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Abstract: Markov chain Monte Carlo simulation techniques enable the ap-
plication of Bayesian methods to a variety of models where the posterior
density of interest is too difficult to explore analytically. In practice, how-
ever, multivariate posterior densities often have characteristics which make
implementation of MCMC methods more difficult. A number of techniques
have been explored to help speed the convergence of a Markov chain. This
paper presents a new algorithm which employs some of these techniques for
cases where the target density is bounded. The algorithm is tested on sev-
eral known distributions to empirically examine convergence properties. It
is then applied to a wildlife disease model to demonstrate real-world appli-
cability.
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1. Introduction

Markov chain Monte Carlo (MCMC) methods have become a common ap-
proach to studying posterior distributions for Bayesian statistical models. The
relative ease of constructing a Markov chain that theoretically approximates a
given target density makes these methods attractive. In practice, however, ef-
ficient simulation with Markov chain methods is rarely straightforward and can
require ingenuity on the part of the modeller.

Difficulties can arise with complex multivariate target densities, which can
contain a number of features that make simulation difficult. For example, when
a target distribution has sharp ridges of high probability, a Markov chain can
bypass these areas if the average step size, determined by the mean and variance
of the proposal distribution, is too large. Second, with high correlation between
component variables, sampling each separately is inefficient since the acceptance
or rejection of one variable can have a large impact on the acceptance of another.
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Finally, with bounded target densities, care must be taken to not propose out-
side of the support too often, since too many rejected proposals will slow down
convergence of the chain.

A variety of techniques are available to alleviate some of the difficulties of
sampling from multivariate distributions. Reparameterization–to remove some of
the correlation of highly interdependent component variables–or blocking, which
uses dependencies between parameters to accelerate convergence, are potential
strategies [6, 8]. The blocking method can be especially effective in hierarchical
models with spatially structured data [3, 8].

Stochastic dynamics methods are a class of algorithms motivated by stochastic
differential equations, which suppress the random walk behaviour of a Markov
chain. This has been shown to improve convergence results for high dimensional
target densities [7]. These methods are commonly used to simulate physical
systems such as quantum molecular dynamics and heat transfer. There are a
number of Markov chain methods based on stochastic differential equations, many
of which are specifically designed for use in statistical physics, although some
have seen broader application [12]. The Langevin algorithm is perhaps the best
known, and is based on the discrete simulation of a continuous time diffusion
process [6, 12, 13]. Variations on the Langevin algorithm include the tempered
Langevin algorithms of [17]; these ideas have been more thoroughly developed as
controlled and self-tuning adaptive MCMC (see for example, [1, 16]).

Section 2 of this paper discusses Langevin and tempered Langevin algorithms.
Section 3 discusses a variation inspired by the tempered Langevin algorithm for
bounded densities, introduced and explored in [11], with a simple heating function
specifically designed for target densities with bounded support. Section 4 applies
the algorithm to a set of test case densities to compare its performance against
other methods. The algorithm is applied to a hierarchical model for Chronic
Wasting Disease in Rocky Mountain mule deer to demonstrate its applicability
to real-world data. Finally, the results are summarized and discussed in Section
6.

2. Langevin and Tempered Langevin Algorithms

Langevin type algorithms are based on the discrete simulation of a continuous
time diffusion process [6, 13]. A general diffusion process Xt = X(t) is a contin-
uous time stochastic process defined as the solution to the stochastic differential
equation:

dXt = µ(Xt)dt+ σ(Xt)dBt, (2.1)

where Bt is standard Brownian motion [10]. In (2.1), µ(Xt) is a general drift
term whose functional form varies depending on the type of diffusion, and σ(Xt)
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is the diffusion term. For simple cases, solutions to (2.1) can be found using the
Ito Calculus [4, 10]. If a solution to (2.1) does not exist or if Xt tends to infinity
in a finite amount of time, the diffusion process is called explosive [10].

2.1 The Langevin Algorithm

For a continuously differentiable target density f , if for some real numbers
N, a, b < ∞, when (∇f(x))Tx ≤ a‖x‖ + b, for all ‖x‖ > N , then a diffusion
process can be constructed that has f as its stationary distribution [10, 14, 18].
The only non-explosive, reversible diffusion with this property is the Langevin
diffusion which has the form:

dXt =
1

2
∇ log(f(Xt))dt+ dBt, (2.2)

where Bt is the standard Brownian motion.

The continuous time stochastic process in (2.2) cannot be directly simulated,
so a discretized version of (2.2) must be used. The simplest such discretization
is the Euler discretization. If ω > 0 is the size of the discretization, then the
continuous time diffusion process (2.2) is approximated by a smart random walk,
with steps given by:

Xt+1 = Xt +
ω

2
∇ log f(Xt) + ωεt, (2.3)

where εt follows a multivariate normal distribution with mean 0 and covariance I.
The random walk in (2.3) is called “smart” because proposed values are generally
in directions of higher probability than the current state. (2.3) can also be written
as:

Xt+1 ∼ N(Xt +
ω

2
∇ log f(Xt), ω

2I). (2.4)

Other discretization schemes are discussed in [12].

Unfortunately, the behaviour of the continuous time Markov process and the
discretized version may be radically different. This is because the Markov chain
based on the stochastic process (2.2) samples from the correct distribution only as
the discretization size goes to zero [12]. Consequently, there are situations where
the random walk given by (2.3) can be transient. Situations leading to transience
include those for which the target distribution is insufficiently smooth or erratic,
so the gradient experiences large changes in a local area or has a large magnitude.
The erratic behaviour of the gradient makes the chain unstable. Many of these
problems can be corrected with a Metropolis-Hastings rejection step [2, 6, 12,
13]. This method of correcting for the discretization is called Langevin Monte
Carlo [12] or the Metropolis Adjusted Langevin Algorithm (MALA) [18].
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The key difference between the Metropolis Adjusted Langevin algorithm and
the standard random walk is the MALA suppresses the random walk behaviour
of the chain by using the local properties of the target density (i.e., ∇ log f(Xt))
to adjust the proposal distribution. This nudges the chain “uphill” in the direc-
tion of a mode, which is a highly desirable property in high dimensional prob-
lems where the behaviour of the gradient is smooth [6, 7, 13, 17, 18]. The
simulation can be further adjusted for any erratic behaviour of the gradient by
using a truncated proposal step to achieve more robust ergodic properties [2,
18]. This truncation comes through the imposition of an upper limit on the step
length in the proposal distribution [6, 15]. For example, proposals of the form
Y ∼ N(Xt + min(b, (ω∇ log f(Xt))/2), ω2I) can retain most of the advantages of
the Langevin algorithm while removing some of the inherent instability of the
gradient. However, for target distributions with insufficiently smooth surfaces,
scaling the truncated MALA can be difficult. As an example, if the posterior
distribution possesses a narrow region of high probability, surrounded by an area
of low probability, such as the Witches Hat distribution [13], then the chain may
still overshoot the mode, resulting in the oversampling of low probability regions.

2.2 The Tempered Langevin Algorithm

A variation of the Langevin algorithm is the tempered Langevin algorithm,
an adaptive MCMC method based on Hamiltonian dynamics [17]. The standard
MALA approach uses a fixed variance coefficient (ω in (2.3) and (2.4)). A more
general diffusion process can be used to derive another variation of the Langevin
algorithm.

