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Abstract: The Weibull distribution has received much interest in reliability
theory. The well-known maximum likelihood estimators (MLE) of this fam-
ily are not available in closed form expression. In this work, we propose a
consistent and closed form estimator for shape parameter of three-parameter
Weibull distribution. Apart from high degree of performance, the derived
estimator is location and scale-invariant.
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1. Introduction

The use of Weibull distribution to describe real phenomena has a long his-
tory. This distribution was originally proposed by the Swedish physicist Waloddi
Weibull. He used it for modeling the distribution of breaking strength of materi-
als. Since then it has received applications in many areas. For a comprehensive
review of applications, we refer the readers to Johnson et al. (1994) and Murthy
et al. (2004).

The probability density function and the cumulative distribution function of
a three-parameter Weibull random variable, say X, are:

fX(x) =
α

β

(
x− µ
β

)α−1
e
−
(
x−µ
β

)α
, (1.1)

and

FX(x) = 1− e−
(
x−µ
β

)α
, (1.2)

∗Corresponding author.



404 Mahdi Teimouri and Arjun K. Gupta

respectively, for x > µ, α > 0, β > 0. The parameters, α, β and µ are known as
the shape, scale and location parameters, respectively. The hazard rate function
corresponding to (1.1) and (1.2) is

H(x) =
α

β

(
x− µ
β

)α−1
, (1.3)

for x > µ. So, the Weibull distribution can allow for decreasing, constant and
increasing hazard rates. This is one of the attractive properties that made the
Weibull distribution so applicable. The non-central moments corresponding to
(1.1) and (1.2) are given by

E (Xr) =
r∑
i=0

(
r
i

)
µiβr−iΓ

(
1 +

r − i
α

)
, (1.4)

where r > i− α and Γ(·) denotes the gamma function.

Many estimation methods have been proposed for estimating the parame-
ters of the Weibull distribution. We mention: maximum likelihood estimation
(Sirvanci and Yang, 1984), moments estimation (Cohen et al., 1984; Cran, 1988),
Bayesian estimation (Tsionas, 2000), quantile estimation (Wang and Keats, 1995),
logarithmic moment estimation (Johnson et al., 1994) and the probability weighted
moment estimation (Bartolucci et al., 1999). The most popular and the most ef-
ficient of these is the maximum likelihood estimation.

2. Main Results

Among mentioned inference methods, as the most efficient one which received
a lot of attention in the literature, MLE of Weibull family is derived by solving
the non-linear set of three equations given as follows:

n

α
+

n∑
i=1

log

(
xi − µ
β

)
−

n∑
i=1

(
xi − µ
β

)α
log

(
xi − µ
β

)
= 0, (2.1)

−nα
β

+
α

β

n∑
i=1

(
xi − µ
β

)α
= 0, (2.2)

−(α− 1)
n∑
i=1

1

xi − µ
+
α

β

n∑
i=1

(
xi − µ
β

)α−1
= 0. (2.3)

These equations do not yield closed form solutions for parameters.

Theorem 2.1 is useful for constructing a simple, consistent and closed form
estimator for α. This estimator is independent of β.
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Theorem 2.1. Suppose x1, x2, · · · , xn is a random sample from (1.1). Let ρ
denote the sample correlation between the xi and their ranks. Let CV and
S, respectively, denote the sample coefficient of variation and sample standard
deviation. Then,

ρ =

(
µX − µ
σX

)(
1

2
− 1

21+1/α

)√
12(n− 1)

(n+ 1)
.

Proof. From Stuart (1954), the correlation between Xi, and their ranks, say Ri,
is:

ρ = corr (Xi, Ri) =

(∫ ∞
−∞

xFX(x)dFX(x)− µX
2

)√
12(n− 1)

σ2X(n+ 1)
, (2.4)

where µX = E(X) and σ2X = var(X). Using (1.1) and (1.2), we have:∫ ∞
µ

xFX(x)dFX(x)

=
α

β

∫ ∞
µ

x

{
1− exp

[
−
(
x− µ
β

)α]}(x− µ
β

)α−1
exp

[
−
(
x− µ
β

)α]
dx

=
α

β

∫ ∞
0

(z + µ)

{
1− exp

[
−
(
z

β

)α]}( z
β

)α−1
exp

[
−
(
z

β

)α]
dz

=
α

β

∫ ∞
0

(z + µ)

(
z

β

)α−1
exp

[
−
(
z

β

)α]
dz

−α
β

∫ ∞
0

(z + µ)

(
z

β

)α−1
exp

[
−2

(
z

β

)α]
dz

= I1 + I2, (2.5)

where

I1 =
α

β

∫ ∞
0

(z + µ)

(
z

β

)α−1
exp

[
−
(
z

β

)α]
dz = µ+ βΓ(1 + 1/α), (2.6)

and

I2 = −α
β

∫ ∞
0

(z + µ)

