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Abstract:

We have developed a tool for model space exploration and variable selec-
tion in linear regression models based on a simple spike and slab model (Dey,
2012). The model chosen is the best model with minimum final prediction
error (FPE) values among all other models. This is implemented via the R
package modelSampler.

However, model selection based on FPE criteria is dubious and question-
able as FPE criteria can be sensitive to perturbations in the data. This R
package can be used for empirical assessment of the stability of FPE criteria.
A stable model selection is accomplished by using a bootstrap wrapper that
calls the primary function of the package several times on the bootstrapped
data. The heart of the method is the notion of model averaging for sta-
ble variable selection and to study the behavior of variables over the entire
model space, a concept invaluable in high dimensional situations.

Key words: FPE analysis, model exploration, model uncertainty, rescaled
spike and slab model, variable selection.

1. Introduction

Variable selection in linear regression models is an important aspect of many
scientific analyses. A classic approach to the problem is to use what is often
referred to as final prediction error (FPE) approach (Akaike, 1969). The FPE
criteria is one which takes the residual sum of squares and tacks on a penalty
related to the number of variables. Classical examples are AIC (Akaike, 1973)
and BIC (Schwarz, 1978). The best subset of variables or the “optimal model”
is found by searching all models and finding that model with the smallest FPE
criteria. Unfortunately all subset searches are not feasible in high dimensions as
this severely constrains FPE methods. For example, one of the most popular all
subset procedure implemented in R is the leaps (Lumley, 2010) package. However,
leaps restricts the user to approximately 30 predictors. Restricted all subset
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searches can be used to get around this problem (for instance, using the step
function in R). Since models are fit in a forward stagewise fashion, the concern
is that models tend to be avid of a few high signal variables entering early on,
thus masking the ability to identify other influential predictors. Methods such as
boosting (Schapire, 1990) addresses this issue of greed and acquisitiveness, but
since their primary goal is to minimize prediction error, interpretability suffers
and variable selection is not properly addressed.

In order to address these issues we have developed a Bayesian method based
on rescaled spike and slab (RSS) models (Dey, 2012). For more details of spike and
slab model, we refer readers to Ishwaran and Rao (2003; 2005a,b). This method
is implemented via the R package modelSampler (The R package is available
at http://tdey.people.wm.edu/modelSampler.html). The function modelSampler
implements a Gibbs sampling procedure for drawing values from the Bayesian
posterior. The Gibbs sampler is highly efficient and is able to effectively search
over the relevant model space, enabling a “smart type” of restricted all subsets
search. This way restricted AIC and BIC models can be found.

A pertinent question could be why is Bayesian hierarchical model being used
to implement FPE method. To implement FPE based methods, we need to
build all possible models based on the data set. This is impossible when the data
dimension is moderate or large. With the advancement of technology, we are now
dealing with more complex data with very high to ultra-high dimensional data
sets. So proper implementation of the FPE methods are literally impossible. In
this context, the use of RSS model is quite helpful to implement restricted search
and is able to find a small subset of the entire model space. Once we have this
subset, we can easily implement FPE methods for variable selection.

One can also argue using more advanced and popular methods like lasso
(Tibshirani, 1996) and its several modified versions, elastic net (Zou and Hastie,
2005), SCAD (Fan and Li, 2001), adaptive elastic net (Zou and Zhang, 2009), SIS
(Fan and Lv, 2008), to name a few. These methods are referred to as penalized
likelihood techniques. The AIC and BIC are also based on [yp-penalization. In
penalized likelihood based approaches, tuning parameter/s associated with the
penalty term/s play an important role. For example, the tuning parameter for
AIC is 2, whereas for BIC it is log(n), where n is the sample size. In case of other
penalized procedures, the choice of tuning parameter/s is data driven and most
of the time it is selected using methods like AIC, BIC or cross validation type
techniques. It is interesting to note that even if we are leaning towards using
these newly introduced techniques, FPE based methods are still in use and play
a significant role in modern day practices.

One should be cautious of selecting variables solely on the basis of an FPE
analysis; as the FPE criteria can be sensitive to perturbations in the data. In
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fact, the modelSampler package can be used to assess instability of the FPE
criteria, as well as to provide a more stable solution. The function modelSampler
makes use of model averaging for stable variable selection. Selecting a more stable
set of variables is accomplished using the function boot.modelSampler, which is
essentially a bootstrap wrapper that calls the primary function modelSampler.
The user specifies B, the number of bootstrap draws to use and the wrapper then
makes B calls to the primary function. Each call uses a bootstrap draw of the
original data.