(2.2) is a special case of (2.1), where the drift term is µ(Xt) = ∇ log(f(Xt))/2,
and the diffusion coefficient is σ(Xt) = I. This leads to the variance term ω2I
in the discretization 2.4. If a more general diffusion term is used in 2.1, then the
tempered Langevin diffusion is obtained. For an in depth look at the tempered
Langevin diffusion see [17].

If the diffusion coefficient is σ(x), then the diffusion matrix is given by a
positive definite matrix a(x) = σ(x)σT (x). Let 0 ≤ d ≤ 1/2. Choosing

a(x) = f−2d(x)I =
1

(f(x))2d
I,

and setting the drift term to be

µ(x) =
1− 2d

2
a(x)∇ log(f(x))

gives the tempered Langevin diffusion, which is the solution to the stochastic
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differential equation:

dXt =
1− 2d

2
f−2d(Xt)∇ log(f(Xt))dt+ f−d(Xt)IdBt. (2.5)

The diffusion in (2.5) is sometimes called a heated Markov chain. The two
special cases of (2.5) which are important are d = 0, which gives the standard
Langevin diffusion, and d = 1/2, which gives Brownian motion [17].

Heated Markov chains have stronger theoretical convergence properties than
unheated chains, since the diffusion matrix acts as an accelerator [17]. The accel-
erator can alleviate some of the problems encountered with multi-modal target
distributions. In areas of low probability, a(x) = f−2d(x)I will be larger, causing
the chain to take larger steps in those areas. As the chain enters areas of high
probability, a(x) will decrease, leading to a smaller step size.

The discretized version of the diffusion (2.5) is given by the equation:

Xt+1 ∼ N(Xt +
1− 2d

2
a(Xt)∇ log f(Xt), a(Xt) I). (2.6)

Using a rejection step again results in a Metropolis-Hastings algorithm. We can
adjust the acceptance probability for the tempered diffusion by setting ω2 =
a(Xt), which gives:

α(Xt, Yt) =
f(Yt)

f(Xt)

exp(−‖Xt−Yt−µ(Yt)‖2)
2σ(Xt)

)

exp(−‖Yt−Xt−µ(Xt)‖2)
2σ(Xt)

)
, (2.7)

where

µ(x) =
1− 2d

2
a(x)∇ log(f(x)),

and σ(Xt) = f−d(Xt).
The tempered Langevin algorithm, like the standard Langevin algorithm 2.4,

is a random walk which makes “smart jumps”. Hence, the chain is likely to pro-
pose values in the direction of an area of high probability. Unfortunately, the
acceleration term, derived directly from the stochastic differential (2.7), can lead
to erratic behaviour. Additionally, the tempered Langevin algorithm relies on a
complicated scheme for the proposal variance, which makes it difficult to imple-
ment and computationally cumbersome [17]. For target densities with bounded
support, additional difficulties arise when the value of the density function is
near zero, which causes the acceleration term to be large, leading to an excessive
number of proposals outside the support of the target density.

3. A Modified Adjusted Langevin Algorithm with Tempered Step Size
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The form of the acceleration term in the tempered Langevin algorithm may
be cumbersome, but the essential concept of taking larger steps in areas of low
probability and smaller steps in areas of high probability is nonetheless useful.
Adaptive MCMC methods such as those in [1, 16] achieve this property by adap-
tively changing the variance of the proposal distribution. The algorithm pre-
sented in this paper focuses on adaptively changing the step size. The dynamic
step quality can also be captured using a simpler form for the acceleration term.

The main benefit of a Langevin-type algorithm is the use of the gradient in
choosing a direction for the proposal value [7, 14, 17, 18]. For a target density
with erratic gradient behaviour, however, the magnitude of the proposed value
can be extremely large. Proposals with a large magnitude are a problem in a
confined parameter space, but the gradient direction still contains useful infor-
mation. The direction is retained by turning the gradient into a unit vector, which
alleviates any potential problems due to the magnitude. Thus, rather than using
∇ log f(Xt), it is scaled to dstep = ∇f(Xt)/‖∇f(Xt)‖, provided ‖∇f(Xt)‖ 6= 0.
When the gradient is zero, we set dstep = 0.

Rather than attempting to find a single step size for all parameters, a dynamic
step size is constructed which is qualitatively similar to the tempered Langevin
algorithm. The chain is therefore “heated”, so the further the current state is
from the mode of the distribution, the larger the step size that should be taken.
When the current state is close to the mode, the steps must be smaller.

A expression is constructed which is at a minimum when the current state,
Xt, is at the mode of the target density. It should get larger the further Xt gets
from the mode. For the stability purposes discussed above, this expression uses
the log of the posterior density. Let f denote the posterior density function. Let
x̂ denote the mode of the posterior density. Then for any Xt in the support
of f , we have f(Xt) ≤ f(x̂). The logarithm is a monotonic transformation,
so this implies log(f(Xt)) ≤ log(f(x̂)). Subtracting log(f(Xt)) from both sides
gives 0 ≤ log(f(x̂)) − log(f(Xt)). However, since the step size in the Markov
chain simulation should be non-zero, one is added to both sides. Thus, 1 ≤
log(f(x̂))− log(f(Xt)) + 1.

Let h(x̂, Xt) = log(f(x̂))− log(f(Xt)) + 1, and note 1 = h(x̂, x̂) ≤ h(x̂, x) for
any x. For log-concave densities, h(x̂, Xt) increases as the value of log(f(Xt))
gets farther from the log density value at the mode. This acceleration term is
bounded from below, resulting in a minimum step size.

Use of the difference between the log densities is useful for situations where
the direct use of the density function can lead to numerical instability. For
target densities where numerical instability is not an issue, a ratio proportional
to 1/f(Xt), as in the tempered Langevin algorithm of [17], would also be effective.
A candidate that uses the mode is the ratio f(x̂)/f(Xt), which is always bounded
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below by one. Taking the logarithm of both sides of the inequality 1 ≤ f(x̂)/f(Xt)
and adding one results in the same expression as above. In practice, the mode in
h(x̂, Xt) can be found using any of a host of numerical optimization procedures.

To make the step size appropriate for a given target density, both the proposal
variance and the step size function h(x̂, Xt) must be scaled correctly. In the
standard MALA, the variance of the proposal has the form ωI, so it is constant
for each component, although this is not necessary and it is also possible to vary
the proposal variance for different components. A diagonal covariance matrix,
Σ, can be used, with the entries scaled differently for each component. This is
a less complicated approach than the construction of the diffusion matrix used
for the tempered Langevin algorithm in [17]. The entries of Σ must be chosen
to ensure values are not proposed outside of the parameter space too often. A
good rule of thumb the author has found in practice is to use values for Σ that
are proportional to the variances of the prior distribution, with the constant of
proportionality chosen so that an acceptance rate of 57.4% is achieved, per the
heuristic suggested by [15].

In addition to the proposal covariance, the tuning parameter k must be chosen.
The tuning parameter k is similar to the discretization size ω in the MALA
algorithm. The parameter k can be chosen by calculating the step size function
for points throughout the support of the target density, and choosing the values
of k to make h as large or as small as desired. This tuning parameter gives
relatively precise control over the minimum step size. Following the heuristic in
[15], the tuning parameter should be adjusted to achieve an acceptance rate of
0.574.

The resulting algorithm is a modification of the tempered Langevin algo-
rithm, called the Modified Adjusted Langevin Algorithm with Tempered Step,
or MALTS.

