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Abstract: Since late thirties, factorial analysis of a response measured on
the real line has been well established and documented in the literature. No
such analysis, however, is available for a response measured on the circle
(or sphere in general), despite the fact that many designed experiments
in industry, medicine, psychology and biology could result in an angular
response. In this paper a full factorial analysis is presented for a circular
response using the Spherical Projected Multivariate Linear model. Main
and interaction effects are defined, estimated and tested. Analogy to the
linear response case, two new effect plots: Circular-Main Effect and Circular-
Interaction Effect plots are proposed to visualize main and interaction effects
on circular responses.

Key words: Circular-Interaction plot, Circular-Main Effect plot, EM algo-
rithm, main and interaction effects, Spherical Projected Multivariate Linear
model.

1. Introduction

Factorial designs are widely used in experiments involving several factors
where it is necessary to investigate the joint effects of the factors on a response
variable. These joint effects include either the sole effect of each factor (main) or
any interaction between two or more factors. The analysis of factorial designs is
well established for a response variable that is measured on the real line. Ideas
of this analysis were developed in the late thirties by Fisher in 1935 and Yates
in 1937 [Hinkelmann and Kempthorne, 1994, p. 350]. Since then this topic was
a standard chapter in every Design of Experiments textbook; among these are:
Fisher (1960), Kuehl (1994), Hinkelmann and Kempthorne (1994), Myers and
Montgomery (2002), Montgomery (2009).

Little attention has been paid, however, to the analysis of factorial designs
when the response is measured on a circle (or sphere in general). Two approaches
to circular data analysis are generally used in the literature: the intrinsic and the
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embedding approach. In intrinsic approach, circular data are analyzed in its an-
gular form (polar coordinates with a unit radius), in which angles are considered
random variables on the unit circle that follow some directional probability dis-
tributions. Most commonly, the von Mises distribution is assumed which plays a
key role in statistical inference similar to the role of the normal distribution on
the real line. Underwood and Chapman (1985) developed a multi-way analysis
of a circular response for crossed designs as an extension of Watson-Williams
likelihood ratio test that had been initially developed for the one-way analy-
sis. However, a simulation study of Anderson and Wu (1995) showed that this
extension does not suit factorial designs because of the difficulty of identifying
what the interaction terms measure and the possibility of getting negative sum of
squares for these terms. In the embedding approach, the angles are represented
by unit vectors (Cartesian representation). Harrison, Kanji and Gadsden (1986)
and Harrison and Kanji (1988) used this approach to develop an ANOVA type
approach to circular data. Considering this geometric aspect when decomposing
the variance yields sums of squared of norms that would never be negative. This
decomposition works only for problems where location and dispersion effects are
studied simultaneously [Anderson and Wu, 1995]. Anderson and Wu (1995) pro-
posed a likelihood ratio test statistic for testing the effects from a factorial design
on the location of a circular response. They used the angular rotations occurring
when moving from one level of one factor to its other level at fixed level of the
other factor to evaluate the two-factor interaction effect on the location. If these
angular rotations are not the same in magnitude or direction, then there is evi-
dence of interaction. For higher order interaction, a two level surrogate factor is
defined such that all combinations of odd high levels are considered as one level
and all the combinations of even high levels constitute the second level. If the an-
gular rotation resulting when moving from the high level of this surrogate factor
to its low level is zero, then there is no interaction. This zero angular rotation
concept is also used to evaluate any main effect. However no effect estimation was
given in their paper, while merely relative importance of the significant effects
was used as an approach to rank effects. Anderson and Wu (1995) justified the
lack of model by intractability reasons.

In the context of regression analysis of circular response on real-line valued
independent variables, remarkable link functions were offered to map the real line
onto the unit circle (see Gould, 1969, Johnson and Wehrly, 1978, and Fisher and
Lee, 1992). However, all of these models suffer from computational difficulties
because of either the existing of a multimodal likelihood or an irregular likelihood
where the maximum might occur on a very narrow peak [Presnell et al., 1998]. In
addition, for factorial design, main and interaction effects are hard to be identified
and separated from each other [Anderson and Wu, 1995].