A hard shrunk posterior mean is computed for each bootstrap draw for each
model size visited by the Gibbs sampler. The hard shrunk estimators are then
combined over the B draws to form a hard shrunk ensemble for each given model
size. Using out-of-bagging we estimate the prediction error for each hard shrunk
predictor, and select the predictor with the smallest prediction error. The dimen-
sion of the selected predictor is the optimal model size k. The optimal model is
then chosen by selecting the first ordered k variables. Ordering is based on an
ensemble Bayesian model averaged (BMA) predictor, formed by averaging the
BMA estimator over the B bootstrap draws. Ordering is based on the BMA
ensemble because of the inherent stability that is gained by model averaging.
Note that unlike traditional BMA where the goal is prediction (Hoeting et al.,
1999), our ensemble is derived solely for purposes of variable selection. This type
of analysis is very different from the linear regression model implementation via
bicreg function of the R package BMA (Rafttery et al., 2010) for Bayesian model
averaging.

The modelSampler package has four distinct features:

1. The core function modelSampler implements a Gibbs sampler to draw pos-
terior values. The Gibbs sampler keeps track of different models as they
are being sampled. The unique feature of the bimodal prior in the RSS
model (details discussed later) is that it creates a unique mapping between
posterior sample and a visited model (for details see the Gibbs sampler in
the Appendix). This helps to perform FPE based variable selection. The
output from the core function also provides posterior probabilities for each
variable in the data set. This can be used to perform Bayesian variable se-
lection, for example highest posterior variable selection, variable selection
based on median model. Therefore if one is interested in fast and effective
variable selection procedure, the modelSampler function is equipped to do
so. It is to be noted that variable selection based on modelSampler is as
competing as the popular penalized likelihood based procedures like lasso,
see Dey (2012). An advantage of using this method is that there is no need
to rely on proper choice of tuning parameter, as is the case in penalized
likelihood based procedures.
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2. If one is interested in only FPE based variable selection, there is some
uncertainty involved in this selection procedure. modelSampler package can
also be used to foresee the instability of the FPE based criteria. To overcome
the uncertainty around FPE based variable selection procedure, we use a
prediction error based variable selection method by using another function
boot.modelSampler. The salient feature of our method implemented via
this function is that it not only perform variable selection, but also the
predictive performance is quite competing to the well known predictive
methods like Random Forest, Boosting, and BMA.

3. Another important concern related to variable selection procedure is model
uncertainty, particularly in higher dimensional setting. We are able to show
(empirically) that even if we get an “optimal model” using some method,
there are other models that have similar predictive performance (based on
prediction error). Hence the question is which model should we choose
as the best model! Using boot.modelSampler, we are able to show that
there are many competing models with very similar prediction error. So
we propose using both numeric and graphical outputs to choose a set of
competing models and use them solely for prediction purposes.

4. This R package produces high dimensional graphics to visualize several
salient features related to variable selection procedure, such as importance
of variables with respect to total number of variables in the data set, vi-
sualizing the entire model space, the instability of FPE criteria, prediction
error plot, etc.

1.1 Organization of the Article

The article is organized as follows. Section 2 presents an overview of the data
generation model and formally defines rescaled spike and slab models. Section
3 has mathematical definitions for BMA estimators, ensemble BMA estimators,
“hard shrunk” predictors and out-of-bag estimation of prediction error. Section
4 shows data analysis using the R package. Section 5 is the empirical study to
compare predictive performance of the stable variable selection technique based
on RSS model with other existing popular methods. Section 6 introduces the
issue of model uncertainty as relates to “optimal” model selection, with several
graphical examples based on modelSampler package along with data analysis.
Section 7 concludes the article with a discussion.