Algorithm 3.1. (MALTS) Let the current state of the chain be denoted by the
m-dimensional vector Xt and the target density by f(x). Let x̂ denote the mode
of the distribution f . Choose the m entries of the m by m diagonal matrix Σ,
and tuning parameter k. Let h(x̂, y) = kI(log(f(x̂))− log(f(y)) + 1).

1. Set µ(Xt) = Xt + sx ~dx, where sx = kh(x̂, Xt) is the step size at Xt, and
~dx = ∇ log(f(Xt))/‖∇ log(f(Xt))‖, is the unit vector in the direction of the
gradient at Xt. If ∇ log(f(Xt)) = ~0, then set ~dx = ~0.

2. Generate Y ∼ N(µ(Xt),Σ).

3. Let µ(Y ) = Y + sy ~dy be calculated as is step 1.

4. Let α(Xt, Y ) = f(Y )
f(Xt)

exp(−0.5∗(Xt−µ(Y ))T Σ−1(Xt−µ(Y )))
exp(−0.5∗(Y−µ(Xt))T Σ−1(Y−µ(Xt)))

.

5. With probability min(α, 1), set Xt+1 = Y . Otherwise, set Xt+1 = Xt.
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Convergence of Algorithm 3.1 to stationarity can be established by demon-
strating it is a special case of the Metropolis-Hastings algorithm. The relation-
ship between the target density and the conditional proposal distribution in the
Metropolis-Hastings algorithm must be established. Basic convergence to the
target distribution is stated in the following theorem:

Theorem 3.1. Let µ(x) and Σ be defined as above in Algorithm 3.1. Then,
if the log of target density f has a connected support contained by the set of
real numbers, and continuous first partial derivatives throughout its support, the
Markov chain produced by 3.1 will converge to the stationary distribution f .

Proof. The continuous first partial derivatives are necessary to ensure the exis-
tence of the gradient throughout the support of the target density. The gradient
is used in determining the direction of the proposal value. The unnormalized
conditional density is given by:

q(x|y) = exp(−0.5 ∗ (Y − µ(Xt))
TΣ−1(Y − µ(Xt))). (3.1)

This is the kernel of an m-dimensional multivariate normal distribution, with
support Rm.

Recall a set A is connected if every two points z1, z2 in the set A can be con-
nected by a piecewise smooth curve entirely contained within A. The connected
support of the target density is not absolutely necessary, but this condition avoids
many mathematical and practical difficulties, so it is assumed here. Let supp(f)
denote the support of the target density f . If supp(f) ∈ Rm, then convergence
of the Markov chain produced by Algorithm 3.1 to the correct stationary distri-
bution is ensured. See [13] for a proof of the Metropolis-Hastings convergence.
2

The relative performance of the MALTS algorithm on several cases of test dis-
tributions will be examined in Section 4. Theorem 3.1 ensures basic convergence
to stationarity for Algorithm 3.1. However, actual convergence rates for a given
target density will depend on the values of the elements of Σ and the specific
characteristics of the target density. Because the algorithm suppresses the ran-
dom walk behaviour of the chain by proposing, on average, in an uphill direction,
the rate of convergence will generally be better than the standard random walk
as the number of dimensions increases [7, 13]. Like the MALA, the MALTS al-
gorithm uses the gradient information to pick a direction for the proposed value.
These algorithms are more likely to accept proposed values than a standard ran-
dom walk, because Langevin type algorithms modify the search by biasing the
proposal distribution in favour of candidate states that lie in directions of higher
probability.
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Note if a target density is flat, as with a uniform distribution, then the gra-
dient vector will be zero. In such a case, the proposal direction will be the zero
vector, so the proposal mechanism in Algorithm 3.1 reduces to a standard ran-
dom walk. With a locally flat density the gradient contains no information about
regions of higher probability, but the algorithm will still function. Given the
similarities with the tempered Langevin diffusion, the convergence of the chain
produced by this algorithm may be better than the unheated Langevin algorithm
in (2.4).

MALTS is essentially a random walk with a smart proposal step, which makes
use of the gradient information while removing potential instabilities in the gra-
dient. Additionally, the properties of h(x̂, Xt) cause the chain to take larger steps
in areas of low probability, and smaller steps in areas of high probability. How-
ever, the algorithm requires at least some knowledge of the mode of the target
density, which may require the use of computationally intensive optimization pro-
cedures before the method can be implemented. Finding the mode of the target
distribution can become difficult as the number of dimensions increases. If a poor
approximation of the mode is used in the MALTS algorithm, the dynamic step
size can bias the proposal in the wrong direction. Let x̃ be a poor approximation
to the mode of the target density f , and suppose the current state of the chain is
Xt is closer to the true mode, then log(f(x̃))− log(f(Xt)) + 1 may be negative.
This would have the effect of pulling the chain in the wrong direction, away from
the areas of higher probability. A corrective measure to this potential problem
is to update the mode approximation during the simulation by checking at each
iteration if log(f(x̃)) < log(f(Xt)), and setting x̃ = Xt as the new approximation
to the mode if this is true.

As with other Langevin type algorithms, the use of the gradient would make
the MALTS algorithm a poor performer with multi-modal target densities. While
the algorithm would theoretically converge, it would be expected to mix poorly
and be a poor performer in practice, as it would have a tendency to get stuck on
one of the modes. This is no different from any other Langevin type algorithm
however.

Additionally the algorithm can have a comparatively large number of pa-
rameters, i.e., the m entries of the diagonal matrix Σ and the constant k for
an m-dimensional distribution. This added complexity provides the benefit of
fine tuning the algorithm for cases where the scale of components in a multivari-
ate density are significantly different, and giving the algorithm more freedom to
explore complicated and tightly bounded target densities. It should be noted,
however, like the MALA, the MALTS algorithm can be simplified and the num-
ber of parameters significantly reduced to require only a single tuning parameter,
as Σ can be chosen to be an identity matrix.
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The complexity of the MALTS algorithm is comparable to the MALA. If the
gradient is approximated numerically, then for each iteration, both algorithms
require 2m + 1 evaluations of the density function for an m-dimensional target
distribution. By contrast, the random walk algorithm requires only one density
evaluation per iteration. Each iteration of a standard random walk algorithm
will therefore require less time than either MALTS or MALA. The advantage
of Algorithm 3.1 or the MALA is that a standard random walk can require an
extremely large number of iterations to converge to stationarity [12, 13].

Considerations for choosing the tuning parameters for the MALTS algorithm
are the same as those for other methods. For bounded densities, the tuning
parameter k in Algorithm 3.1 must be chosen to prevent the chain from frequently
proposing values that lay outside the parameter space. For unbounded densities,
k and Σ must be chosen to ensure sufficient exploration of the parameter space.
The dynamic step size h must be also be considered, and the tuning parameter
k must balance the behaviour of the step size equation h. The variances of the
prior distributions are generally easy to calculate and make convenient choices
for the entries of the proposal variance matrix Σ.

Another natural choice for the elements of Σ are the preliminary estimates
of the marginal posterior variances. Since the MALTS algorithm requires the
calculation or approximation of the mode of the target density, this information
can be conveniently used in the choice of the tuning parameters. The inverse of
the Hessian matrix of the log-posterior density, evaluated at the mode, provides
an analytical approximation of the posterior covariance matrix. The values of
the approximate covariance matrix can then be used to choose the values of the
matrix Σ. If desired, Σ can be diagonal. Using the prior or posterior marginal
variances alone may lead to step sizes either too large or too small. Consequently,
the magnitude of the entries of the matrix may need to be increased or decreased.
This is especially important for bounded densities, since efficient Markov chain
samplers should predominantly propose values within the support of the target
density. If h(x̂, x) is easy to maximize on the support of the target density, then
an upper bound for the step size can be established, to aid in choosing the tuning
parameter k. A simple alternative is to calculate h(x̂, x) for several points in low
probability areas on the support of the target density, and then scale the values
of the step matrix to achieve a particular step size.

