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Abstract:
Supervised classifying of biological samples based on genetic information,

(e.g., gene expression profiles) is an important problem in biostatistics. In
order to find both accurate and interpretable classification rules variable
selection is indispensable.

This article explores how an assessment of the individual importance of
variables (effect size estimation) can be used to perform variable selection.
I review recent effect size estimation approaches in the context of linear
discriminant analysis (LDA) and propose a new conceptually simple effect
size estimation method which is at the same time computationally efficient.

I then show how to use effect sizes to perform variable selection based on
the misclassification rate, which is the data independent expectation of the
prediction error. Simulation studies and real data analyses illustrate that
the proposed effect size estimation and variable selection methods are com-
petitive. Particularly, they lead to both compact and interpretable feature
sets.

Program files to be used with the statistical software R implementing the
variable selection approaches presented in this article are available from my
homepage: http://b-klaus.de.

Key words: Correlation-adjusted t-score, effect size estimation, linear dis-
criminant analysis, misclassification rate, variable selection.

1. Introduction

Modern medical research has been revolutionized by the possibility of charac-
terizing diseases at a molecular level using microarrays. Classification of biological
samples based on their gene expression continues to be a field of active research.
See e.g., Cao et al. (2011), Pang et al. (2009), Xiaosheng and Simon (2011) and
Shao et al. (2011). Current reviews of the subject can be found in Schwender et
al. (2008), Slawski et al. (2008) as well as in Kim and Simon (2011).
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In order to develop classifiers which are potentially useful for molecular diag-
nostics, it is important to construct them based on a selection of genes (variables)
strongly associated with the respective class labels (e.g., cancer and healthy tis-
sue). These genes have a large effect size which is generally measured by stan-
dardized differences.

Three distinct but closely related objectives need to be achieved to identify
a group of genes with high effect sizes (Ahdesmäki and Strimmer, 2010, Matsui
and Noma, 2011):

(i) to establish a reliable variable ranking,

(ii) to provide a reasonable estimate of the effect size for each gene, and

(iii) to find a suitable cutoff point that allows to disregard (the usually large)
number of noise-features.

Problems (ii) and (iii) are the main concerns of the current chapter. For the
ranking problem (obj. (i)), I will rely on correlation adjusted t–scores (a.k.a.
“cat” – scores) introduced by Zuber and Strimmer (2009). The cat–score is
a t–type statistic which takes correlation into account and has been shown to
induce a reliable variable ranking even in the presence of correlation among the
variables. I therefore am going to use cat–scores to obtain effect size estimates
(obj. (ii)). Based on these estimates, a nominal prediction error is computed.
It is dependent on the number of variables included. Variable selection is then
performed (ob. (iii)) by determining the number of variables necessary to achieve
a certain nominal error level.

The approach presented here is similar to that of Efron (2009) and Dabney
and Storey (2007). However, in contrast to Efron (2009), my method applies to
any number of classes and allows empirical null modeling. In contrast to Dabney
and Storey (2007), it does not need a computationally expensive greedy algorithm
to select variables due to the variable ranking performed beforehand.

The article is organized as follows: I will present basic theory on LDA in
Chapter 2, then I obtain effect size estimates based on cat–scores and compare
them to other effect size estimation approaches in Section 3. Notably, the methods
of Efron (2009) and Matsui and Noma (2011) are presented in a unifying way
using cat–scores, which sheds new light on their similarities. Section 4 shows
how to perform variable ranking and selection using different methods based on
a variable ranking. Results of variable selection methods on simulated and real
data are then presented in Section 5.

2. Linear Discriminant Analysis (LDA) and Its Misclassification Rate
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2.1 Linear Discriminant Analysis (LDA) and Effect Sizes

LDA forms the basis of most classification algorithms currently employed, e.g.,
Nearest Shrunken Centroids commonly abbreviated as NSC, and also known as
Prediction Analysis for Microarrays (PAM), see Tibshirani et al. (2003), Shrink-
age Discriminant Analysis – SDA, Ahdesmäki and Strimmer (2010) – and many
more. It starts by assuming a mixture model for the d-dimensional data x

f(x) =

K∑
k=1

πkf(x|k),

where each class k is represented by a multivariate normal density

f(x|k) = (2π)−d/2|Σ|−1/2 × exp

{
−1

2
(x− µk)TΣ−1(x− µk)

}
,

with group–specific centroids µk and a common covariance matrix Σ. A sample
x is assigned to the class yielding the highest LDA discriminant score defined as
the log posterior probability dLDA

k (x) = log{P (k|x)}. This score can be written
as

dLDA
k (x) = µTkΣ−1x− 1

2
µTkΣ−1µk + log(πk) . (1)

The standard form of the LDA predictor function shown in (1) can be trans-
formed into a scalar product which is given by

∆LDA
k (x) =

(
ω(k,pool)

)T
δk(x) + log(πk). (2)