2. A Bimodal Spike and Slab Model

Our discussion focuses on linear regression models. We assume that the re-
sponses Y7, - -+, Y, are independent with corresponding K-dimensional predictors
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xi,--- , &y such that
Yi=fwin+ -+ Brrig +ei=xB+e, i=1,-,n (1)

Here {¢;} are independent variables such that E(e;) = 0 and E(¢7) = 02 > 0. It is
also assumed that x;’s are standardized, so that ), 2;, =0and ), , l’?k =n
for each k and > | y; = 0. Notice that the last constraint is satisfied by centering
{yi}i1<i<n by the mean. Since y is assumed as centered, no intercept term is
included in (1). From a model selection point of view, the focus is to identify
predictors that are non-zero in (1). RSS models were introduced in Ishwaran and
Rao (2003; 2005a, b) as a method for selecting variables from (1). A rescaled
spike and slab model refers to a Bayesian model specified by the following prior
hierarchy

(Yilzi, B) ™ N(z'B,n), i=1,--,n,

(Bly) ~ N(0,T),

v ~ w(dv), (2)
where YZ = - 1nt/ 2Y; and 62 is an estimator for o2, 0 is the K-dimensional
zero vector, I' is the K x K diagonal matrix diag(vyi,--- ,7vx) and 7 is the prior
measure for v = (y1, - ,vx)"

We consider a simple prior for ~g, different than that used by Ishwaran and
Rao (2003; 2005a, b). We are using a two-component mixture model with one
component taking a very small value vy > 0, while the other component takes a
very large value V' > 0. Such a choice induces a prior for 3, which is a mixture
of near-degenerate multi-normal distributions. Each near-degenerate distribution
acts like a flat prior over a subspace (which can be thought of as model), and the
posterior mean conditioned in this subspace closely approximates the constrained
ordinary least squares (OLS) estimator (for details see Dey, 2012). Under this
prior, the Gibbs sampler produces different models and each model gives an
estimate for the constrained OLS estimator. By doing so we have an effective
way to implement a Monte Carlo all subset search which allows us to compute
classical FPE estimates for these models. This helps us to study the empirical
performance of classical methods, such as AIC and BIC without being severely
restricted to the number of predictors that can be entertained.

The prior 7 for ~ is specified as

(Vk[vo, V, w) i (1 —w)dy, (") +wdy(:), k=1,---,K,
w ~ v(dw). (3)

Here v is a prior measure for w € [0,1]. One can think of w as a complexity
parameter that controls the overall size of the model.
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The rescaling of the response variable induces a non-vanishing penalization
effect, and ensures a selective shrinkage property in orthogonal models when used
in tandem with a continuous bimodal prior (Ishwaran and Rao, 2005a; 2011).
This property allows the posterior mean for the coefficients to shrink towards zero
for truly zero coefficients, while for non-zero coefficients the posterior estimates
are similar to the OLS estimator.

Remark 1. One way to estimate 62 is by using the unbiased estimator of o2
from the least squares technique. Let gorg be the predictor for y based on OLS
estimator. Then 6% = ||y — Jors||?/(n — p). If OLS does not exist, a more
general approach could be used to get 6% estimator by using both parametric or
nonparametric methods. We recommend using the method Random Forest to
get the estimator from test-set mean squared error. For details see Ishwaran and
Rao (2011). Both the proposed estimation procedures are implemented in the R
package.

3. Variable Selection Based on modelSampler

Here we discuss the stable variable selection technique based on the boot-
strapped wrapper boot .modelSampler. In boot.modelSampler, we call modelS-
ampler B times on bootstrapped data. For each bootstrap iteration we calcu-
late the BMA estimators. Based on B iterations we calculate ensemble BMA
estimators. The ensemble BMA could be used to generate a stable ordered list
of variables such that for any given k, we can then determine the best model of
size k. As model selection ultimately forces us to choose a single model from our
class of models, it generally rules out the BMA estimators that do not correspond
to any one specific model. Therefore, it does not help us to find our optimal k
because due to averaging the actual size k gets ruled out.

Here we formally define BMA estimator under RSS model (2). The BMA
estimator for 3 is B8 = E(8|Y):

B =3 E(Bla,Y)r(a]Y)
=3 Y BB V)n(afY), Ap={a:K.=k)

K
— ZE(IB|Q = Ak,?)W(Ak‘?)

The last line of the above expression follows from



modelSampler: An R Tool for Variable Selection 349

E(ﬁ!aeAk,?):/ﬂ B,Ak|Y) 5

Ak|Y
= — ,alY
W(AR‘Y py) > [ Br(a.al¥)is
1
—WQEA {/ﬂf (B, a, Y)dﬂ] (a\Y)

Consequently we have
K
B=> Bm(AY),
k=1

where Bk =E(Bla € A, f’) is the “conditional posterior mean”.