A common consideration when choosing tuning values for Markov chain sim-
ulations is the acceptance rate, i.e., the proportion of proposed moves that are
accepted. Low acceptance rates can indicate the step size is too large, since for
many densities, a large move is extremely unlikely to be accepted [6, 13]. Smaller
step sizes typically lead to larger acceptance rates, since proposed moves ex-
tremely close to the current state are very likely to be accepted. As an example,
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as the step size ω in the Langevin algorithm 2.3 approaches zero, the discrete
Langevin random walk approaches the continuous time Langevin diffusion, in
which moves are always accepted. While a high acceptance rate indicates the
chain is making more moves, the small step size has the drawback of causing the
chain to move about the parameter space very slowly, providing an incomplete
picture of the target density. There is some theoretical justification for an accep-
tance rate in the range [0.15, 0.5]. These values are based on limiting acceptance
rates for high dimensional densities. If possible, the value of the tuning parame-
ter k should be adjusted to achieve an acceptance rate in this range. Theoretical
studies have indicated the optimal acceptance rate for the MALA is near 0.5 [7,
13, 15], so the optimal acceptance rate for the MALTS Algorithm 3.1, may be
near 0.5 as well.

4. Empirical Results for Known Target Densities

Fundamentally, a Markov chain algorithm should accurately simulate the cor-
rect target density, or at least a provide good approximation to it. This can be
checked both theoretically, as in Theorem 3.1, and empirically. Once there is
confidence a method will produce the correct density, there are questions of per-
formance.

A simple test of accuracy can be performed by using the MALTS algorithm
to sample a density with known parameters. The normal distribution truncated
to [0, 1], with mean (0.5, 0.5)T and covariance matrix 0.001 ∗ I, chosen so that
the majority of the density is concentrated around the mode of the distribution,
provides an opportunity to test Algorithm 3.1 on a bounded density with known
parameters. The distribution was simulated using Algorithm 3.1. Four chains
were run, with four initial values chosen to be dispersed about the parameter
space. These starting points were: (0, 0), (0.7, 0.1), (0.1, 0.7), and (0.9, 0.9). The
proposal variance for the MALTS algorithm was a diagonal matrix with the step
size 1×10−10 for each variable, and the tuning parameter was also k = 1×10−10.
The results of the simulation are shown in Figure 1. The majority of the points are
concentrated around the mode of the target density, providing graphical evidence
that the method has sampled the correct density.

Gelman and Rubin’s potential scale reduction is a comparison of the variance

between runs and within runs, denoted by
√
R̂. This diagnostic is used to assess

the convergence of a Markov chain simulation to stationarity, and should decrease
to one as the number of iterations increases for all parameters of interest [5].
The potential scale reduction for the truncated normal simulation is calculated

using the fours runs of the MALTS algorithm, and the plot of the statistic
√
R̂

versus iterations is shown in Figure 2. The graph shows the potential scale
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reduction decreasing to one as the number of iterations increases giving evidence
the simulated Markov chain is reaching approximate stationarity. A common rule
of thumb for the potential scale reduction is that it should be less than 1.2 for each
parameter, which occurs within 2000 iterations, indicating this is an acceptable
burn-in period. Additionally, the posterior means averaged over all four runs and
adjusted for a 2000 iteration burn-in period were 0.5010 for θ1, and 0.5001 for
θ2. The 95% Bayesian credible intervals averaged over all four simulations are
(0.4925, 0.5110) and (0.4840, 0.5010), indicating the algorithm was able to recover
the correct parameters.

Having determined the basic accuracy of the MALTS algorithm, the next
step was comparing the performance of Algorithm 3.1 with other methods, in
particular the standard random walk and the MALA. There are a number of
criteria for assessing the performance of a Markov chain simulation, including
run time, convergence to stationarity, convergence to independent sampling, and
mixing speed. The relative importance of the different criteria is not widely
agreed upon in the literature, and for this work the focus was first on the number
of iterations an algorithm required to converge to stationarity. Second was how
well the algorithm mixes. Third was the amount of time required for the algorithm
to converge.

Theoretical results on optimal algorithm performance have centered on two
questions: what is the optimal step size, and how well does the algorithm perform
at this optimal step size. Theoretical results on these two questions are limited,
and have relied on simplifying assumptions such as independence or identically
distributed components for an m-dimensional target density, examining the lim-
iting behaviour as m diverges to infinity. Under the assumption of independent
components, the step size of the standard random walk scales with the dimension
as m−1, and leads to an limiting acceptance rate of 23% as m → ∞ [7, 13]. By
contrast, the Langevin algorithm has a step size which scales as m−1/3, and leads
to a limiting acceptance rate of 57% [7, 14, 15]. The higher acceptance rate and
larger step size indicates Langevin type algorithms will tend to move about the
parameter space more than a standard random walk.

There is little theory for more complex scenarios, such as sampling multivari-
ate distributions with correlated components. In such cases empirical methods
have been used to compare algorithms [7, 16]. A common approach is to fix the
step size and examine the acceptance rates for different algorithms. For a given
step size, a higher acceptance rate is an indication an algorithm is making more
moves about the parameter space, and consequently mixing better than an algo-
rithm with a lower acceptance rate. The acceptance rate is only a rough measure
of how well a chain is mixing, but large differences in acceptance rates would
indicate differences in the mixing speed.
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To compare the performance of the MALTS, MALA, and standard random
walk, a set of experiments were performed comparing both the mixing speed and
the convergence to stationarity of each algorithm. The experiments examined
a bounded and an unbounded group of distributions. The bounded group of
distributions were multivariate normal distributions truncated to the unit cube,
while the unbounded group of distributions were highly correlated multivariate
normal distributions. These distributions form a reasonable test bed, as they
have been used by other authors as prototypical target distributions; see, for
example [6, 7]. For each distribution within a group, 80, 000 iterations of a
Markov chain simulation were run from five randomly chosen initial values, using
the standard random walk, the MALA, and the MALTS algorithm. Each method
used multivariate rather than univariate updating, so at each iteration, all of the
components were updated. The potential scale reduction was calculated for the
means of the first and second components (first order convergence) and for the
variances of the first and second components (second order convergence) using the
five chains for each simulation method to assess the convergence to stationarity,
both in terms of the number of iterations and time. Additionally, acceptance rates
were calculated to determine how well the chains produced by each simulation
method were mixing.

For the truncated normal distributions, the components were independent,
each with mode 0.89. Truncated normal distributions provide a classic case of a
bounded density. The variance of the first component was set at 1×10−3, and the
variance of the remaining components was set at 1×10−5. Four sets of simulations
of increasing dimension were run within this group. The dimensions were 2, 6,
12, and 36, and the step size parameter was fixed at 1 × 10−5 for each method.
Acceptance rates for each truncated normal simulation are given in Appendix
1. The results for the simulation show the standard random walk and MALTS
algorithms produced comparable acceptance rates for each dimension, indicating
both methods were mixing reasonably well. Both the standard random walk and
the MALTS algorithm had acceptance rates nearly 5% higher than the MALA
for all dimensions, indicating these methods were accepting more proposed moves
and exploring more of the parameter space.