Presnell et al. (1998) emphasized that the embedding approach is more useful
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in modeling directional data on real-line valued variables. They proposed the
Spherically Projected Multivariate Linear (SPML) model for circular response.
The EM algorithm or Newton-Raphson algorithm could be used in the estimation
phase. Presnell et al. noted that Newton-Raphson did converge faster than the
EM algorithm but the latter is easier to program. In addition they indicated
that SPML model could work well for designed experiments, but did not show
any analysis in that context.

In brief, up to date no workable model is known for the analysis of factorial
designs with circular response. This results in the lack of complete analysis for
factorial designs for circular responses. In this paper, the SMPL model is used
to analyze factorial designs with circular response. Utilizing the SPML model,
enables the author to offer a complete factorial analysis (estimation, testing and
interpretation of the effects) for a circular response in a factorial setup. In ad-
dition and analogy to the effect-plots for responses measured on the real line,
two new effect-plots are introduced to complete the factorial analysis for circular
responses. Definitions of main and interaction effects under SPML model are
introduced in Section 3. In addition, two proposed effect plots: Circular-Main
Effect (C-ME) and Circular-Interaction Effect (C-IE) plots are introduced. Ef-
fect estimation and testing are presented in Section 4. An illustrative example is
given in Section 5. Finally, Section 6 concludes the paper. The following section
gives the notations of circular data and briefly reviews the SPML model.

2. Notations and the SPML Model for Circular Data

Let θi, i = 1, · · · , n, be a random sample of circular data. Then ui = ([ci, si])
′,

is a unit random vector pointing in the direction of the angle θi with a mean
direction unit vector of E(ui)/ρ, where ci = cos(θi) and si = sin(θi), i = 1, · · · , n,
ρ = ||E(ui)|| and || · || represents the length of the vector. The mean resultant
vector u = [

∑
i ci/n,

∑
i si/n]′ is pointing in the direction of the overall mean

direction (average direction of the sample) θ while its length, R = ||u||, is used
as a concentration measure. The circular variance is (1−R). When data points
are more concentrated around the mean, the circular variance is close to zero.
A close to one value is associated with data that are evenly spread around the
circle.

The idea of the embedding approach is that distributions on Sp−1 can be
obtained by radial projection of distributions on the Rp. If y is a vector in R2,
where Pr(y = 0) = 0, then the distribution of y/||y|| is a random point on
the unit circle. Under the assumption that y is bivariate normal (N2) random
vector with mean vector µ and variance covariance matrix Σ, Mardia (1972)
proved that the unit vector y/||y|| is distributed as projected normal (PN2) with
mean vector µ and variance covariance matrix Σ [Mardia and Jupp, 1999, p.
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46]. Assuming ui = yi/||yi||, Presnell et al. (1998) developed the SPML model,
where ui ∼ PN2(µi,Σ), µi is the mean direction vector that is pointing in the
direction of the angle $i and its length serves as the concentration parameter.
Further, SPML model assumes that the mean direction vector is linked linearly
to k covariates as follows: µi = B′xi where µ′i = (µcosi , µsini ), B = (βcos,βsin),
x′i = (1, xi1, · · · , xik) and each β is of order (k + 1). Note that the dispersion
depends on the covariates since it is a function of the concentration parameter
ηi = ||µi||. The SPML model parameters are only identifiable under |Σ| = 1.
Presnell et al. (1998) used the identity matrix as the variance covariance matrix
and showed that PN(µi, I) is a good approximation of the von Mises distribution.
Using the EM algorithm, the SPML parameters could be estimated. Presnell et
al. (1998) indicated that the predicted angle