For each bootstrap b, where b = (1,--- , B), there is a BMA estimator which
is denoted as Bb The ensemble BMA estimates for these bootstrapped esti-
mator is: ,6'6 = B~ 121) 1517 In the case of the ensemble BMA estimator

Be = (B§,---, BK) , we rank variables by their absolute coefficients estimates.
So if

85,1 = 185,1 = -+ = |85, |, (4)

then variable j; is the top variable, jo is second best variable, and so on. In
particular, the best model of size k is ax = {j1,72, - ,Jjrx}. We don’t know
the actual k& because we are using an ensemble technique and model size specific
information is lost due to averaging.

As the above procedure is not useful, we use the hard shrinkage method to
find optimal k. We find k by using a class of “hard shrunk predictors”. From each
bootstrap iteration, we estimate “hard shrunk estimators”. After B iterations
we calculate ensemble “hard shrunk predictors”. Then we use out-of-bagging to
estimate the prediction error for each hard shrunk ensemble. The dimension of
the predictor is k (the optimal model size) that has the smallest prediction error.

3.1 Optimal Model Size Determination via Hard Shrinkage and Model
Averaging

To determine k we are not going to use a traditional Bayesian approach, we
prefer to take on a frequentist approach. Because of averaging across all the
models, BMA estimators lose model size specific information. It can be shown
that the posterior mean approximates constrained OLS estimates which is why
we use the conditional posterior mean of (4), see Dey (2012) for details. We
indirectly use B3 by defining a hard shrinkage estimator:

Bl = (X!, Xa, +nly,) ' XL Y,
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where I, is an identity matrix of size ag and o = {ji(k),j2(k), -, jx(k)}
and ji(k), for [ =1,---, K, is determined from the ranking of the coefficients of

Br = Brg, -+ Br )

> 2 1Bkl ()

Based on this estimator, the hard shrunk predictor is

1B ey.) = 1Bja iy i

afl (z) = X'BL.

Considering the linear regression model (1). Let (Y{,@7,), -, (Y, ,, @, ;)
be the b-th bootstrap sample of size n, and (Yl’iz,a:’{fb), e ,(Y;:’b, acf;l';b) be the

corresponding out-of-bag (OOB) sample of size n,. While bootstrapping the hard
shrunk estimator is estimated for each bootstrap data as

AHx * * —1 x *
Blgb = (Xat bXak,,b + nIOlk) Xat bY :

k> k>

Based on this estimator we define hard shrunk ensemble predictor

B
i (@) = (Z Lipidh, <w*>) / b,
b=1

where
Ly =

)

1, if n;p = 0 and k-th model is visited,
0, ifn;p > 1 and k-th model is not visited,

nip = oo, Lip and [L,Zb(a:*) bootstrapped hard shrunk predictor. Note that

~

ukH’(Z)(w) is the ensemble hard shrunk predictor with
out-of-bag (OOB) ensemble predictor.

Once we get this class of hard shrunk predictors we are able to estimate the
prediction error (PE). Formally we define this as

PR z”: <Yz — ﬁkH’(i)(wi))

n“
=1

“sn
1

removed. This is called

2

A H
In fact &2, is nothing more than the leave-one-out bootstrap estimate of pre-
diction error for ,3,? . Based on this estimated PE we find the optimal model of

size /;:, where k is determined as
N . ~ H
k = arg mkln{,@k }. (6)

Finally the “best” subset of variables are o; = {j1,J2, - ,j;} using the
selection procedure as described in (4).
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Remark 2. The same OOB technique is applied to get an OOB estimate of
PE for the ensemble BMA estimator (even though we don’t use it). When
we bootstrap the data, for each iteration we calculate BMA estimator B; =

(B;}"l, e ,B;;K)t. Based on this estimator we define an OOB predictor fi,(z;*) =
~ A kK

wg*tﬁg‘. The cor;"esponding estimate for PE of OOB predictor is &%, =n"" Yoy

(Y — frip(x]3))"

As bootstrap iteration continues, our BMA estimators approach to ensemble
BMA estimators. We follow similar step to define predictors, updating 3; and
to subsequently estimate PE’s. At the last stage of iterations, our estimated PE

