idea arises from the comparison of the small distance
of each observation to the cluster where it has been allocated and a measure of
separation from the closest alternative cluster.

An adaption of the silhouette idea to density-based clustering methods has
been proposed by Menardi (2010). The method, called density-based silhouette
(DBS) diagnostic, is based on the posterior probabilities

G
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pj(z:) =

where 7; plays the role of prior probability of cluster Cj}; in practice it is taken
to be the proportion of points allocated to Cj. The DBS index of observation z;

is
e (52655

fog (755

where jg denotes the cluster to which x; has been allocated, and j; refers to

the alternative cluster index for which p; is maximum, j # jo. In our case,

after partitioning the SSN data with the pdfCluster method, we applied the DBS
diagnostic to assess the quality of the outcome.

DBS(.%'Z') =
manE{l’... ,n}

2.2 Temporal Analysis

We briefly describe four indexes to illustrate the consistency of the NPC
method across the time. These indexes provide information on the accuracy
of the adopted clustering in reconstructing the correct categories, compared to
random choice. In Table 1, N(Fj, O;) denotes the number of forecasts in category
i that had observations in category j, N (F;) denotes the total number of forecasts
in category i, N(O;) denotes the total number of observations in category j,
N is the total number of forecasts and 4,5 = 1,---, M are the indexes of M
clusters. The NSS index corresponds to normal skill score with range [0, 1],
such that O indicates no skill and 1 indicates perfect score. The index HSS
correspond to Heidke skill score (Brier and Allen, 1952) with range (—oo, 1], such
that 0 indicates no skill and 1 indicates perfect score. The index HK correspond
to Hanssen and Kuipers discriminant (Hanssen and Kuipers, 1965) with range
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[—1,1], such that 0 indicates no skill, and 1 indicates perfect score. The NSS,
HSS, and HK indexes are defined as

1 M
NSS = ;N(Fi, 0i),

NSS — <5 M N(F)N(0y)
1— 3 21, N(F)N(0y)

HSS =

)

_ N - NN (0)

HK -
N? =3 ini N(0:)?

HSS,

respectively.

Table 1: Multi-category Contingence table with M clusters

Observed Category

1 2 M Total
1 N(F1,01) N(F1,02) -+ N(F1,0p) N(Fy)
Forecast 2 N(FQ,O1) N(FQ,OQ) N(F27OM) N(FQ)
Category
M N(Fy,01) N(Fy,03) -+ N(Fa,Op) N(Fap)
Total N(Ol) N(Og) N N(O]\/[) N

Hubert and Arabie (1985) noticed that the Rand index is not corrected for
chances that are equal to zero and for random partitions having the same num-
ber of objects in each class. They introduced the corrected Rand index, whose
expectation is equal to zero under random allocation. The adjusted Rand (AR)
index is

__r-FEl)
AR = max(r) — E(r)’
where
MM
r=5>> N(E.0)IN(F,05) - 1],
i=1 j=1
E(r)= 2N(]\17_1)N*(O)N*(F)7

max(r) = %[N*(O) + N*(F)],
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1 M

N*(0) =5 > N(E)IN(F) - 1],
1 z;/[l

N*(F) = §ZN(OJ‘)[N(OJ‘) —1].
j=1

This maximum value is questionable since the number of common joined pairs is
necessarily bounded by inf {N*(O), N*(F)}, but max(r) ensures that the maxi-
mum value of AR is 1 when the two partitions are identical.

3. Results

Our numerical work is based on data extracted from the SSN catalogue, avail-
able at http://ssn.dgf.uchile.cl/. Specifically, we have considered 6,714 after-
shocks in a map [32-40°S]x[69-75.5°E], for a period between 27 February 2010
and 13 July 2011 (see Figure 1) and for local magnitudes M; > 2.0 (Contreras-
Reyes and Arellano-Valle, 2012). All of these observations have been pre-processed
with SEISAN 8.3 software starting from the information provided by 22 stations
located in a map with coordinates [—33.32, —39.80] latitude and [—70.29, —73.24]
longitude.