$̂i =

[
tan−1

(
x′iβ̂sin

x′iβ̂cos

)
+ πI

(
x′iβ̂cos < 0

)]
mod 2π

is approximately normal distributed with mean $i and approximate variance

1

||µ̂||4
(−µ̂sinx′i, µ̂cosx′i)

[
−ı̈(B̂)

]−1( −µ̂sinx′i
µ̂cosx

′
i

)
,

where −ı̈(B̂) is the observed Fisher information matrix associated with SPML
model. The log likelihood function of the SPML model is

l(β) = −1

2

n∑
i=1

µ′iµi +

n∑
i=1

ψ(u′iµi)− n log(2π),

where ψ(t) = log[1+(tΦ(t)/φ(t))], φ(t) and Φ(t) are the standard normal density
function and the standard normal distribution function, respectively. Presnell et
al. (1998) proposed using the asymptotic likelihood ratio test to compare nested
models; and the Akaike Information and/or Bayes Information Criterion (AIC
and/or BIC) to select the best model among non-nested models.

3. Factorial Designs, SPML Model and SPML-Effect Model

The radial projection of the circular data facilitates the use of multivariate
regression, where the response variables are the Cartesian coordinates of the
angles. Using SPML model in the context of factorial design enables us to define,
estimate and test the main and interaction effects in a unified manner.

Consider a 22 factorial design with interaction, SPML model is

µ′ijk = εijk +[
βcos0 + xikβ

cos
A xjkβ

cos
B + xikxjkβ

cos
AB, β

sin
0 + xikβ

sin
A + xjkβ

sin
B + xikxjkβ

sin
AB

]
, (3.1)
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where uijk is the unit vector associated with angle θijk, which is the kth replicate
that is measured at the ith level of factor A, and the jth level of factor B, i = 1, 2,
j = 1, 2, and k = 1, · · · , r (r the number of replicates). The x’s are coded variables
that are set at −1 if the corresponding factor is at its low (1) level and 1 if it is
at its high (2) level. εijk ∼ PN(0, I) is an error row vector of order 2 associated
with θijk while β’s are the suitable intercept and slope parameters associated
with factor A and B in the sine and cosine equations (Cartesian representation).
The SPML model decomposes the main (or interaction) effect into two sub-effects
associated with the Cartesian representation. The SPML slope parameters can
be multiplied by two to be analogous to an effect of a two-unit change in a factor
changing from −1 to 1. The main/interaction effect is then the combined effect
of its sub-effects that will affect the direction of the mean response vector and/or
its length.

Figure 1(a) shows high and low fitted mean response vectors of factor A, u2..

and u1·· and a possible effect of factor A. The main effect is then the change that
occurs in the direction and/or the length of the fitted mean response vector when
changing factor A from high to low averaged over all levels of factor B and all its
replicates. This main effect is a joint location-dispersion effect, where the location
effect is the angular difference between the two angels θA2 and θA1 associated with
u2.. and u1.., while the dispersion effect is the difference in the length of these two
vectors. Differences that occur in the cosine and sine coordinates when changing
from high to low construct two important sine and cosine coordinates which define
the resultant main-effect vector [A] = u2..−u1... Figure 1(b) shows the proposed
Circular-Main Effect (C-ME) plot. The graph depends on graphing the two mean
vectors with the low-mean vector translated to begin from the endpoint of the
high-mean vector and mirrored/reflected (graphed in the opposite direction of its
normal direction) to reflect the fact that it is multiplied by a negative sign. There
will be no main effect if [A] = 0, i.e., both coordinates of the resultant main effect
vector are zeros. In Figure 1(b) a nonzero A main effect is present. To have a
zero A main effect both its slopes in SPML has to be zero (see Appendix 1). In
Appendix 2, possible main effect scenarios are shown.