See Ahdesmäki and Strimmer (2010) for details. In (2), we have an inner product
of Mahalanobis transformed variables (commonly called features) δ(x) and a
corresponding feature weight vector ω(k,pool) given by

δk(x) = P−1/2V −1/2
(
x−

µk + µpool

2

)
, (3)

and
ω(k,pool) = P−1/2V −1/2(µk − µpool), (4)

respectively. In this equation the pooled mean is calculated as µpool =
∑K

k=1
nk
n µk

and the covariance matrix Σ is decomposed as: Σ = V 1/2PV 1/2, with a diagonal
matrix containing the variances V = diag{σ21, · · · , σ2d} and the correlation matrix
P = (ρij). Remarkably, both ω(k,pool) and δk(x) are vectors and not matrices.

The decomposition in (2) shows that ω(k,pool) gives the influence of the trans-
formed variables δ(x) in prediction. Zuber and Strimmer (2009) have shown
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that this Mahalanobis–transformation leads to an improved ranking of the orig-
inal variables since it removes the effect of correlation. Thus, as in Ahdesmäki
and Strimmer (2010), the feature weights ω will serve as a measure of variable
importance and the terms variables and features will be used interchangeably in
the following sections.

Additionally, from (4) it can be seen that the components of ω(k,pool) are
decorrelated and standardized differences (i.e., effect sizes) between the class k
and the “pooled class” (Matsui and Noma, 2011). This is readily generalized. The
effect size vector ω(k,l) between any two classes k and l is defined as the difference
between the two respective feature weight vectors ω(k,pool) and ω(l,pool)

ω(k,l) := ω(k,pool) − ω(l,pool) = P−1/2V −1/2(µk − µl). (5)

Note that ω(k,l) is up to the scale factor (1/nk + 1/nl)
−1/2 equivalent to the cat–

score vector between the classes k and l on the population level, i.e., assuming
known model parameters (Zuber and Strimmer, 2009). Hence there is a close
relationship between test statistics and effect sizes: The effect size is simply a
sample size independent version of the test statistic. The statistic is denoted by
a “cat” subscript in this article, i.e.,

ω
(k,l)
cat = (1/nk + 1/nl)

−1/2ω(k,l).

2.2 The Misclassification Rate of Linear Discriminant Analysis

In this section, I am going to look at an unconditional (i.e., not depending on
the data) misclassification error of LDA on the population level. This quantity is
called (unconditional) misclassification rate in the literature (Dabney and Storey,
2007, Shao et al., 2011).

Let x(k) be a sample vector drawn from the multivariate normal distribution
N (µk,Σ) associated with class k. In the LDA algorithm, it is assigned to the
class yielding the highest score (1). Using the scalar product of (2) a misclassifi-
cation (on the population level) of x(k) occurs if [ω(k,pool)]Tδk(x

(k)) + log(πk) <
maxl[ω

(l,pool)]Tδl(x
(k))+ log(πl). It is easily verified that this is equivalent to the

condition

min
l 6=k

[ω(k,l)]T [P−1/2V −1/2
(
x(k) − µk+µl

2

)
] + log

(
πk
πl

)
√

[ω(k,l)]T [ω(k,l)]
< 0 .

Since x(k) ∼ N (µk,Σ) holds for all k ∈ {1, · · · ,K}, the unconditional (i.e.,
expected) probability of misclassifying a sample from class k into a wrong class
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j 6= k can be deduced from the above formula as:

P (j 6= k|k) = Φ

−min
l 6=k

[ω(k,l)]T [ω(k,l)] + 2 log
(
πk
πl

)
2
√

[ω(k,l)]T [ω(k,l)]

 .

This results in a misclassification rate (total error probability) of

P (error) =

K∑
k=1

P (j 6= k|k)× P (k)

=
K∑
k=1

Φ

−min
l 6=k

[ω(k,l)]T [ω(k,l)] + 2 log
(
πk
πl

)
2
√

[ω(k,l)]T [ω(k,l)]

× πk. (6)

Observe that (6) is the result of applying an expectation operator twice, once with
regard to the model parameters ω(k,l) and once with regard to the transformed
data δk(x

(k))−δl(x(k)) = P−1/2V −1/2(x(k)− (µk +µl)/2). The first application
leads to the population version of the statistical model, with ω̂(k,l) replaced by
ω(k,l), the second results in an unconditional (not dependent on the data) error
rate.

3. Effect Size Estimation

For two given classes k and l, a feature i with a large corresponding effect

size ω
(k,l)
i is most influential in differentiating between class k and l. However,

a “naive” estimation of ω
(k,l)
i (e.g., estimation by plug-in estimates) suffers from

the so–called “selection bias”: Estimates of ω
(k,l)
i are biased upwards in general.