N 3 3
for B-th iteration is g = n"tY. " (Vi — ﬂi’B(X;*B))Q, where fi; p(x;5) =
x3t3°. Note that 3¢ is the ensemble BMA estimator. The final estimated PE
for ensemble BMA estimator is #¢ = B~} Z{il P

4. Description of modelSampler and Usage in R
4.1 Roadmap of modelSampler
The work flow of the package can be visualized in two distinct phases. In the

initial phase, the user calls modelSampler for a restricted FPE search. In phase
two, boot.modelSampler is used to generate a final stable set of variables.

modelSampler () . print(object)
data return(object) Summary
boot .modelSampler () plot(object)
) plot(object) . . )
return(object) Several Graphics —————————— Prelim. Analysis
print(object)
Summary Final Analysis

In R package modelSampler, the core function modelSampler implements a
Gibbs sampling procedure as described in Section 3. This function outputs an
object that comprises of several results, namely models that are selected based on
the FPE selection criteria, frequencies of each model visited by Gibbs sampler,
the “best” subset of variables which corresponds to a specific model size and the
posterior inclusion probability of each variable in the data set. This object is
visualized via several interesting graphics to support the analysis. For further
analysis boot .modelSampler function is implemented in the package. It calls the
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core function B times, and finally outputs the “best” subset of variables. This
output is then used via graphics to study the model space of the data, instability
of the FPE selection criteria, optimal size of the model and model uncertainty.

4.2 Example: Diabetes Data

The example uses the Diabetes data (Efron et al., 2004). The data set com-
prises of 442 diabetes patients with 10 baseline variables. Y is the outcome vari-
able. For details of the data:

R> install.packages("modelSampler")
R> library("modelSampler")

R> data("Diabetes")

R> 7?Diabetes

We first use the core function modelSampler for preliminary analysis of the data
which gives the following output:

R> library("modelSampler")

R> data("Diabetes")

R> ms.out <- modelSampler(Y~., Diabetes, n.iter1=2500,
+ n.iter2=10000,verbose=FALSE)

R> print(ms.out)

No. predictors : 10

No. sampled values : 10000
Estimated complexity : 0.6 +/- 0.168
Prob. visiting new model : 0.016

Model selection results:

hpm aic bic
sb 0.9701 TRUE TRUE
bmi .9697 TRUE TRUE
bp 0.9991 TRUE TRUE
sl 0.66 TRUE FALSE

o

sex 0.9323 TRUE TRUE
s2 0.4999 TRUE  FALSE
s3 0.5491  FALSE TRUE
s4 0.3534 FALSE FALSE
s6 0.1732 FALSE FALSE
age 0.1017 FALSE FALSE

Top models stratified by size:

1 2 3 4 5 6 7 8 9 10
sb FALSE  FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
bmi  FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
bp TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
sl FALSE FALSE FALSE TRUE  FALSE TRUE TRUE TRUE TRUE TRUE
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sex FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE

s2 FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE

s3 FALSE FALSE FALSE  FALSE TRUE FALSE FALSE  FALSE TRUE TRUE

s4 FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE

s6 FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE

age FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE
1 2 3 4 5 6 7

freq 4.000 22.000 177.000 357.000 1933.000 3764.000  2484.000

mss 4774.120 3581.692 3083.057 3012.299 2913.764  2876.889  2868.567

aic 4788.958 3611.369  3127.572 3071.653  2987.956  2965.920  2972.437

bic 4819.313 3672.078 3218.635 3193.071  3139.728 3148.047 3184.918
8 9 10

freq 943.000 263.000 53.000

mss 2861.571 2860.862  2860.682

aic 2980.279  2994.408  3009.067

bic 3223.114  3267.598  3312.611

After completion of 10,000 sampling, the probability of visiting a new model by
Gibbs sampler is 0.016, which supports the convergence of the Gibbs sampler.
Even though it suffices the convergence of the Gibbs sampler, an in-build function
is available in the package to graphically diagnose the issue of convergence (we will
discuss this later). Six variables are selected by AIC, whereas only five variables
are selected by BIC. We can also measure the posterior inclusion probabilities
of each variable. By observing the subset of variables corresponding to each
model, one can estimate the significance of variables in the data. For instance,
the variable bp is the most significant variable as it appears in the model of size
one and is present till the model acquires a full size. Also its posterior inclusion
probability is 0.999, which shows that it is the most significant variable among all
variables in the data set. The next significant variable is s5 and so on. Looking at
the total frequencies of each model, we impart that model size 5 to 7 is probably
the right dimension of the data.