Figure 3 shows the plot of the log potential scale reduction versus iteration for
each method for the mean first component, with variance 1×10−3, and the second
component, with variance 1 × 10−5, for the 36 dimensional truncated normal
simulation. For both components, first order convergence to stationarity for the
MALA and MALTS algorithms occurred in fewer iterations than the standard
random walk. The MALA converged in fewer iterations than Algorithm 3.1 for
the first component, but the two algorithms performance was nearly identical for
the second component. The results for second order convergence, shown for the
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36 dimensional truncated normal in Figure 4, were similar. For the truncated
normal distribution, Algorithm 3.1 provided a middle ground, with convergence
to stationarity comparable to the Langevin algorithm and in fewer iterations than
a standard random walk, and a mixing speed better than the Langevin algorithm
and comparable to the standard random walk.

The amount of time it takes to effectively run an algorithm is another im-
portant consideration. For a two dimensional truncated normal simulation, the
random walk simulation required an average of 5.0× 10−4 seconds for each itera-
tion, compared to 23.0× 10−4 seconds for the Langevin and MALTS algorithms.
Figure 5 shows the plot of the log potential scale reduction versus seconds for
each algorithm for the 36 dimensional truncated normal distribution. The longer
time per iteration results for the MALTS algorithm resulted in a longer amount
of time to reach convergence for the first component. The standard random walk
and MALA achieved stationarity in a much shorter amount of time. For the
second component, however, the MALTS and MALA clearly reached stationarity
faster than the standard random walk. Figure 6 shows the results for second or-
der convergence. The longer per iteration time of 23.0×10−4 for the MALTS and
MALA clearly had a significant impact, but only on the order of seconds. Despite
the time advantage of the standard random walk, the fewer iterations required by
the derivative using methods (MALA and MALTS) would result in fewer wasted
iterations, requiring less memory resources to achieve a usable sample.

For the unbounded multivariate normal distribution, the components were
chosen to be highly correlated. Each distribution had a mean of zero and co-
variance (1 − ρ)Ik + ρJk, where the matrix Ik is the k-dimensional identity, Jk
is a matrix of all ones, and ρ is the correlation between parameters. Three lev-
els of correlation were examined, ρ = 0.879, 0.970, and 0.992, which are the
same correlation levels examined in [7]. For each of these correlation values, four
sets of simulations were run, with dimensions 2, 6, 12, and 36. Three step size
parameters were used for each method, 1× 10−5, 1× 10−4, and 1× 10−2.

For the step size 1 × 10−5, correlation ρ = 0.879, there was little difference
in the acceptance rates. At this correlation level, each of the methods had an
acceptance rate above 95% for each dimension, indicating that at this level of
comparison, all of the methods were mixing at approximately the same speed, and
accepting roughly the same number of proposals. However, the graphs of the log
potential scale reductions by iteration, shown in Figures 7 and 13, show differences
in the number of iterations in which the methods converge to stationarity. For
the two dimensional simulation, with ρ = 0.879, the MALTS algorithm converged
to stationarity in far fewer iterations than the Langevin and standard random
walk, and as the dimension increases to 36 (Figure 7), the MALTS algorithm still
required fewer iterations to converge than the other two algorithms. For second
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order convergence, shown in Figure 8, the results are similar. The acceptance
rates for all of the simulations are given in Appendix 2.

For the two dimensional simulation, the standard random walk required 3.0×
10−4 seconds per iteration, compared to 8.0×10−4 for the MALA and 9.0×10−4

for the MALTS algorithm. In spite of the longer time per iteration required
by the MALA and MALTS methods, the performance of the three algorithms
was similar. The plot of the log potential scale reduction versus time is shown
in Figure 9. The graphs for both the first and second parameters are similar,
showing little differences between the algorithms. The graphs for second order
convergence, shown in Figure 10, show the standard random walk and MALTS
methods took less time to converge than the MALA. Increasing the number of
dimensions to 36 produced similar results, although with the shorter time per
iteration the standard random walk should have had a distinct advantage. The
standard random walk required 3.1 × 10−4 seconds per iteration, while a single
iteration of the MALA required 8.2 × 10−4 seconds and the MALTS algorithm
required 9.2×10−4 seconds per iteration. Figures 11 and 12, showing the plots of
the log potential scale reduction by time, indicated the three algorithms converged
at approximately the same rate. For the second order convergence shown in
Figure 12, the differences were barely noticeable.

Increasing the level of correlation had a noticeable effect, as demonstrated in
Figures 13 and 14, which show with correlation of 0.992, there was a noticeable
effect on the potential scale reduction of the second component for the MALTS
and MALA algorithms. The plot of the log potential scale reduction by iteration
for the standard random walk did not decay to zero as completely as it did for the
other methods. The standard random walk experienced difficulties with second
order convergence, although the time advantage of the standard random walk by
iteration became more apparent at the higher correlation level. The acceptance
rates for each algorithm remained quite high at this step size and correlation level
ρ = 0.992. As the dimension increased, differences in the acceptance rates became
more apparent. Simulations conducted at a correlation of 0.992 for dimensions
64, 144, 200, and 300 highlighted the differences between the algorithms. Figure
15 shows the graphs of the log potential scale reductions for the 200 dimensional

normal distribution simulation. As the number of iterations increased, log(
√
R̂)

decreased rapidly for θ1 for both the MALA and the MALTS algorithms, com-
pared to the standard random walk. For the parameter θ2, the log potential
scale reduction factor for the MALA decreased more rapidly than the standard
random walk, and then appeared to experience difficulties, flattening out as the
number of iterations increases. The log potential scale reduction factor of θ2 for
the MALTS algorithm also initially decreased faster than the standard random
walk, but unlike the MALA, it continued to decrease as the number of iterations
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increased. By this measure, the MALTS algorithm is clearly reaching stationar-
ity in fewer iterations than the other two methods. The time advantage of the
standard random walk disappeared at the higher dimension, as demonstrated in
Figure 16.

For the higher dimensional distributions, there was a difference in the accep-
tance rates as well. As the number of dimensions is increased from 36 to 64,
the acceptance rates dropped significantly, from above 95% for each method to
88.7%, 88.0%, and 85.1% for the standard random walk, MALTS, and MALA,
respectively. As the number of dimensions increased further, the acceptance
rate for the standard random walk decreased, while the acceptance rates for the
MALA and MALTS held steady. The increased dimension had less of an impact
on the derivative using Langevin type algorithms. Figure 17 shows the plot of
the acceptance rate versus dimension. All three simulation methods experienced
a noticeable decline in acceptance rates as the dimension increased from 36 to 64,
from above 95% to less than 90%. Importantly, as the dimension increased fur-
ther, the acceptance rate for the standard random walk continued to decline, while
the acceptance rates for the MALA and MALTS algorithms remained steady at
85% and 88%, respectively, which indicated the increased dimension had less of
an impact on the mixing of the MALA and MALTS algorithms.