Regarding the interaction effect, it is hard to visualize the SPML slopes of
sub-interaction effects in a graph like Figure 1(a), but it could be visualized in a
plot similar to C-ME plot. Figure 2 depicts the Circular-Interaction Effect (C-IE)
plot that shows the four fitted mean response vectors that are involved in AB
interaction effect [for more details see Appendix 3]. In the proposed C-IE plot
no interaction occurs if the resultant vector of the four vectors is the zero-vector.
Figure 2 shows a nonzero interaction.

Analogy to the factorial design in the linear response, the simple effect of a
factor is the mean response change that occurs when moving from the high level
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Figure 1: a) Fitted High/Low mean response vectors of Factor A and the resultant main effect vector  
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Figure 1: (a) Fitted High/Low mean response vectors of Factor A and the
resultant main effect vector (b) Proposed C-ME plot
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Figure 2: Proposed C-IE plot of AB  
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Figure 2: Proposed C-IE plot of AB

of the factor to its low level at one level of the other factor (or at a one combina-
tion of levels of other factors) in the experiment. A sub-main effect is then the
average of the simple effects of one factor at different levels of other factor (or
combinations of other factors) in the experiment. While a sub-interaction effect
exists if the simple effect of one factor depends on the level of other factor (or
on the combinations of other factors) in the experiment. Using the interaction
definition of Hinkelmann (2004) in the linear response case, the sub-interaction is
the “average difference” between the simple effects of one factor at levels of other
factor (or combinations of other factors) in the experiment. Higher order interac-
tions are definable also in terms of simple effects of the lower-factor interactions
(see example in Appendix 3).

Analogy to the linear response case, the SPML-effect model could be defined
as

u′ijk = εijk +
[
µcos. + τ cosAi

+ τ cosBj
+ τ cosABij

, µcos. + τ sinAi
+ τ sinBj

+ τ sinABij

]
,

where τA, τB and τAB represent the effects of A, B and their interaction, respec-
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tively, at the different levels i = 1, 2, j = 1, 2, whereas µ· is the grand mean.
τA (τB) is the deviation of µi· (µ·j) from the grand mean, whereas τAB is the
difference of the deviation of µij mean from the grand mean and the sum of τAi

and τBj at suitable i and j levels.

4. Estimation and Testing Factor Effects in SPML Model

Estimation and testing of the SPML parameters is documented in Presnell
et al. (1998). In the factorial design case and as a result of the orthogonality of
the X columns, we have X ′X = 2frIp, where f is the number of factors in the
experiment and p = k + 1 is the number of parameters in one equation. This
simplifies the SPML likelihood estimation equations as following:

Bp×2 =
1

2fr
X ′p×nMnUn×2,

where

Mn = diag{ψ̇(u′1B
′x1), · · · , ψ̇(u′nB

′xn)}, ψ̇(t) = t+
Φ(t)

Φ(t) + tΦ(t)
,

Un×2 =

 u′1
...
u′n

 ,

u′i = (cos(θi), sin(θi)), Φ(t) is the standard normal distribution form and φ(t) is
the standard normal density form.

To test the significance of a main or interaction effect, the asymptotic like-
lihood ratio test is used. Generally in factorial designs, interaction effects are
tested first, if it was significant the main effects of the factors involved in this
interaction are not to be tested.

5. Illustrative Example

The effect of four two-level factors (A: location of a butt weld to the flywheel-
fixed or random, B: flywheel radius grade- low or high, C: flywheel thickness
grade-high or low, D: size of the counter weight attached at 0-low or high) on the
angle where a corrective weight should be attached to balance the engine part is
under study. Each combination of the factors is replicated ten times. The data
set is published in Anderson and Wu (1996). A MINITAB14 macro is written
to fit the SPML model and to calculate the likelihood ratio test. The macro
programs the EM algorithm and graphs the C-ME and C-IE plots.

Figure 3 shows C-ME plot of the main effects considered in fitted full 24

FD model. It is clear how factor B and D affect mainly the dispersion of the
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response, while factor C affects both location and dispersion. On the other hand,
main effect of factor A is relatively much smaller than the other main effects and
hence of less importance.