For example, an estimated effect size of 1.5 based on t–scores might correspond

to a true effect size of 0.7, see Figure 1. Therefore, reliable estimates of ω
(k,l)
i are

needed in order to furnish a good estimate of (6).

3.1 Three Empirical Bayes Approaches

Bayesian approaches are “immune” to selection effects (Dawid, 1994, Senn,
2008). Thus, Efron (2009) as well as Matsui and Noma (2011) employ empirical
Bayes estimates to tackle the estimation of effect sizes.

I am going to present their ideas in a unified way using cat–scores. This
will show similarities between the two methods that are not readily apparent
from studying the two original papers. Therefore, both methods are presented in
considerable detail in order to clearly demonstrate the conceptual overlap between
them. This will also help to indicate their respective weaknesses.
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Figure 1: Comparison of effect size estimates on simulated data following the
Smyth (2004) model.

Furthermore, the current section can be read as a concise and yet compre-
hensive review of both methods, which can be of great help to the interested
reader. The empirical Bayes estimator presented in Section 3.1.3 is an attempt
to combine the strengths of both approaches while addressing their shortcomings.

Let k and l be any two classes. For the sake of simplicity, the feature index i
(i ∈ {1, · · · , d}) will be dropped in the upcoming subsections.

3.1.1 Efron’s Method

Efron (Efron, 2009) begins by transforming the statistics ω
(k,l)
cat into z–scores

via a t–distribution with nl + nk − 2 degrees of freedom:

z = Φ−1
(
Fnl+nk−2(ω

(k,l)
cat )

)
,

where Fnl+nk−2 denotes the distribution function of a t–distribution with nl +

nk − 2 degrees of freedom. He then assumes a prior density g on ω
(k,l)
cat given by

the mixture
g(ω

(k,l)
cat ) = η0I0(ω

(k,l)
cat ) + (1− η0)gA(ω

(k,l)
cat ), (7)
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where I0 is a delta-function at 0 and η0 the proportion of genes having a true effect
size of zero. The alternative group, i.e., the nonzero effect sizes are represented by
gA. In the following, I will in general abbreviate conditioning on the alternative
group with an “A” subscript. The statistic z is assumed to be distributed as

z|ω(k,l)
cat ∼ N (ω

(k,l)
cat , 1).

Together with (7), this results in the following mixture model for z

f(z) = η0ϕ(z) + (1− η0)fA(z), (8)

where ϕ(z) is the normal distribution density and fA is a mixture of the densities

ϕ(z − ω(k,l)
cat ):

fA(z) =

∫ ∞
−∞

ϕ(z − ω(k,l)
cat )gA(ω

(k,l)
cat ) dω

(k,l)
cat .

(8) is a typical case of two–groups mixture model. It consists of a theoretical (i.e.,
no additional parameters) “null” model f0 = ϕ and an alternative component fA
from which the “interesting” cases are assumed to be drawn (Efron, 2008). In
order to present the ideas of both Matsui and Noma (2011) and Efron (2009) in
a unified fashion, I will start with computing the posterior density conditioned

on the alternative i.e., f(ω
(k,l)
cat |z, z ∈ “alternative”) = f(ω

(k,l)
cat |z, ω

(k,l)
cat 6= 0). As

introduced above, the “A” subscript indicates conditioning on the alternative so

that fA(ω
(k,l)
cat |z) = f(ω

(k,l)
cat |z, z ∈ “alternative”). Finally, using Bayes’ rule this

density can be computed as

fA(ω
(k,l)
cat |z) =

fA(z|ω(k,l)
cat ) · gA(ω

(k,l)
cat )

fA(z)

= exp(ω
(k,l)
cat z − log{fA(z)/ϕ(z)})[exp{−(ω

(k,l)
cat )2/2)}]gA(ω

(k,l)
cat ).

It has the form of a natural exponential family with natural parameter ω
(k,l)
cat , suf-

ficient statistic z and cumulant generating function log{fA(z)/ϕ(z)} = log{[(1−
fdr(z))/fdr(z)]} · η0(1− η0)}, where

fdr(z) = P (“null”|z) = η0
ϕ(z)

f(z)
= η0

f0(z)

f(z)
(9)

is the local false discovery rate (Efron, 2008). Conditional on the alternative
component, this leads to an effect size estimate of the simple form

EA

(
ω(k,l)|z

)
= −(1/nl + 1/nk)

1/2 d

dz
log

(
1− fdr(z)

fdr(z)

η0
1− η0

)
. (10)
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Since by (9) the relationship P (“alternative”|z) = 1 − P (“null”|z) = 1 − fdr(z)
holds, the unconditional effect size estimate is:

E
(
ω(k,l)|z

)
= EA{ω(k,l)|z}{1− fdr(z)}

= −(1/nl + 1/nk)
1/2 d

dz
log

{
1− fdr(z)

fdr(z)

η0
1− η0

}
{1− fdr(z)}, (11)

which after some further calculations becomes

E
(
ω(k,l)|z

)
= −(1/nl + 1/nk)

1/2 d

dz
log{fdr(z)}. (12)

Note that if one used an empirical null N (0, σ2) with estimated σ as null density
f0, the connection to the natural exponential family would be lost. Then both
the natural parameter and the sufficient statistic would depend on σ.