The small step size of 1× 10−5 caused nearly every proposal to be accepted.
The slightly lower values for the acceptance rates of the MALA and MALTS
algorithms were because the chains produced by these methods will on average
take larger steps for a fixed step size parameter than the standard random walk.
Recall h(x̂, x) in Algorithm 3.1 has a minimum value of one, so that the step size
parameter of 1 × 10−5 is the smallest step size proposed for MALTS. A similar
characteristic exists for the MALA, where the actual step size depends on the
magnitude of the gradient at the current state. Increasing the step size by a
factor of ten to 1 × 10−4 resulted in a decrease in the acceptance rates, given
in Appendix 2. The standard random walk had a higher acceptance rate than
the MALA and MALTS, but the three methods were within 3% of each other,
indicating they were mixing at about the same rate. The number of iterations
required for convergence, shown in Figure 18, was again less for the MALA and
MALTS algorithms than for the standard random walk, although the differences
were slight. The plot of the log potential scale reduction versus time in Figure
19, shows that at this step size the three methods were equally fast. Both the
mixing speed and the speed of convergence were nearly equal for the step size of
1× 10−4.

For the sake of comparison, the step size was increased to 1 × 10−2. The
larger step size results in a decrease in the acceptance rate of about 10% for
each method. Figure 20 shows the plot of the log potential scale reduction versus
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number of iterations for the mean and variance of parameter θ1. The graphs show
the MALTS and MALA methods achieved first and second order convergence
in fewer iterations than the standard random walk. The time plots in Figure
21 show the three methods took about the same amount of time to reach first
order convergence, while the MALA and MALTS methods achieved second order
convergence faster than the standard random walk. Thus the derivative using
methods (MALA and MALTS) converged to stationarity at the same rate or
faster than the standard random walk, and with fewer wasted iterations.

These experiments provided an examination of the comparative mixing and
convergence properties of the standard random walk, Metropolis adjusted Langev-
in algorithm, and Modified adjusted Langevin algorithm with tempered step size.
The results here indicate Algorithm 3.1 will perform at least as well as the MALA
and standard random walk, and for some target densities can outperform these
methods. These experiments used numerical approximations of the gradient in
the MALA and MALTS algorithms, which required log posterior evaluations and
slowed down the algorithm. Use of the analytical gradient would speed up the
algorithms, reducing the amount of time needed for each iteration.

5. Application of MALTS to a Model for Chronic Wasting Disease

Having tested Algorithm 3.1 on several test cases, we next examine its per-
formance simulating the posterior distribution from a spatio-temporal model for
Chronic Wasting Disease in mule deer in the state of Colorado, introduced in
[9]. Chronic Wasting Disease (CWD) is a fatal, transmissible spongiform en-
cephalopathy found in North American mule deer, white-tailed deer, and elk.
Data for the model consisted of CWD prevalence data for each DAU collected by
the Colorado Division of Wildlife over a 27 year period, from 1976 to 2002. For
a description and references on CWD see [9, 11].

The CWD model in [9] is derived from a differential equation for the dynamics
of the prevalence, which is the proportion of animals infected with the disease.
The model is extensively described in [9] and will be only briefly outlined here.
The discretized model is given by:

pt+1 = α(δ1− pt)� pt � (1− pt) +Wpt. (5.1)

where pt is the vector of prevalence values, W is a spatial mixing matrix that
represents disease migration from area j to area i, and � is the term-by-term
Hadamard matrix product.

The parameter α represents a kind of acceleration for the disease prevalence,
and δ is the long term proportion of infected deer that the system can sustain,
playing a role similar to that of the carrying capacity in the standard logistic
equation for population growth. The structure of the matrix W is based on the
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Colorado Division of Wildlife’s map of their deer data analysis units, or DAU’s.
Let Wij denote an element of the stochastic transition matrix W . For parsimony,
fix Wij = γ if DAUi and DAUj are first-order neighbors with a “significant”
proportion of boundary that touch. If DAUi and DAUj have less of boundary
that touch, or are almost touching, then Wij = ω < γ. For DAUs that do not
share a boundary and hence are not neighbors, Wij = 0. The diagonal values of
W are fixed so that row sums of W are equal to 1. Thus, the Wij can be loosely
interpreted as the average proportion of deer that migrate from DAUi to DAUj

each year. α, δ, γ, and ω are the dynamic parameters in the model.
In addition to the four dynamic parameters, there are the initial conditions–

DAU’s where the disease was present at the beginning of the time period in 1976.
Through a combination of prior knowledge and model comparison via Bayes’
factors, the particular model chosen in [9] was that with dynamic parameters
given by:

η = (α, δ, γ).

The initial conditions were given by the following:

p0 = (p10,0, p4,0, p5,0),

so that θ = (η,p0). It was necessary to find the posterior distribution of [θ|Y ],
where Y denotes the data. Because this distribution does not have a convenient
form, computational methods were needed to simulate the posterior distribution.

The posterior distribution was originally simulated using an acceptance sam-
pler based on independent beta distributions, the results of which are shown in
Figure 22 for the parameters α and δ. The posterior distribution associated with
the above model has several distinctive features which made simulation difficult
and slow. The contour plot shows the component variables in the model are
highly interdependent, the parameter space is bounded, and the distribution has
a narrow ridge of high probability.

The acceptance sampler was written in Matlab and run on a machine with a
2.2Ghz processor and 3GB RAM. The sampler generated a random value from the
posterior roughly every 3 seconds, and took nearly 24 hours to generate a sample
of size 25,000. The long run time was likely due to the complicated nature of the
parameter space. The slowness of the acceptance sampler made it impractical for
studying possible variations of the model, or for applying to future updated data
sets.

The features of the posterior which made it difficult to simulate with an ac-
ceptance sampler mad0e it a good potential real data case for Algorithm 3.1.
Attempts were made to apply the standard random walk, the MALA, and a
tempered MALA to the CWD model, but each of these experienced serious dif-
ficulties, and extensive efforts to scale them appropriately did not yield success.
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None of the algorithms were able to converge to stationarity, even after more
than 300,000 iterations.

The MALTS algorithm by contrast was able to accurately and quickly repro-
duce the posterior density in [9]. 300,000 iterations on the same machine used
for the acceptance sampler took approximately 40 minutes, a significant improve-
ment over the acceptance sampler. Calculation of the potential scale reduction
showed that the Markov chain produced by Algorithm 3.1 converged to station-
arity. Visual inspection of the graphs of the potential scale reduction for all of
the model parameters, shown in Figure 23, indicates stationarity occurs around
the 8000th iteration.

To ensure that the chain converged to the correct distribution, the margi-
nal distributions produced by the Markov chain sampler were compared to the
marginal distributions produced by the acceptance sampler. The comparisons of
the marginal distributions of the density produced by Algorithm 3.1 to those pro-
duced by the acceptance sampler were done by means of the Kolmogorov-Smirnov
test, which indicated the two densities were the same. Figure 24 shows the dis-
tinctive banana shape for the α by δ contour plot, and provides further evidence
of the MALTS algorithm’s success in producing the target distribution. After
the burn-in period seen in the lower left corner of Figure 24, the contour plots
looks identical to Figure 22. The visual evidence coupled with the Kolmogorov-
Smirnov results on the marginals shows Algorithm 3.1 was successful in producing
the correct posterior distribution.

Because of the speed of Algorithm 3.1, multiple runs can be combined to
better approximate an independent sample [5, 6]. Six runs of 300,000 iterations
were run from six different initial values, and the last 50,000 iterates from each
run were combined into a single sample for posterior inference. Posterior Monte
Carlo estimates and 95% Bayesian credible intervals are shown in Table 1; all the
values have been multiplied by 100. These estimates are in line with those found
from the acceptance sampler in [9].