(
z

β

)α−1
exp

[
−2

(
z

β

)α]
dz = −βΓ(1 + 1/α)

21+1/α
− µ

2
. (2.7)

So, ∫ ∞
µ

xFX(x)dFX(x)− µX
2

= I1 + I2 −
µX
2

= βΓ(1 + 1/α)

(
1

2
− 1

21+1/α

)
= (µX − µ)

(
1

2
− 1

21+1/α

)
. (2.8)
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Now, divide and simultaneously multiply by, respectively, σX and
√

12(n−1)
n+1 the

both sides of (2.8) to see the result. 2

Corollary 2.1. Suppose x1, x2, · · · , xn is a random sample from (1.1) with
known location parameter. Let ρ denote the sample correlation between the
xi and their ranks. Let CV and S, respectively, denote the sample coefficient
of variation and sample standard deviation. Then an estimator for the shape
parameter, α is:

α̂ =
− ln 2

ln
[
1− ρ√

3

(
1
CV −

µ
S

)−1√n+1
n−1

] . (2.9)

From Johnson et al. (1994, p. 656), in some certain cases, it is well known that
X(1) = min{X1, X2, · · · , Xn} is MLE for µ. Generally, this statistic is a consistent
estimator of location parameter (see Kundu and Raqab, 2009). A better estimate
is X(1)− 1/n (see Sirvanci and Yang, 1984, p. 74). We take the latter statistic as
an estimator of the unknown parameter µ, i.e., we let µ̂ = X(1) − 1/n. It can be
used for constructing a new µ and β-independent estimator of shape parameter,
α as follows.

Corollary 2.2. Suppose x1, x2, · · · , xn is a random sample from (1.1) with
unknown location parameter. Let ρ denote the sample correlation between the xi
and their ranks. Let CV , S and X(1), respectively, denote the sample coefficient
of variation, sample standard deviation and minimum statistic. Then a new
estimator for the shape parameter, α is:

α̂ =
− ln 2

ln

[
1− ρ√

3

(
1
CV −

X(1)−1/n
S

)−1√
n+1
n−1

] . (2.10)

3. Performance Analysis

Here we analyze the performance of the new estimator given in (2.10). For
the sake of simplicity, let us to consider two cases: 1 − µ is known and 2 − µ is
unknown.

Case 1: In this case, after subtracting µ from all the points of data set, the
problem is reduced to estimating the shape parameter of two-parameter Weibull
distribution. Now the new estimator (2.9) depends only on the CV statistic and
is:

α̂ =
− ln 2

ln
[
1− ρ√

3
CV

√
n+1
n−1

] . (3.1)
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Therefore, performance of the new estimator can be discussed by analyzing
the sample coefficient of variation. The use and applications of the sample coef-
ficient of variation have a long history (He and Oyadihi, 2001; Tian, 2005). For
example, the difference between two populations can be tested by comparing the
two sample coefficients of variation based on independent samples gathered from
the populations. Due to this importance, tests for the coefficient of variation
have been developed (Gupta and Ma, 1996). An approximate (1 − α) × 100%
confidence interval for β2 = σ2/|µ|2 is0,

(
(1 + b2)χ2

n−1,1−α
nb2

− 1

)−1 , (3.2)

where b = S/
∣∣X̄∣∣ and χ2

n−1,1−α denotes the upper (1−α) percentile of a chi-square
distribution with n− 1 degrees of freedom. Under the normality assumption, we
have var(b) = β2(1 + 2β2)/(2n). Similar result holds for two-sided inference.
So, because of asymptotic unbiasedness, the confidence interval in (3.2) becomes
degenerate for large sample size.

Without the normality assumption, results like (3.2) are not possible. How-
ever, Cramér (1964) pointed out that the variance of b can be given as:

var(b) =
µ21(µ4 − µ22)− 4µ1µ2µ3 + 4µ32

4nµ41µ2
, (3.3)

where µr denotes the rth central moment of b. If observations are from (1.1) then
b = S/X̄. Johnson et al. (1994, pp. 633-634) have shown that the variance of b
is very small for α ≥ 0.1 and for all admissible values of β, so, the new estimator
given by (3.1) can be expected to perform well.

Case 2: Unfortunately, it is not straightforward to prove unbiasedness and
consistency of new estimator (2.10) in this case. Let us to investigate the prop-
erties of the estimator X(1) − 1/n and S. These estimator are consistent for µ
and σX , respectively. Statistically, the ratios (X(1) − 1/n)/S and S/X̄ converge,
respectively, to µ/σX and 1/CV in probability. In the other word, the α̂ given in
(2.10) converges in probability to α. This guarantees that new estimator works
well when a sample size is large.