Unfortunately, in this case the elegant formula (12) no longer holds. This
basically is the only downside of Efron’s approach: It is conceptually simple and
computationally efficient but it is not possible to include an additional variance
parameter in the null model without “destroying” (12).

3.1.2 Matsui and Noma’s Method

Matsui and Noma (2011) introduce empirical null modeling into the approach
of Efron (2009) via an empirical Bayes method. They start with a similar z–score
transform. However, as a starting point absolute values are used:

z = Φ−1
[
1− 2 ·

{
1− Fnl+nk−2

(∣∣∣ω(k,l)
cat

∣∣∣)}] .
Additionally, only a prior on the absolute non-null effect sizes gA(|ω(k,l)

cat |) is as-
sumed. The non–null z have the conditional density

fA

(
z|
∣∣∣ω(k,l)

cat

∣∣∣) = ϕ


∣∣∣ω(k,l)

cat

∣∣∣− z
V
(∣∣∣ω(k,l)

cat

∣∣∣)
 .

The variance function V and the prior gA are estimated from the data. As in
Efron (2009), they also assume a two-group mixture model for the z–scores:

f(z) = η0ϕ

(
z − µ0
σ0

)
+ (1− η0)fA(z).

The null density is (in contrast to Efron) an empirical null, i.e., mean and variance
are estimated from the data: f0(z) = ϕ ((z − µ0)/σ0). The alternative density
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fA is computed as:

fA(z) =

∫ ∞
0

fA

(
z|
∣∣∣ω(k,l)

cat

∣∣∣) gA (∣∣∣ω(k,l)
cat

∣∣∣) d ∣∣∣ω(k,l)
cat

∣∣∣
=

∫ ∞
0

ϕ


∣∣∣ω(k,l)

cat

∣∣∣− z√
V
(∣∣∣ω(k,l)

cat

∣∣∣)
 gA

( ∣∣∣ω(k,l)
cat

∣∣∣) d ∣∣∣ω(k,l)
cat

∣∣∣ .
The application of Bayes’ rule gives a posterior expectation of |ω(k,l)

cat | which is
unfortunately not as simple as (10):

EA

(∣∣∣ω(k,l)
cat

∣∣∣ |z) =

∫ ∞
0

∣∣∣ω(k,l)
cat

∣∣∣ fA
(
z|
∣∣∣ω(k,l)

cat

∣∣∣) gA (∣∣∣ω(k,l)
cat

∣∣∣)
fA(z)

d
∣∣∣ω(k,l)

cat

∣∣∣

=

∫ ∞
0

∣∣∣ω(k,l)
cat

∣∣∣
ϕ

( ∣∣∣ω(k,l)
cat

∣∣∣−z√
V
(∣∣∣ω(k,l)

cat

∣∣∣)
)
gA

(∣∣∣ω(k,l)
cat

∣∣∣)
fA(z)

d
∣∣∣ω(k,l)

cat

∣∣∣ .
The statistic |ω(k,l)

cat | is then transformed back into an absolute value effect size:

EA

(∣∣∣ω(k,l)
∣∣∣ |z) = (1/nl + 1/nk)

1/2F−1nl+nk−2

(
1− 1

2

[
1− Φ

{
EA

(∣∣∣ω(k,l)
cat

∣∣∣ |z)}]) .
As in (12), the final effect size estimate is:

E
(∣∣∣ω(k,l)

∣∣∣ |z) = EA

(∣∣∣ω(k,l)
∣∣∣ |z) (1− fdr(z)). (13)

In contrast to Efron’s method, the approach of Matsui and Noma (2011)
allows empirical null modeling and thus leads to better effect size estimates in
general, as Matsui and Noma (2011) convincingly show in their article.

However, this increased accuracy comes at a price. The estimation of variance
function V can take up to two hours. Furthermore, it has to be estimated for
every number of class samples nk and nl separately. This makes cross-validation
based assessment of predictive accuracy extremely time consuming. Additionally,
even if V has been computed for fixed nk and nl , the estimation of the final effect
size will take up to several minutes.

In summary, while Matsui and Noma (2011) provide a method that is superior
to Efron’s method in terms of bias, it is at the same time computationally very
demanding.

3.1.3 A Simple Empirical – Bayes Approach

In this section I will derive another more heuristic approach to the reliable
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estimation of effect sizes that tries to combine the advantages of Matsui and
Noma’s (2011) as well as Efron’s (2009) methods. Empirical null modeling will
be included, it will be computationally tractable and provide sufficient accuracy.