12 
 

Figure 3: C-ME of A, B, C, and D in the fitted full model  
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Figure 3: C-ME of A, B, C, and D in the fitted full model

C-IE plots of all the two way interactions in the 24 FD full factorial design
are shown in Figure 4 for the fitted full model. The relatively most important
interaction is the BC while the least important one is BD. The remaining four
two-way interactions seem to be of same importance.

Table 1 contains different statistics of different models that are of interest in
any initial step of a factorial analysis. The best model in terms of AIC is the
model that contains up to all three factor interactions, while in terms of BIC, the
best model is the model that contains only up to all two factor interactions. To
compare different models in terms of the likelihood ratio principle, one can use the
concept of deviance. Deviance allows one to test whether the fitted reduced model
is significantly worse than the saturated model (lack of fit test). By definition the
deviance is twice the negative difference between the log likelihood functions of the
reduced and the saturated model, which is asymptotically chi-squared distributed
with degrees of freedom equal to the difference of the number of parameters in
the two models. Differences in deviances would be used to compare two nested
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Figure 4: C-IE of all 2-way interactions in 24 FD using the fitted full model

models [Myers et al., 2002, p. 114]. In terms of the deviance analysis, the model
without any higher than two-factor interactions is reasonable and does not suffer
from lack of fit (p-value = 0.66113). This model is the best model in terms of
BIC, too. Although the model without all the two-factor interaction does not
suffer from lack of fit (p-value = 0.06480), models without CD or BC do suffer
from lack of fit (p-value = 0.005424 and 0.031635, respectively). Hence, keeping
CD and BC is recommended, which leads to keep also main effect B, C, and
D. The deviance analysis shows also that the model without main effect A fits
reasonably (p-value = 0.436049). Models that do suffer from lack of fit (given an
asterisk in Table 1) indicate that dropping the chosen effect is not recommended.
Accordingly, the best SPML model for this data set should contain B, C, D, CD
and BC. This model has AIC = 460.337, BIC = 480.012 and 2 log(L) = −218.168
(p-value = 0.733592). Note that this model has the least BIC statistics among
all the models considered in Table 1.

Anderson and Wu (1995, 1996) considered the same data set to study a
location-only and a dispersion-only effect, respectively. Their final location-
influential factors are A, C, D, CD and AD, while their dispersion model con-
tained B, C, D, and CD. Our SPML model contains their dispersion-factors,
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Table 1: Statistics of different models of interest

Model −2 log(L)
Deviance

df p-value AIC BIC
from full

Full 202.444 468.888 567.294
Without ABCD 202.553 0.109 2 0.946959 463.107 514.2958
Without ABC 205.029 2.585 2 0.274583 470.058 519.2478
Without ACD 205.669 3.225 2 0.199389 471.338 520.5278
Without ABD 203.260 0.816 2 0.664979 466.521 515.7098
Without BCD 203.418 0.974 2 0.614467 466.836 516.0258
Drop all > 2 interactions 210.113 7.669 10 0.66113 464.227 500.2993
Without AB 203.555 1.111 2 0.573785 467.11 516.2998
Without AC 203.204 0.76 2 0.683861 466.407 515.5968
Without AD 206.619 4.175 2 0.123997 473.238 522.4268
Without BC 209.351 6.907 2 0.031635* 478.703 527.8918
Without BD 203.320 0.876 2 0.645326 466.639 515.8288
Without CD 212.878 10.434 2 0.005424* 485.757 534.9458
Dropping all interactions 235.240 32.796 22 0.06480 498.481 527.1776
Without A 204.104 1.66 2 0.436049 468.207 517.3968
Without B 208.441 5.997 2 0.049862* 476.882 526.0718
Without C 210.926 8.482 2 0.014393* 481.853 531.0418
Without D 209.327 6.883 2 0.032017* 478.654 527.8438

but their set of location-factors is not matching our combined location-dispersion
factors. While they identified A and AD as important factors in their location-
effect analysis, both effects are not important in our SPML model, with p-values
of 0.436049 and 0.123997, respectively. Actually AD was identified as the second
most important effect in their analysis and CD is the first most important one,
while A came at the 13th position among the 15ths effects. Fitting SPML model
with their location-factor set gives the following statistics: AIC = 473.844, BIC
= 493.5197 and 2 log(L) = −224.922 (p-value = 0.315146). The model is still
adequate but our best model beats it in terms of AIC and BIC.