Figure 1: Map of the Chile region analyzed for slip (solid black line) and post-
seismicity correlation with clustering events. The black-triangle line correspond
to the trench
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For the numerical processing, we used the R computing environment software
(R Development Core Team, 2012). Most of the work was done using the R
package pdfCluster by Azzalini et al. (2011); this package comprises the func-
tions pdfCluster for the NPC method, dbs for DBS diagnostics and kepdf for
kernel density estimation. In addition, R provides the wilcox.test function for
individual test of means.

3.1 Clustering process

Figure 1 displays the geographical map of the area of interest with the points
denoting the locations of the events. These points have been clustered using
the pdfCluster method described in Section 2, leading to groups identified by
different colors. Figure 2 shows the silhouette diagnostic and cluster tree. These
indicate a lack of clear separation among clusters, which is not surprising, given
the close geographical proximity of the clouds of points visible in the top panel
of the figure.
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Figure 2: Plots of NPC method results

In the second stage of our numerical work, we have introduced two variants.
One was to consider only the areas were slip took place in a non-negligible form,
since our aim was exactly to examine the implications of the slip model. In
addition, some numerical exploration has indicated that log-transformation of the
quantities, slip and density function, lead to a more meaningful outcome. Since
for a number of points the slip value is 0, we adopted the modification commonly
used in similar cases of adding a small positive quantity, that is, working with
log(k + slip) for some small value k. Since slip is measured in meters, then we
adopted k = 0.01 which represents a perturbation of only 1 cm of the original data.
In the following, the term log-slip will be used for referring to log(0.01 + slip).
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Furthermore, association between slip and events density can be examined
in two different ways. One is to chose a regular grid of points in the region of
interest, and evaluate these variables or their log-transforms over this grid. The
other option is to evaluate these variables at the observed points of the seismic
events.

Figures 3, 4 and 5 refers to the first form, for three choices of the geographical
area over which the grid of points is constructed. More precisely, the sets of points
for which the computations have been performed have been obtained as the inter-
section of rectangular grids of sizes (192 x 214), (149 x 214) and (119 x 214) with
the three regions shown on the left side of Figures 3, 4 and 5, respectively, of dif-
ferent geographical size. This process led then to consider three non-rectangular
grids, comprising 19630, 10696 and 4812 points, respectively. The area covered
by first grid includes the largest number of points associated of the seismic events
of the data set, while the last one refers to the area with highest concentration
of events. The right side of the figure displays the scatter plots of log-slip and
log-density of the points, separately for each cluster. Only clusters labeled No. 1,
2, 3, 6, and 8 are considered here (M = 5, see Table 1); the other clusters have
been dropped because the covered area of the slip model is included in the area
of the retained clusters. Therefore only the selected clusters can be used for the
analysis of the correlation of aftershock density with the slip model of Moreno et
al. (2012). However, all clusters are considered in the 'dbs’ plot and silhouette
analysis of Figure 2 because the NPC analysis was run over the 6,714 aftershocks.
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Figure 3: Left: Rectangular grid of size (192 x 214) points considered for the
NPC method (blacked shadows). Right: Relationship between log-slip and
post-seismicity log-frequency. The points with slip = 0 produce verticals strips
of points at abscissa log(0.01) &~ —4.6 in some of the top plots
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Figure 4: Left: Rectangular grid of size (149 x 214) points considered for the
NPC method (blacked shadows). Right: Relationship between log-slip and
post-seismicity log-frequency. The points with slip = 0 produce verticals strips
of points at abscissa log(0.01) = —4.6 in some of the top plots
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Figure 5: Left: Rectangular grid of size (119 x 214) points considered for the
NPC method (blacked shadows). Right: Relationship between log-slip and
post-seismicity log-frequency. The points with slip = 0 produce verticals strips
of points at abscissa log(0.01) &~ —4.6 in some of the top plots
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Even if the selection of the three grids is somewhat subjective, the overall
indication of Figures 3, 4 and 5 provides convincing evidence of the presence of
association between the variables for the clusters under consideration, specifically
those labeled with No.1, 2, and 6. This association is becoming more and more
marked as we move from the first to the last grid, that is, when we focus on
the area with greater intensity of events. The type of association is definitely
non-linear, and so admittedly it does not lend itself to simple interpretation, but
it is clearly present, especially so in the bottom portion of the figure.