Observe that in non–empirical Bayes frameworks, reliable estimation of effect
sizes is generally achieved by shrinking initial estimates of statistics playing the

same role as ω
(k,l)
cat . For example, in the popular PAM algorithm (Tibshirani et

al., 2003), the estimated t–scores are shrunk using a parameter λ estimated by
cross validation.

Therefore, an appropriate adaptive shrinkage of the original test-statistic
should provide us with reasonable effect size estimates. As it turns out, this
adaptive shrinkage can easily be achieved by employing false discovery rates.

The first step in my heuristic approach to achieve a shrinkage of ω(k,l) is the
assumption of a two–component mixture model on the effect sizes:

f(ω
(k,l)
cat ) = η0f0(ω

(k,l)
cat ) + (1− η0)fA(ω

(k,l)
cat ), (14)

leading to corresponding fdr estimates of (9). Assuming a centered null distri-
bution, we can now make use of the “naive” estimates EA

(
ω(k,l)

)
= ω(k,l) and

correspondingly E0

(
ω(k,l)

)
= 0 (since f0 is centered). The 0 subscript indicates

a conditioning on the null distribution, E0

(
ω(k,l)

)
= E

(
ω(k,l) |ω(k,l) ∈ “null”

)
. It

now holds by the law of total probability and (9) that the effect size is given by

E
(
ω(k,l)

)
= (1/nl + 1/nk)

1/2

{
E0

(
ω
(k,l)
cat

)
· P
(
ω
(k,l)
cat ∈ “null”|ω(k,l)

cat

)
+EA

(
ω
(k,l)
cat

)
· P
(
ω
(k,l)
cat ∈ “alternative”|ω(k,l)

cat

)}
= (1/nl + 1/nk)

1/2EA

(
ω
(k,l)
cat

)
· P
(
ω
(k,l)
cat ∈ “alternative”|ω(k,l)

cat

)
= EA

(
ω(k,l)

)
·
(

1− fdr(ω
(k,l)
cat )

)
= ω(k,l)

(
1− fdr(ω

(k,l)
cat )

)
. (15)

(15) is very similar to (13) and (11), however, no full Bayesian posterior is com-
puted. Instead, simple non–Bayesian estimates for the expectations in the two–
groups model (14) are employed. This makes the implementation of (15) compu-
tationally efficient.

There is an obvious downside though: Large (with respect to their absolute
value) statistics usually have a high fdr value close to 0. Therefore, they are
hardly shrunk at all although their effect size is usually grossly overestimated.
Thus, it is necessary to impose a minimum shrinkage. From the results of the real
data analysis in Table 1 of Matsui and Noma (2011), it can easily be seen that
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the empirical Bayes method that these authors apply imposes a shrinkage of at
least 50% on the top 5 test statistics. I therefore also set the minimum shrinkage
to 50% leading to the formula

ω
(k,l)
fdr = ω(k,l) ·min

{
0.5; [1− fdr(ω

(k,l)
cat )]

}
. (16)

I call this fdr–effect size estimation (fdr–effect) and abbreviate ω(k,l)(1−fdr(ω
(k,l)
cat ))

by ω
(k,l)
fdr . Note that a fdr cutoff of 50% is conceptually very close to Higher Crit-

icism Thresholding, see Klaus and Strimmer (2013).

Table 1: Prediction errors and number of selected features for simulation setup
1, the number in the round brackets is the estimated standard error over 25
runs. The true number of differentially expressed features is 100

Method Prediction Error Features

DDA–MR 0.1077 (0.0177) 156.48 ( 64.70)
DDA–FNDR 0.2482 (0.1272) 39.24 ( 23.72)
DDA–HC 0.1880 (0.0626) 152.32 (193.48)
PAM 0.0923 (0.0163) 253.6 (116.26)
DDA–ALL 0.1555 (0.0180) 500

Perhaps surprisingly, in next section it will be shown that it is competitive
with regard to the attained accuracy, even though no sophisticated posterior
estimates are used. The adaptive shrinkage performed in (16) can be interpreted
as being in between the full empirical Bayes approaches of Efron (2009) or Matsui
and Noma (2011) and soft thresholding using a single shrinkage parameter for all
statistics as in Tibshirani et al. (2003).

3.2 Evaluation of Effect Size Estimation Methods on Real and Simu-
lated Data

A comparison of effect size estimation methods using simulated data is shown
in Figure 1. Specifically, I will compare the effect size estimation using “naive”
approaches (simple cat and t–scores) and the more sophisticated ones described
in the previous section abbreviated as MatsuiNoma, Efron and fdr–effect, re-
spectively. For the methods MatsuiNoma and Efron, I use the implementations
offered by the authors, for fdr–effect, I perform cat–score and fdr estimation using
the R–packages (R Development Core Team, 2012) st and fdrtool (Strimmer,
2008a). In the real data analysis displayed in Figure 2, the package locfdr

(Efron, 2004, 2007, 2008) is applied since this allows a straightforward use of an
theoretical null as it has been suggested in Matsui and Noma (2011) and Efron
(2004) for this data set.
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Figure 2: Comparison of effect size estimates for the Singh et al. (2002) data

I am going to follow closely the setup used in Opgen-Rhein and Strimmer
(2007), Smyth (2004) and Zuber and Strimmer (2009) to simulate gene expression
data. The parameters are chosen in such a way that effect sizes between 1 and 3
are obtained, which roughly corresponds to the range considered in the simulation
studies of Matsui and Noma (2011).