Table 1: Posterior estimates and 95% credible intervals for the CWD model
produced by the MALTS algorithm; values have been multiplied by 100

Parameter Lower Limit Upper Limit Mean Median StdDev

p10,0 1.73 6.34 3.58 3.41 1.28

p4,0 0.86 3.71 1.92 1.78 0.88

p5,0 0.08 0.78 0.34 0.30 0.28

α 5.90 20.76 12.27 11.96 3.76

δ 11.32 21.00 15.24 14.96 2.55

γ 0.63 1.10 0.85 0.84 0.12
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6. Conclusion

Using existing Markov chain simulation methods based on stochastic dynamic
processes as a starting point, a strategy and simulation approach were developed
which shares similarities with tempered and adaptive Langevin algorithms. While
not as elegantly derived from stochastic differential equations as the tempered and
adaptive Langevin algorithms of [1, 17], the MALTS algorithm is intended to be
effective for simulating distribution with a bounded parameter spaces and zones
of high probability. In empirical comparisons with the standard random walk
and MALA Markov chain algorithms, the MALTS algorithm proves to be just as
effective, and in some cases more so. The MALTS algorithm has been applied
with success to a Bayesian model for Chronic Wasting Disease in Rocky Mountain
mule deer that is described in [9], showing that it can be used for real as well as
contrived data.

While the empirical evidence is positive, the theoretical properties of MALTS
still need to be rigorously studied. The essential convergence of the algorithm
to the correct stationary distribution was established, but theoretical results on
convergence properties are necessary to more fully understand the algorithm.
Theoretical guidelines for the use of MALTS will help to determine what kinds
of target densities are best suited to the new algorithm. Nonetheless, the results
in this paper provide another tool for Markov Chain Monte Carlo simulation.

Figure 1: Pairwise plots of the mean parameters θ1 and θ2 for the truncated
normal distribution with true mean (0.5, 0.5)T and true covariance 0.001∗I. (a)
shows 8, 000 iterations for the initial value (0, 0)T . (b) shows 8, 000 iterations
for the starting value (0, 0.001)T . (c) shows 8, 000 iterations for the starting
value (0.3, 0.4)T . (d) shows 8, 000 iterations for the starting value (0.1, 0.8)T
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Figure 2: Plots of the log potential scale reductions by thousand iterations for
the mean parameters θ1 and θ2 for the MALTS simulation of the truncated
normal distribution. The solid line shows the results for θ1, the dotted line
shows the results for θ2

Figure 3: Plots of the log potential scale reductions by hundred iterations for
the parameters θ1 and θ2 for the the simulation of the 36 dimensional truncated
normal distribution. The solid line is the MALTS algorithm, the dash-dot is
the Langevin algorithm, and the dotted line is the standard random walk. (a)
shows the results for θ1. (b) shows the results for θ2
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Figure 4: Plots of the log potential scale reductions by hundred iterations
for the variance of the parameters θ1 and θ2 for the the simulation of the
36 dimensional truncated normal distribution. The solid line is the MALTS
algorithm, the dash-dot is the Langevin algorithm, and the dotted line is the
standard random walk. (a) shows the results for θ1. (b) shows the results for
θ2

Figure 5: Plots of the log potential scale reductions by time for the parameters
θ1 and θ2 for the the simulation of the 36 dimensional truncated normal distri-
bution. The solid line is the MALTS algorithm, the dash-dot is the Langevin
algorithm, and the dotted line is the standard random walk. (a) shows the
results for θ1. (b) shows the results for θ2
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Figure 6: Plots of the log potential scale reductions by time for the variance
of the parameters θ1 and θ2 for the simulation of the 36 dimensional truncated
normal distribution. The solid line is the MALTS algorithm, the dash-dot is
the Langevin algorithm, and the dotted line is the standard random walk. (a)
shows the results for θ1. (b) shows the results for θ2

Figure 7: Plots of the log potential scale reductions by hundred iterations
for the parameters θ1 and θ2 for the simulation of the 36 dimensional normal
distribution, with correlation ρ = 0.879 and step size 1×10−5. The solid line is
the MALTS algorithm, the dash-dot is the Langevin algorithm, and the dotted
line is the standard random walk. (a) shows the results for θ1. (b) shows the
results for θ2
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Figure 8: Plots of the log potential scale reductions by hundred iterations
for the variance of the parameters θ1 and θ2 for the the simulation of the
36 dimensional normal distribution, with correlation ρ = 0.879 and step size
1×10−5. The solid line is the MALTS algorithm, the dash-dot is the Langevin
algorithm, and the dotted line is the standard random walk. (a) shows the
results for θ1. (b) shows the results for θ2

Figure 9: Plots of the log potential scale reductions by time for the parameters
θ1 and θ2 for the simulation of the two dimensional normal distribution, with
correlation ρ = 0.879 and step size 1 × 10−5. The solid line is the MALTS
algorithm, the dash-dot is the Langevin algorithm, and the dotted line is the
standard random walk. (a) shows the results for θ1. (b) shows the results for
θ2
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Figure 10: Plots of the log potential scale reductions by time for the variance
of the parameters θ1 and θ2 for the simulation of the two dimensional normal
distribution, with correlation ρ = 0.879 and step size 1×10−5. The solid line is
the MALTS algorithm, the dash-dot is the Langevin algorithm, and the dotted
line is the standard random walk. (a) shows the results for θ1. (b) shows the
results for θ2

Figure 11: Plots of the log potential scale reductions by time for the parameters
θ1 and θ2 for the simulation of the 36 dimensional normal distribution, with
correlation ρ = 0.879 and step size 1 × 10−5. The solid line is the MALTS
algorithm, the dash-dot is the Langevin algorithm, and the dotted line is the
standard random walk. (a) shows the results for θ1. (b) shows the results for
θ2
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Figure 12: Plots of the log potential scale reductions by time for the variance
of the parameters θ1 and θ2 for the simulation of the 36 dimensional normal
distribution, with correlation ρ = 0.879 and step size 1×10−5. The solid line is
the MALTS algorithm, the dash-dot is the Langevin algorithm, and the dotted
line is the standard random walk. (a) shows the results for θ1. (b) shows the
results for θ2

Figure 13: Plots of the log potential scale reductions by hundred iterations
for the parameters θ1 and θ2 for the simulation of the 36 dimensional normal
distribution, with correlation ρ = 0.992 and step size 1×10−5. The solid line is
the MALTS algorithm, the dash-dot is the Langevin algorithm, and the dotted
line is the standard random walk. (a) shows the results for θ1. (b) shows the
results for θ2
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Figure 14: Plots of the log potential scale reductions by time for the parameters
θ1 and θ2 for the simulation of the 36 dimensional normal distribution, with
correlation ρ = 0.992 and step size 1 × 10−5. The solid line is the MALTS
algorithm, the dash-dot is the Langevin algorithm, and the dotted line is the
standard random walk. (a) shows the results for θ1. (b) shows the results for
θ2

Figure 15: Plots of the log potential scale reductions by hundred iterations
for the parameters θ1 and θ2 for the simulation of the 200 dimensional normal
distribution, with correlation ρ = 0.992 and step size 1×10−5. The solid line is
the MALTS algorithm, the dash-dot is the Langevin algorithm, and the dotted
line is the standard random walk. (a) shows the results for θ1. (b) shows the
results for θ2
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Figure 16: Plots of the log potential scale reductions by time for the parameters
θ1 and θ2 for the simulation of the 200 dimensional normal distribution, with
correlation ρ = 0.992 and step size 1 × 10−5. The solid line is the MALTS
algorithm, the dash-dot is the Langevin algorithm, and the dotted line is the
standard random walk. (a) shows the results for θ1. (b) shows the results for
θ2