Figure 6 refers instead to the second form of comparison, where evaluation of
log-slip and log-density is performed at the observed location of events instead
of a regular grid of points. Also this figure exhibits some noteworthy features.
One is that in the red, black, violet, and grey clusters there exists a clear positive
association between log-pdf and log-slip. Hence, the maximum slip is associated
with high frequency of events. The green cluster does not display any association,
presumably so because several events matching with null slip zone where probably
have not been involved with the main earthquake; however the slip produced in
this zone is lower. Pichilemu city (34.38°S, 72.02°W) is located in the middle
of the red cluster, approximately, which where the maximum slip is 16.6 meters.
The sky-blue cluster correspond to seismic activity produced by Puyehue volcano
(40.35°S, 72.50°W) eruption (June, 2011). Mocha Island (38.39°S, 73.87°W) is
located at the bottom of the gray cluster, where the maximum slip is 11.9 meters
(see Figure 1). In the black and gray clusters, we can see a positive association:
the values of log-slip increment as log-pdf increases.
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Figure 6: Relationship between log-slip and post-seismicity log-frequency for
the clusters obtained for the NPC method of Figure 1. The points with slip = 0
produce verticals strips of points at abscissa log(0.01) ~ —4.6 in some of the
top plots
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3.2 Clusters Comparisons

To examine where the differences among the groups are, we make use of the
Wilcoxon test (Wilcoxon, 1945). In essence, this test compares the medians of
two groups under the null hypothesis that the two medians are equal. The results
for all possible pair comparisons are shown in Table 2. If each p-value is consider
isolatedly, there is only on non-significant comparison at 5% level, but we must
make an allowance for repeated testing; in this case, 10 testing procedures have
been performed. The more classical form of allowance for repeated testing is
via the Bonferroni correction, which here leads to consider the 0.05/10 = 0.005
significance level. Therefore, also the value 0.0181 must be regarded as non-
significant. We can see in Table 3 that the red cluster representing the Pichilemu
zone has the higher maximum of slip in relation with red (Constitucién zone)
and violet (Pichilemu’s offshore coast zone) clusters. The gray (Arauco zone)
and green (Rancagua city zone) clusters display low values of slip; in practice,
the green cluster does not exihibit slip effect.

Table 2: P-values for Wilcoxon test for clusters slip

red black green violet gray
red - 0 0 0.018 0
black 0 - 0 0.350 O
green 0 0 - 0 0
violet 0.018 0.350 0 - 0
gray 0O 0 0 0 -

Table 3: Summary statistics of the slip variable by cluster and geodetic distance
of clusters from the trench

Statistics Geodetic Distance
Cluster Mean Min Max S.D. N Min Max Mean

red 6.20 0 16.57 4.33 4165 18.34 326.78 100.67
black 7.58 0.04 13.73 2.62 950 1.89 173.39 74.53
green 0.08 0 1.95 033 265 98.82 219.64 147.55
violet 7.57 0 15.04 5.75 149 1.31 168.93 27.56
gray 4.04 0 11.88 3.03 308 3.42 21291 68.75