The number of statistics was fixed at d = 1000 with 200 statistics desig-
nated to be differentially expressed. The variances across genes were drawn
from a scale–inverse–chi–square distribution Scale–inv–χ2(d0, s

2
0) with s20 = 1

and d0 = 1, i.e., the variances vary moderately from gene to gene. Furthermore,
the difference of means for the differentially expressed genes (1–200) were drawn
from a normal distribution with mean zero and the gene-specific variance mul-
tiplied with a scale factor set to 0.3. For the non–differentially expressed genes
(201–1000), the difference was set to zero. The data were generated by drawing
from group–specific multivariate normal distributions with the given variances
and means employing a block diagonal correlation structure intended to mimic
gene expression data. This structure was generated as in Guo et al. (2007) with
block size 100 and block entries equal to 0.9|i−j|. Furthermore, the sample sizes
n1 and n2 are equal with n1 = n2 = 8.

The effect size estimates are plotted in Figure 1 according to their rank. It
is important to note that this does not tell us whether the respective ranking
is correct. Thus, even though the effect size estimates of the cat–score and an
ordinary t–score are very similar, this does not mean that their induced ranking is
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comparable. Efron’s and Matsui and Noma’s method will also change the ranking
of the supplied cat–scores at least slightly.

It can be seen that fdr–effect and MastsuiNoma yield good results, while
Efron’s method has a higher bias for effect sizes up to 1, a phenomenon already
observed by Matsui and Noma (2011). The “naive” approaches (cat–scores and
t–scores) are far off for effect sizes up to 1.5. However, all methods overestimate
large effect sizes. It follows that variable selection methods relying on effect
size estimates will generally have a tendency of choosing only a relatively small
number of variables in data sets with large effects.

This is in fact a phenomenon already observed by Ahdesmäki and Strimmer
(2010) for the Efron algorithm applied to the Singh (Singh et al., 2002) prostate
cancer gene expression data. This data consists of gene expression measurements
of d = 6033 genes for n = 102 patients, of which 52 are cancer patients and
50 are healthy. It has already been analyzed in Efron (2009) and Matsui and
Noma (2011). Figure 2 shows the analysis results. As in the simulated data, the
“naive” approaches are far off, while Efron and MatsuiNoma are quite similar.
Note, however, that MatsuiNoma gives significantly lower estimates of large effect
sizes than Efron. This is a phenomenon already noted in Matsui and Noma
(2011). The fdr–effect method yields similar results to MatsuiNoma for large
effect sizes but reaches zero estimates much faster than MatsuiNoma and Efron.
In conclusion, all empirical Bayes methods considered seem to give sound results
here, while the naive methods are probably grossly overestimating the effect sizes.

4. Variable Selection and Estimation of the Prediction Rule

4.1 Estimation of the Prediction Rule and Local False Discovery Rates

For the estimation of the prediction rule (2) I mostly employ James-Stein-
type estimators as in shrinkage discriminant analysis – SDA, Ahdesmäki and
Strimmer (2010). The group centroids µk are estimated by the empirical means,
for the correlations P the ridge-type estimator from Schäfer and Strimmer (2005)
is used and the variances V are estimated by the shrinkage estimator from Opgen-
Rhein and Strimmer (2007). Finally the proportions πk are obtained by using
the frequency estimator from Hausser and Strimmer (2009). For SDA I employ
the implementation provided by the R package sda. The local false discovery
rates used in the fdr–effect approach are learned by using the Grenander density
estimator and truncated maximum likelihood for the empirical null as in Strimmer
(2008b). As in Chapter 3 the implementation offered by the R package fdrtool

is employed.