R> plot.modelSampler (ms.out)

Based on the output generated by modelSampler we get Figure 1, generated from
the above command. Five plots are produced going from top to bottom and left
to right:

1. The function modelSampler estimates a complexity parameter. A complex-
ity plot is provided to view the range of estimated complexity parameter
that allows the user to interpret the dimensionality of model space. A high
value is characteristic of a larger model. Estimated complexity for Diabetes
data is 0.6 + 0.16.
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Figure 1: Ensemble graphical analysis of Diabetes data

2. A penalization plot represents a restricted dimension-specific FPE values

for instance, minimum residual sum of squares, AIC and BIC. The black
line corresponds to minimum residual sum of squares, the red line is for
AIC values and the green line is for BIC values.

A dimensionality plot is used to depict the size of models visited by modelSa-
mpler. From the plot it seems that for the Ozone data, the actual size of
the model will be approximately between 5 to 7.

An image plot is provided to visualize the different models called on, as a
function of the number of Monte Carlo iterations. During sampling bp was
present almost all the time, whereas age hardly appeared. Based on this
plot we infer that bp is the most significant variable while age is the least
significant variable.

A coverage plot is provided for the user to assess convergence of Gibbs
sampler. This plot portrays the probability of visiting a new model. As
iteration continues the line levels to almost a horizontal line. This shows
that modelSampler converges very fast.

4.3 Convergence of modelSampler

In the earlier section we were tracking the convergence of the Gibbs sampler
via coverage plot. Now we are going to use Gelman-Rubin multiple sequence
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diagnostics for our Gibbs sampler. The plot.gelman function of the R package is
used to implement graphical diagnostics for the convergence of the Gibbs Sampler.
For this particular function the package depends on the R package coda. In
general, the Gibbs sampler of the modelSampler reports final samples after some
burn-in samples. To use Gelman-Rubin diagnostics, we run Gibbs sampler for
three different chains with three different starting values, increasing the sample
size from 200 to 1500. For each sample size corresponding to the three chains, we
get p (total number of variables in the data set) potential scale reduction factor
(psrf) values. If psrf values are close to 1, we believe that samples converge to
the stationary distribution. The following command generates the Gelman-Rubin
diagnostics plot of the convergence of the Gibbs sampler:

R> library("modelSampler")
R> data(Diabetes)
R> plot.gelman(Y~., data=Diabetes)

Figure 2 is the graphical representation of the convergence of the Gibbs sampler.
In the figure corresponding to each sample size, we draw a circle with radius
one, and psrf values are plotted from the center of the circle. As the sample
size increases, the psrf values get close to one and they rest on the circumference
of the circle. It is quite distinct that when sample size equals 1500 all psrf
values are close to one; which suffices that Gibbs sampler converges really fast
for moderate number of sampled values from the Gibbs sampler. The Diabetes
data has moderate number of variables. For higher dimensional data, we notice
that sample size of 7500 is reasonable for the convergence of the Gibbs sampler.
In fact this option is also available in the plot.gelman function; we refer readers
to use this function for the Ozone interaction data (OzoneI) available in the
package.

U

'S U

T T T T 1
200 500 800 1200 1500
Sample size

Figure 2: Gelman-Rubin diagnostics plot for modelSampler based on Diabetes
data
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4.4 Diabetes Data: Final Phase of Analysis

Here we are going to use the boot.modelSampler for stable variable selection
technique based on modelSampler.