Figure 17: Plots of the acceptance rates by dimension for the multivariate
normal simulation with correlation ρ = 0.992 and step size 1× 10−5. The solid
line is the MALTS algorithm, the dash-dot is the Langevin algorithm, and the
dotted line is the standard random walk
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Figure 18: Plots of the log potential scale reductions by hundred iterations
for the parameters θ1 and θ2 for the simulation of the 36 dimensional normal
distribution, with correlation ρ = 0.992, and step size 1×10−4. The solid line is
the MALTS algorithm, the dash-dot is the Langevin algorithm, and the dotted
line is the standard random walk. (a) shows the results for θ1. (b) shows the
results for θ2

Figure 19: Plots of the log potential scale reductions by time for the parameters
θ1 and θ2 for the simulation of the 36 dimensional normal distribution, with
correlation ρ = 0.992, and step size 1 × 10−4. The solid line is the MALTS
algorithm, the dash-dot is the Langevin algorithm, and the dotted line is the
standard random walk. (a) shows the results for θ1. (b) shows the results for
θ2
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Figure 20: Plots of the log potential scale reductions by hundred iterations
for the parameters θ1 and θ2 for the simulation of the 36 dimensional normal
distribution, with correlation ρ = 0.992, and step size 1×10−2. The solid line is
the MALTS algorithm, the dash-dot is the Langevin algorithm, and the dotted
line is the standard random walk. (a) shows the results for θ1. (b) shows the
results for the variance of θ1

Figure 21: Plots of the log potential scale reductions by time for the parameters
θ1 and θ2 for the simulation of the 36 dimensional normal distribution, with
correlation ρ = 0.992, and step size 1 × 10−2. The solid line is the MALTS
algorithm, the dash-dot is the Langevin algorithm, and the dotted line is the
standard random walk. (a) shows the results for θ1. (b) shows the results for
the variance of θ1
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Figure 22: A contour plot of δ against α. Lighter shaded regions represent
higher density areas. Most of the values occur along a banana shaped ridge of
high probability

Figure 23: Plots of the potential scale reduction by iteration for each parameter
in the CWD model. The dashed line shows the results for a standard random
walk; the solid line shows the results for the MALTS algorithm. The results
illustrate both the poor performance of the standard random walk and the
convergence of MALTS
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Figure 24: A contour plot of δ against α produced by the MALTS algorithm.
Lighter coloured regions represent higher density areas. The algorithm was
able to reproduce the distinctive banana shaped ridge of the posterior

Appendix 1: Truncated Normal Acceptance Rates

The standard random walk, Metropolis adjusted Langevin algorithm (MALA),
and Modified adjusted Langevin algorithm with Tempered step size (MALTS)
were used to simulate multivariate normal distributions of increasing dimension,
truncated to the unit cube. The dimensions were 2, 6, 12, and 36. The step size
was fixed for each method at 1× 10−5.

Table 2: Acceptance rates for the multivariate truncated normal distribution

Method Dim = 2 Dim = 6 Dim = 12 Dim = 36

Std. RW 0.699 0.699 0.699 0.698
MALA 0.661 0.659 0.660 0.658
MALTS 0.700 0.700 0.701 0.697

Appendix 2: MV Normal Acceptance Rates

The standard random walk, Metropolis adjusted Langevin algorithm (MALA),
and Modified adjusted Langevin algorithm with Tempered step size (MALTS)
were used to simulate multivariate normal distributions of increasing dimension
and correlation. The dimensions were 2, 6, 12, and 36, and the levels of correla-
tion were 0.879, 0.970, and 0.992. Additional simulations were run at correlation
0.992 with dimensions 64, 144, 200, and 300. The step size was fixed for each
method at 1× 10−5, 1× 10−4, and 1× 10−2.
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Table 3: Acceptance rates for each dimension for the multivariate normal dis-
tribution with correlation ρ = 0.879. The step size is 1× 10−5

Method Dim = 2 Dim = 6 Dim = 12 Dim = 36

Std. RW 0.967 0.969 0.969 0.968

MALA 0.959 0.959 0.958 0.958

MALTS 0.955 0.955 0.956 0.956

Table 4: Acceptance rates for each dimension for the multivariate normal dis-
tribution with correlation ρ = 0.879. The step size is 1× 10−4

Method Dim = 2 Dim = 6 Dim = 12 Dim = 36

Std. RW 0.904 0.902 0.902 0.903

MALA 0.871 0.871 0.871 0.871

MALTS 0.873 0.872 0.872 0.873

Table 5: Acceptance rates for each dimension for the multivariate normal dis-
tribution with correlation ρ = 0.879. The step size is 1× 10−2

Method Dim = 2 Dim = 6 Dim = 12 Dim = 36

Std. RW 0.809 0.809 0.808 0.809

MALA 0.758 0.758 0.759 0.756

MALTS 0.775 0.774 0.773 0.774

Table 6: Acceptance rates for each dimension for the multivariate normal dis-
tribution with correlation ρ = 0.970. The step size is 1× 10−5

Method Dim = 2 Dim = 6 Dim = 12 Dim = 36

Std. RW 0.997 0.969 0.969 0.969

MALA 0.995 0.958 0.958 0.959

MALTS 0.995 0.956 0.958 0.958

Table 7: Acceptance rates for each dimension for the multivariate normal dis-
tribution with correlation ρ = 0.970. The step size is 1× 10−4

Method Dim = 2 Dim = 6 Dim = 12 Dim = 36

Std. RW 0.902 0.901 0.901 0.902

MALA 0.870 0.871 0.871 0.870

MALTS 0.872 0.873 0.872 0.873
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Table 8: Acceptance rates for each dimension for the multivariate normal dis-
tribution with correlation ρ = 0.970. The step size is 1× 10−2

Method Dim = 2 Dim = 6 Dim = 12 Dim = 36

Std. RW 0.809 0.807 0.809 0.808

MALA 0.756 0.758 0.758 0.757

MALTS 0.773 0.774 0.774 0.774

Table 9: Acceptance rates for each dimension for the multivariate normal dis-
tribution with correlation ρ = 0.992. The steps size is 1× 10−5

Method Dim = 2 Dim = 6 Dim = 12 Dim = 36

Std. RW 0.969 0.969 0.968 0.969

MALA 0.956 0.959 0.958 0.959

MALTS 0.957 0.957 0.955 0.956

Table 10: Acceptance rates for each dimension for the multivariate normal
distribution with correlation ρ = 0.992. The steps size is 1× 10−5

Method Dim = 64 Dim = 144 Dim = 200 Dim = 300

Std. RW 0.887 0.880 0.878 0.861

MALA 0.851 0.851 0.851 0.851

MALTS 0.880 0.882 0.881 0.881

Table 11: Acceptance rates for each dimension for the multivariate normal
distribution with correlation ρ = 0.992. The step size is 1× 10−4

Method Dim = 2 Dim = 6 Dim = 12 Dim = 36

Std. RW 0.903 0.902 0.901 0.902
MALA 0.873 0.871 0.871 0.871
MALTS 0.872 0.873 0.873 0.873

Table 12: Acceptance rates for each dimension for the multivariate normal
distribution with correlation ρ = 0.992. The step size is 1× 10−2

Method Dim = 2 Dim = 6 Dim = 12 Dim = 36

Std. RW 0.810 0.808 0.808 0.808

MALA 0.759 0.758 0.758 0.757

MALTS 0.774 0.774 0.774 0.774
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