4.2 Variable Ranking and Selection
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4.2.1 Variable Ranking

Before being able to select variables, a variable ranking needs to be established
(obj. (i)). In the two class case, this is straightforward since the feature weight
vector for class one ω1 is up to a scale factor of n2/n equal to the effect size
vector ω(1,2), (ω1 = (n2/n)ω(1,2)). Correspondingly, the feature weight vector
for class two ω2 is equal to the effect size vector −ω(1,2) up to a scale factor
of n1/n (ω2 = (−n1/n)ω(1,2)). Thus, variables can be ranked according to the
absolute value of ω(1,2). In the the case of multiple classes, the situation is
more complicated. The feature weight vectors of the different classes need to
be summarized in a certain way to obtain the importance of each feature i in
class prediction. Here, I am going to use the summary statistic Si proposed by
Ahdesmäki and Strimmer (2010) and given by

Si =
K∑
k=1

(
ω
(k,pool)
cat,i

)2
, (17)

where ω
(k,pool)
cat,i = (1/nk − 1/n)−1/2ω

(k,pool)
i . Since false discovery rates are gener-

ally assumed to be monotone, (15) shows that using fdr–effect effect size estimates

ω
(k,pool)
fdr would produce the same ranking as the cat–scores if they were used in-

stead of ω
(k,pool)
cat to compute Si in (17).

4.2.2 Misclassification Rate Based Variable Selection

Having obtained estimates ω̂
(k,l)
fdr of ω

(k,l)
fdr and π̂k of πk, we can now compute

an estimate of the misclassification rate using (6). Let ω̂
(k,l)
fdr (t) be the vector of

the t top–ranked variables according to the ranking induced by the vector S of
all statistics Si given by (17). This gives an estimate of the misclassification rate,
which depends on t:

P̂ (error)(t) =
K∑
k=1

Φ

−min
l 6=k

[ω̂
(k,l)
fdr (t)]T [ω̂

(k,l)
fdr (t)] + 2 log

(
π̂k
π̂l

)
2

√
[ω̂

(k,l)
fdr (t)]T [ω̂

(k,l)
fdr (t)]

× π̂k. (18)

Efron performs feature selection by choosing a level α = 0.05 as a target
misclassification rate for the estimate in (18). Although one could view α as a
tuning parameter, I follow his suggestion in this regard. Experiments with lower
α led to very large feature sets showing only a negligible improvement of the
classification performance.
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After the target error α has been set, a feature threshold t∗ is obtained by
including as many features as necessary to reach it, i.e., P̂ (error)(t∗) = α. Since
usually a lot of features are shrunken to zero, it is possible that the target error
can not be reached. Then, all the features will be included. This, however, is
extremely unlikely to happen in real high dimensional data analysis. Finally,
all features fulfilling Si ≥ S∗t are included in the classifier. I call the approach
presented in this section misclassification rate (MR) based variable thresholding
(MRT). Figure 3 gives a flowchart detailing the implementation of this method.

Figure 3: Flowchart describing misclassification rate (MR) based variable
thresholding (MRT)

5. Analysis of Real and Simulated Data

5.1 Simulations

In this section, I will compare variable selection based on the misclassification
rate (MR) with several other state of the art thresholding variable selection ap-
proaches, namely false-non discovery rate (FNDR) thresholding (Ahdesmäki and
Strimmer, 2010), HCT (Donoho and Jin, 2008) and the PAM/NSC algorithm
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(Tibshirani et al., 2003). All methods are performed using empirical null mod-
eling. As a base line classifier, I also include the results of classification with all
features, i.e., performing no variable selection.

The simulations closely follow the setup of Witten and Tibshirani (2011). A
training set of size 100 and a test set of 1000 samples are created with a dimension
of d = 500 variables. In total, 25 runs of each simulation setup are performed.

5.1.1 Simulation Setup 1

In this setup, there are four classes with equal probability (0.25) no correlation
and unit variance. In each class 25 features are differentially expressed with an
effect size of 0.7, yielding a total number of 100 differentially expressed features.
Since there is no correlation, I perform Diagonal Discriminant Analysis (DDA),
i.e., LDA with identity covariance Σ = Id. The results are displayed in Table 1.

It can be seen that thresholding the summary statistic S (17) by false-non
discovery rates or Higher Criticism yields hardly any significant features in most
runs. Consequently, the estimated prediction errors are quite high.

Misclassification rate based feature selection as well as PAM, however, identify
features useful for classification. This indicates that “analytical” thresholding
methods, which do not rely on the optimization of a tuning parameter, may not
work reliably when the effect sizes are small.

5.1.2 Simulation Setup 2

In this simulation, I am going to use a Guo et al. (2007) type block correlation
with 5 blocks of size 100 × 100. As in Section 3, each block entry is given by
0.9|i−j|, thus we have some highly correlated variables within blocks but variables
in different blocks are independent.

Note that Witten and Tibshirani (2011) report using an entry size of 0.6.
This is probably a misprint since my results obtained for PAM are quite similar
to the ones reported in their article, while for 0.6 the error of PAM is only about
5%.

There are two classes with equal probability (0.5) and 200 features are differ-
entially expressed with effect size 0.6, all of them are attributed to class 2. Since
there is correlation present in this setting, I will perform LDA.

It can be seen in Table 2 that all feature selection methods except for PAM,
which does not take correlation into account, perform quite well here.