The clustering outcome can evolve with number of days after the mega earth-
quake and the observations involved in each day; so it may produce non-constant
results. Hence, for ¢ > 1, we compare the results at day ¢ respect to day t — 1 to
compare two alternative partitions of the same set. In each comparison it is nec-
essary to keep the same number of clusters at day ¢ and t+ 1. Figure 7 shows the
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consistency of NP method along 200 days since the moment of the great earth-
quake with values higher than 0.89 for AR case, 0.95 for NSS and HSS cases, and
0.7 for HK case. In the first 200 days, some compressions between the clusters
estimation at day ¢ versus day ¢ — 1 produce lower values of the indexes by the
incorporation of one or more new groups related to the added observations.
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Figure 7: Plots of indexes of NPC results comparisons of data set at ¢ day
versus t — 1 day

4. Discussion

The most recent major Chilean earthquake occurred on February 27th, 2010
(M, = 8.8) filled a seismic gap (Ruegg et al., 2009) that has experienced lit-
tle seismic activity since 1835, when it broke with an estimated magnitude of
M, ~8.5 (Darwin, 1851, p. 768). Moreno et al. (2010) showed that the two re-
gions of high coseismic slip of the Maule earthquake appeared to be highly locked
before the earthquake. Subsequent geodetic studies have established that the
main coseismic slip patch (>15 m) is located in the northern part of the rupture
area, with a secondary concentration of slip to the south (5-12 m) (e.g., Lay et
al., 2010; Delouis et al., 2010; Lorito et al., 2011; Vigny et al., 2011; Moreno et
al., 2012). Lorito et al. (2011) concluded that increased stress on the unbroken
southern patch may have increased the probability of another great earthquake
there in the near future, but his model has poor resolution on this area. In addi-
tion, Moreno et al. (2012) suggests that coseismic slip heterogeneity at the scale
of single asperities appears to indicate seismic potential for future great earth-
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quakes. These studies are not limited to the analysis of geodetic data; seismic
and tsunami data have been used as well.

The pronounced crustal aftershock activity with mainly normal faulting mech-
anisms is found in the Pichilemu region (Farias et al., 2011; Lange et al., 2012,
Rietbrock et al., 2012). Lange et al. (2012) consider the processed events be-
tween 15 March and 30 September 2010 to estimate local magnitudes (M;) in the
Pichilemu region, where those magnitudes are comparable with the SSN mag-
nitudes for large events. Specifically, a crustal aftershock activity is found in
the region of Pichilemu (~ 34.5°S) where the crustal events occur in a ~ 30 km
wide region with sharp inclined boundaries and oriented oblique to the trench.
On the other hand, the aftershock seismicity parallel to the trench is apparent
at 50-120 km distance perpendicular to the trench (see Table 3). Near ~ 35°S
and in the southern part of the rupture at ~ 38°S, significant aftershock activity
occurs after the megathrust earthquake. This seismicity takes place in regions
of high coseismic slip (see Table 3). Aftershocks and coseismic slip of the Maule
2012 earthquake terminate ~ 50 km south of the prolongation of the subduct-
ing Mocha Fracture zone around ~(73.5°W, 38.5°S), near of the bottom of gray
cluster (see Figure 1).

We have proposed an alternative way to clustering the aftershocks seismicity
of the 2010 Maule earthquake My 8.8. The nonparametric clustering has shown
to be consistent in the measure that the dairy aftershocks events are added in
the analysis and we present the diagnostic tools to illustrate this feature. We
employ a nonparametric kernel method to fit the high aftershock frequency, which
were highly correlated with the used coseismic slip model. Our findings can be
explored further by considering an extended data set, including the events with
delayed effect, and modeling the relationship of high coseismic slip areas and
aftershock clusters. Also, this catalogue should be considered to the study of the
behavior of an aftershock sequence, to identify outliers and to classify sequences
into groups exhibiting similar aftershock behavior (Schoenberg and Tranbarger,
2008). Finally, this analysis can be considered in attempting identification of an
increasing risk of occurrence of another major earthquake.
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