Our fitted SPML model is

û′ijk =
[
−0.874332cos − 0.324906cosxBik − 0.440622cosxCjk + 0.316346cosxDlk

−0.391979cosxBikx
C
jk − 0.464214cosxDlkx

C
jk, 0.464643sin + 0.154155sinxBik

+0.054378sinxCjk − 0.153721sinxDlk + 0.050118sinxBikx
C
jk + 0.078266sinxDlkx

C
jk

]
.

6. Conclusion

The SPML model is used in the factorial design setup to help in modeling
circular data with predictors measured on the real line in a relatively easy way
than the models proposed in the circular regression setup. SPML solved the
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dilemma of not having a suitable model to complete a factorial analysis for fac-
torial data with a response measured on the circle. It enables us to determine
and visualize the factor effects on the response. The proposed C-ME and C-IE
plots with the circular response plays the same role the effect plots with a linear
response is playing in the factorial analysis. The deviance analysis is used to
identify adequate model with significant effects.

The use of SPML model in the factorial design setup along with the two effect-
plots and the effect interpretation, proposed in this paper, enables the researcher
to perform a complete analysis of a factorial experiment for a circular response.

Appendix 1

For the 22 factorial design with interaction defined in (3.1), the main effect
vector of A is defined as [A] = u2.. − u1...

If [A] = 0 (no main effect), then

→ s2||u2|| − s1||u1|| = 0 and c2||u2|| − c1||u1|| = 0.

For the cosine equation, we have

(2rβcos0 + 2rβcosA )||u2|| − (2rβcos0 − 2rβcosA )||u1|| = 0,

→ 2rβcos0 (||u2|| − ||u1||) + 2rβcosA (||u2||+ ||u1||) = 0.

This holds if one of the following three solutions satisfied:

(1) βcos0 = 0 and βcosA = 0 (2) ||u2|| = ||u1|| and βcosA = 0 (3) ||u2|| = ||u1|| = 0.

Similarly, for the sine equation we have

(1) βsin0 = 0 and βsinA = 0 (2) ||u2|| = ||u1|| and βsinA = 0 (3) ||u2|| = ||u1|| = 0.

The first and the third solutions are not acceptable (trivial solution), since it
means SPML model is not significant, while the second solution means that the
dispersion is fixed and sub-effects are zeros.

Note that fixed dispersion is satisfied if

u2 = u1,

→ (βcos0 + βcosA )2 + (βsin0 + βsinA )2 = (βcos0 − βcosA )2 + (βsin0 − βsinA )2

→ −βsin0 βsinA = βcos0 βcosA

→
(
βsin0

βcos0

)(
βsinA

βcosA

)
= −1

SPML−−−−−→ tan(θ...) tan(θ2.. − θ1..) = −1.
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Appendix 2

Figure A2.1 represents two scenarios where main effect affects both disper-
sion and location while only one of [A] sine or cosine coordinates equals zero.
Figure A2.2 shows possible scenarios in which the main effect increases the dis-
persion without any effect on the location while both slopes are nonzero. Possible
Scenarios in which the main effect increases the location without any effect on
dispersion are depicted in Figure A2.3. Note that in all of these three figures if
we switched the high mean response vector (blue vector) with the low response
vector (red vector), the effect on location or/and dispersion is still present but
with the opposite sign. Scenario d in Figure A2.3 shows that when the high and
low vectors of the factor are 2π apart from each other, [A] will exactly lie on the
high vector and with same direction and dispersion.