3.1. Simulation Study

Here, we compare the performance of the maximum likelihood estimate and
the new estimate for the shape parameter of (1.1). The comparison is based on
the mean relative error (MRE) criterion defined by

MRE =
1

k

∑k

i=1

∣∣∣∣α− α̂iα

∣∣∣∣, (3.4)
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where α̂i denotes the value of either new estimator or MLE in ith iteration.
First, note that here after we consider that µ is unknown and we call (2.10) as
new estimator.

To establish a comprehensive simulation-based study for measuring the effi-
ciency of new estimator comparison with the MLE, MRE is computed for sample
sizes of 100, 500, 1000 and 2000 when µ is set on 5. Larger values of the MRE
correspond to less efficient estimator. Figure 1 displays the MREs for a sample
of size n = 100, 500, 1000 and 2000 for some levels of β = 0.5, 5 and µ = 0. The
MREs for a sample of size n = 100, 500, 1000 and 2000 for some levels of β =
0.5, 5 and µ = 10 are shown in Figure 2. It should be noted that, here, we set
the number of iterations k, at 100.

The following observations can be made from Figures 1 and 2:

1. in all cases the difference between MRE of the New estimator and the MLE
is not significant.

2. because the New estimator is scale invariant, totally, difference between
MREs of the New estimator and MLE is not subject to the scale parameter.

3. in each row of Figures, when β increases from 0.5 to 5, MREs have no
significant changes, totally.

4. in each column of Figures, when n increases from 100 to 2000, MREs de-
crease with increasing n, totally.

5. when µ increases from 0 to 10, comparing Figures 1 and 2, it turns out that
degree of dependence of MREs of two estimators on µ is negligible.

Further discussions show that both new estimator and MLE behaves the same
when bias is considered as criterion. The mode of two estimators occur at origin.
Although the MLE has higher peak than the new estimator in origin, but simula-
tions show that the sample range of bias of the New estimator and the MLE are
approximately equal. Also, normality of the New estimator is verified even form
small sample size (here n = 100). The bias frequency histogram are depicted in
Figure 3 for some selected levels of α and β when location parameter µ, is set
on 10. The histogram is constructed from 500 points, with account taken of the
fact that each point is obtained via the MLE or new estimator on the basis of a
sample of size 100 generated from (1.1).

3.2. Examples

In this subsection, we provide two data sets to show how much the new
estimator works well. For this mean, we address the readers to data sets is
assumed to be distributed with Weibull law (see Murthy et al., 2004, pp. 83,
100). The data sets are given in Tables 1 and 2 as follows. The results for fitting
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Figure 1: MRE of the New estimator and MLE for some levels of α and β when
µ = 0
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Figure 2: MRE of the New estimator and MLE for some levels of α and β when
µ = 10
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Figure 3: Bias frequency of the New estimator and the MLE α for some levels
of α and β

the three-parameter Weibull distribution to the data sets of Tables 1 and 2 are
given, respectively, in Tables 3 and 4. It should be noted that, after estimating α,
β̂ is estimated through a closed form expression derived by (2.2). Also X(1)−1/n
is considered here as an estimator for µ.

Table 1: Data set 1, failure times of 24 mechanical components

30.94 18.51 16.62 51.56 22.85 22.38 19.08 49.56

17.12 10.67 25.43 10.24 27.47 14.70 14.10 29.93

27.98 36.02 19.40 14.97 22.57 12.26 18.14 18.84

Table 2: Data set 2, lifetimes of 20 electronic components

0.03 0.12 0.22 0.35 0.73 0.79 1.25 1.41 1.52 1.79
1.80 1.94 2.38 2.40 2.87 2.99 3.14 3.17 4.72 5.09



412 Mahdi Teimouri and Arjun K. Gupta

Table 3: Estimated parameters for data set 1

Method Estimated parameters AD distance

MLE α = 1.171 β = 13.550 µ = 10.100 0.301

New estimator α = 1.130 β = 13.294 µ = 10.198 0.378

Table 4: Estimated parameters for data set 2

Method Estimated parameters AD distance

MLE α = 1.217 β = 2.057 µ = −0.008 0.432

New estimator α = 1.227 β = 2.072 µ = −0.020 0.408

The Anderson-Darling statistic (AD) is given in last column of each table. In
the sense of this measure, the MLE works better than the new estimator for data
set 1, while the reverse is concluded for data set 2 from Table 4.

4. Conclusion

In this work a new estimator for shape parameter, as the main parameter,
of the three-parameter Weibull family is proposed. Having properties such as:
closed form expression, simplicity, asymptotically unbiasedness, high degree of
performance and independence of scale and location parameters made it as a
good competitor for maximum likelihood estimator of the shape parameter which
is computed numerically. Simulations show that the new estimator works com-
parable with the maximum likelihood estimator, in the sense of (3.4), even for
small sample size. Two real examples also verify that the new estimator performs
very good.
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