R> library("modelSampler")

R> data("Diabetes")

R> ms.boot <- boot.modelSampler(Y~., Diabetes, n.iter1=2500,
+ n.iter2=2500, B=100, verbose=FALSE)

This returns an object to do further graphical analysis, and at the same time
returns the “best” subset of variables based on our ensemble selection technique.
We use this object to study the stability of the FPE model selection criteria.
FPE models are highly sensitive to the perturbation of data as demonstrated
in Figure 3. The R-program of modelSampler package keeps track of each FPE
model visited for each bootstrap draw. The goal is to measure the stability of
the FPE criteria for selecting models when data are being perturbed through
bootstrapping. We study this using an AIC-BIC instability plot. The following
command generates such a plot indicating significant instability:

R> plot.FPE(ms.boot)

AIC models BIC models

Misclassification Rate
o
(o]
|
(I
|
1
(o]
(o]
|
]
N
O

variable index variable index

Figure 3: The instability feature of the FPE model selection criteria for Dia-
betes data. Results are based on 100 bootstrap iterations
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In Figure 3, positive values less than 1 indicate that a given variable was selected
by the FPE criteria in both the full data set and the bootstrapped data set, but
was not selected at all times during bootstrap iterations. Negative values greater
than —1 imply that a particular variable is selected several times by the FPE
criteria for bootstrapped data but was not selected in the original data set.

4.5 Icicle Plot

Figure 4 is a graphical depiction of the Diabetes data model space called an
icicle plot. The following command from the modelSampler package generates
Figure 4.

R> plot.icicle(ms.boot,"Diabetes data")

Diabetes data Icicle Plot
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Figure 4: Graphical depiction of the Diabetes data model space. Results are
based on 100 bootstrap iterations

This plot is a three dimensional (x, y and z) depiction of the Diabetes data
model space. In the left frame of the plot, x displays all variables of the data set,
y displays different dimensions of the model space and z (the color) depicts the
relative frequency of a selected variable in a given hard shrinkage model. The
right frame of the plot represents a color palette of the relative frequencies of the
z values. For example, the variables bp, s5 and bmi appear in all hard shrinkage
models of size 4 or higher in all 100 bootstrap iterations, thereby indicating that
they are highly stable and informative.
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The mathematical explanation of the plot is as follows: Let I, = 1 if the
Gibbs sampler visits a model of size k£ for bootstrap draw b, otherwise I, = 0.
Not all model sizes are visited, so I ; can often be zero. Now we define a binary
variable for each variable j of the model size k, to indicate whether that variable
was in the conditional posterior mean Bk in the model ay. In particular, let

an o — 1, ifﬂk’b:1andj€@k,
k3271 0, otherwise.

Define A = (ay ;) be a K x K matrix where

B K B
b=1

=1 b=1

The icicle plot is a plot of A°.

4.6 Out-of-bagging and the Best Subset of Variables

An out-of-bag (OOB) technique is used to calculate prediction error (PE).
The following PE plot helps to visualize the optimal model size based on the
smallest PE. The following command generates the OOB PE plot as shown in
Figure 5 (the plot shows the optimal size of the model being 7):

R> plot.ooberror(ms.boot,"Diabetes data")

Diabetes data

Out-of-Bag Prediction Error
3400 3600 3800 4000
| |

3200
|

3000
|

2800
|

Dimension
Figure 5: Out-of-bag prediction error plot for Diabetes data. Results are based
on 100 bootstrap iterations. Red points are model size specific estimated PE.
Gray band surrounding red points are PE =+ standarderror (PE). Smooth black
line represents loess estimated line of PE
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Once the optimal model size is determined via (6), we can determine the
“best” subset of variables a; using (5) as a; = {j1,j2,---,j;}. Using our R
package the “best” subset of variables for Diabetes data are:

R> print (ms.boot)

Optimal model obtained via ensemble out-of-bagging:
[1] IISSII Ilbmill llbpll llslll "SeX" IIssll "82"

The seven above selected variables are also ordered based on their importance in
the selection. For example, s5 is the most important variable whereas s2 is the
least significant variable in the selected subset of variables in the Diabetes data
set.

5. Empirical Study

This section is devoted towards numerical experiments to evaluate our pro-
posed method in different circumstances. The experimentations involve a simula-
tion study and a real data analysis. The simulation study evaluates the variable
selection performance of our method compared to other methods. The real data
analysis is implemented to illustrate the predictive performance of our method.
For comparison purposes three different methods, which are well known for their
predictive performances have been incorporated.

5.1 Simulation Study

A simulation study is conducted to illustrate the performance of our pro-
posed method in correlated situation. For comparison, we included the following
methods in the simulation study: lasso and elastic net (enet). Lasso solutions
were calculated using the LARS algorithm (Efron et al., 2004) by invoking the
lasso implementation with a 10-fold validation to estimate the shrinkage param-
eter. Computations are implemented using the lars R package. The elastic net
method is implemented using enet R package. For enet tuning parameters are
selected using BIC stopping rule.