Appendix 3

The SPML model of the full 24 FD for the example data

u′ijltk = [β0 cos + xikβA cos + xjkβB cos + xlkβC cos + xtkβD cos + xikxjkβAB cos

+ xikxlkβAC cos + xikxtkβAD cos + xjkxlkβBC cos + xjkxtkβBD cos

+ xlkxtkβCD cos + xikxjkxlkβABC cos + xikxjkxtkβABD cos

+ xikxlkxtkβACD cos + xjkxlkxtkβBCD cos + xikxjkxlkxtkβABCD cos,

β0 sin + xikβA sin + xjkβB sin + xlkβC sin + xtkβD sin + xikxjkβAB sin

+ xikxlkβAC sin + xikxtkβAD sin + xjkxlkβBC sin + xjkxtkβBD sin

+ xlkxtkβCD sin + xikxjkxlkβABC sin + xikxjkxtkβABD sin

+xikxlkxtkβACD sin + xjkxlkxtkβBCD sin + xikxjkxlkxtkβABCD sin]′

+ εijltk.

Sub-effects for cosine equation:

[A]cos = {c2.... − c1....},

[AB]cos =
1

2
{[A(b2)]cos − [A(b1)]cos} =

1

2
{(c22... − c12...)− (c21... − c11...)} ,

[ABE]cos =
1

2
{[AB(e2)]cos − [AB(e1)]cos}

=
1

22
{[A(b2e2)]cos − [A(b1e2)]cos − [A(b2e1)]cos + [A(b1e1)]cos} ,
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Figure AII.1: Possible Scenarios where main effect affects both dispersion and location while only one of 
the resultant main effect coordinates equals zero 

 

(b) c1||u1.|| = c2||u2.|| & s1||u1.|| < s2||u2.||  dispersion ↑ &  location 
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(a) s1||u1.|| = s2||u2.|| & c1||u1.|| > c2||u2.||  dispersion ↓ & location ↑ 

 

 

Figure A2.1: Possible Scenarios where main effect affects both dispersion and
location while only one of the resultant main effect coordinates equals zero

[ABED]cos =
1

2
{[ABE(d2)]cos − [ABE(d2)]cos}

=
1

23
{[A(b2e2d2)]cos − [A(b1e2d2)]cos − [A(b2e1d2)]cos + [A(b1e1d2)]cos

−[A(b2e2d1)]cos + [A(b1e2d1)]cos + [A(b2e1d1)]cos − [A(b1e1d1)]cos} ,

where

[A(bj)]cos = (c2j... − c1j...),

[AB(el)]cos =
1

2
{[c22l.. − c12l..]− [c21l.. − c11l..]} ,

[ABE(dt)]cos =
1

4
{[c222t. − c122t.]− [c212t. − c112t.]− [c221t. − c121t.]

+[c211t. − c111t.]} .
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Figure AII.2: Possible Scenarios in which the main effect increases the dispersion without any effect on 
the location with both slopes are nonzero 

 

(a) c1||u1.|| < c2||u2.|| & s1||u1.|| < s2||u2.|| 
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Figure A2.2: Possible Scenarios in which the main effect increases the dispersion
without any effect on the location with both slopes are nonzero
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Figure AII.3: Possible Scenarios in which the main effect increases the location without any effect on 

dispersion {||u2.|| =||u1.|| } 

 

(a) c1 = |c2| & s1= s2 
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Figure A2.3: Possible Scenarios in which the main effect increases the location
without any effect on dispersion {||u2.|| = ||u1.||}
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Other main effects, 2-way interactions and 3-way interactions are defined like
the above ones with its suitable subscript. In addition, the definitions of the sine
sub-effects are similar to those of the cosine counterparts where the sine function
is used instead of the cosine one.
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