Table 2: Prediction errors and number of selected features for simulation setup
2, the number in the round brackets is the estimated standard error over 25
runs. The true number of differentially expressed features is 200
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Method Prediction Error Features

LDA–MR 0.000 (0.000) 63.16 (7.215)
LDA–FNDR 0.000 (0.000) 60.96 (6.567)
LDA–HC 0.000 (0.000) 85.04 (8.677)
PAM 0.088 (0.018) 294.0 (69.43)
LDA–ALL 0.093 (0.014) 500

5.2 Gene Expression Data

In Ahdesmäki and Strimmer (2010), the relative effectiveness of the FNDR
and HC thresholds to select relevant genes in shrinkage discriminant analysis
applied to gene expression data has already been compared. I am going follow
their setup here and will analyze four clinical gene expression data sets related
to prostate cancer (Singh et al., 2002), B-cell lymphoma (Alizadeh et al., 2000),
colon cancer (Alon et al., 1999) and brain cancer (Pomeroy et al., 2002).

Specifically, balanced 10–fold cross–validation with 20 repetitions was per-
formed to obtain error estimates and their standard deviations. The number of
selected features is inferred by a single run of the respective variable selection
method on the whole data set. Only for PAM this was repeated several times
since the number of selected variables selected by this algorithm varies consider-
ably between several runs in a row on the same data set.

In Table 3, it can bee seen that the MRT approach has a performance similar
to the other approaches. Interestingly, the MRT approach shows a more “adap-
tive” feature selection, leading to appropriate feature sets for each problem. In
the brain data set, a very compact set of features is selected yielding a prediction
error which is nonetheless in the range of the other approaches. The same is true
for the Lymphoma and Colon data sets. This demonstrates that a variable se-
lection method based on effect sizes leads to compact and yet effective molecular
signatures. Furthermore, FNDR and HC thresholding yield very similar results.

6. Discussion

In this paper I reviewed and extended statistical techniques related to effect
size estimation in linear classification and showed how to use them for variable
selection. The fdr–effect method proposed for effect size estimation has been
shown to work as well as competing approaches while being conceptually simple
and computationally inexpensive. It therefore successfully unites the strengths
of the approaches presented in Efron (2009) and Matsui and Noma (2011).

Table 3: Analysis of four cancer gene expression data sets with shrinkage dis-
criminant analysis. The number of selected features are determined by a single
feature selection run on the whole data set
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Data / Method Prediction Error Selected Variables

Prostate (d = 6033, n = 102,K = 2)
LDA–MR 0.0630 (0.0050) 134

LDA–FNDR 0.0550 (0.0048) 131

LDA–HC 0.0497 (0.0045) 116

PAM 0.0850 (0.0061) 172–377

Lymphoma (d = 4026, n = 62,K = 3)
LDA–MR 0.0211 (0.0039) 34

LDA–FNDR 0.0036 (0.0018) 392

LDA–HC 0.0000 (0.0000) 345

PAM 0.0234 (0.0041) 2796–2383

Colon (d = 2000, n = 62,K = 2)
LDA–MR 0.1291 (0.0093) 28

LDA–FNDR 0.1278 (0.0088) 168

LDA–HC 0.1233 (0.0087) 122

PAM 0.1160 (0.0921) 13–23

Brain (d = 5597, n = 42,K = 5)
LDA–MR 0.1628 (0.0126) 56

LDA–FNDR 0.1525 (0.0120) 102

LDA–HC 0.1417 (0.0108) 131

PAM 0.2023 (0.0118) 42–5587

Additionally, I gave a unified treatment of the effect size estimation ap-
proaches presented in these two papers elucidating similarities not apparent when
considering the original publications only.

Variable selection by minimizing the misclassification rate has been somewhat
neglected in the literature but I showed in accordance with Dabney and Storey
(2007), Efron (2009) and Matsui and Noma (2011) that it is indeed very well
suited for real world problems. In addition, it is also much more intuitive than
selecting a non-interpretable regularization parameter as for example in the PAM
algorithm and leads to compact and interpretable feature sets.

In this work I proposed a conceptually simple and competitive variable selec-
tion algorithm that gives priority to genes with large effect sizes and is thus easy
to interpret. This has been achieved by extending and combining the ideas of
Dabney and Storey (2007), Efron (2009) and Matsui and Noma (2011).

High expectations are associated with the promise of a personalized medicine
promising tailored treatments based on genetic and other information of the pa-
tient. In order to develop molecular diagnostics guiding these treatments, statis-
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tical approaches for effective and interpretable classification are indispensable.

The methodology presented in this article provides interpretability and appli-
cability for biological study and medical use. Reliable effect size estimates allow
one to identify genes having discriminative power while variable selection based
on these effect size estimates allows the selection of the most important genes for
the construction of classification algorithms.

Program files to be used with the statistical software R (R Development Core
Team, 2012), implementing the variable selection approaches presented in this
article are available from my homepage: http://b-klaus.de. They are published
under the GNU General Public License 3.0.
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