We follow the simulation design as mentioned in Example 1 of Zou and Zhang
(2009). The data are generated from the following linear model: Y = XT3 + v,
where f3 is a p-dimensional vector and v ~ N(0,0?), 0 = 6 and X generated from
a p-dimensional multivariate normal distribution with mean zero and covariance
matrix ; (j, k)-th entry of ¥ is p/=*, 1 < j k < p. We are considering two
values of p = 0.5,0.75. The dimension of models are taken as p = [4n'/?] — 5
for n = 100, 200. If 1,,/0,, denote a m-vector of 1’s/0’s, the true coefficients are
B = (3143143140, -3,)7, ¢ = [p/9], and d is the numbers of true non-zero
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coefficients of the models. We generate 100 data sets based on this simulation
design.

The simulation results are promising. Table 1 summarizes the following find-
ings: in moderately correlated settings, our method selects a slightly larger model
than the true model; whereas in highly correlated situations, our method opts for
smaller models than the true model. Lasso selects bigger model than all other
methods; enet performs better than lasso. From a variable selection perspective,
the metric ZAZ is an important criterion. In the model the lower value of ZAZ,
as compared to the total number of true zero variables initiates larger false posi-
tive rate. Our method consistently produces ZAZ values closer to the true value
than the other methods.

Table 1: Simulation study results. All results are reported based on averaging
over 100 data sets. (a) For n = 100, p = 35, d = 9, true ZAZ = 26. (b) For
n =200, p=>51,d=15, true ZAZ = 36

(a) (b)

Model p P ZAZ Model p P ZAZ
lasso 0.50 14.86 20.14 lasso 0.50 23.16 27.84
0.75 13.11 21.72 0.75 21.08 29.91
enet 0.50 10.34 24.66 enet 0.50 16.64 34.36
0.75 9.61 25.19 0.75 16.03 34.95
modelSampler | 0.50 9.34  25.13 modelSampler | 0.50 16.06 34.91
0.75 844  25.78 0.75 15.65 35.02

5.2 Real Data Application

Here we demonstrate the predictive performance of the stable variable selec-
tion technique based on the RSS model. For comparison purposes we have con-
sidered three different methods: Random Forest, Boosting and Bayesian Model
Averaging (BMA) methods; the first two methods are frequentist methods while
BMA is based on Bayesian methodology. The prediction error is calculated us-
ing OOB technique. Random Forest (RF) computations are implemented using
the R package randomForest (Liaw and Wiener, 2002). In all cases, 1000 trees
were grown under default settings. For Boosting we have used R package gbm
(Ridgeway, 1999). We use a shrinkage (learning) parameter of 0.01, a tree depth
of five (the base learner), and 10-fold validation to determine the optimal num-
ber of boosting iterations. For BMA we have used the bicreg function of the R
package BMA (Rafttery et al., 2010). We have used 1500 iterations to compute
OOB prediction error.

Figure 6 is the beanplot representation of the four different methods consid-
ered in this empirical study. The green horizontal lines corresponding to each
bean represents 1500 data points of OOB PEs. Our method outperforms all the
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three methods considered with respect to the prediction error. We know that RF
and Boosting are popular for their predictive performance; so is the BMA from
a Bayesian perspective. Note that out of these four methods only RSS and BMA
does variable selection, so OOB PE computations are always based on a subset
of variables, whereas the RF and Boosting methods use all variables for PE com-
putation. Figure 6 shows that the RSS method exhibits stable performance with
respect to other methods. In all three methods the variation of the OOB PEs
are very high, whereas for RSS model the data points are exceptionally close to
each other.od. The green horizontal lines corresponding to each bean represents
1500 data points of OOB PEs. As we know that RF is popular for its predictive
performance, here too for the Diabetes data set, it has the lowest PE. RSS model
outperforms the Boosting and This empirically suffices that the variable selec-
tion method based on RSS model is a consistent and coherent meth the BMA
methods with respect to predictive performances. Note that out of these four
methods only RSS and BMA does variable selection, so OOB PE computations
are always based on a subset of variables whereas the RF and Boosting methods
use all variables for PE computation, in spite of this RSS PE performance is quite
competitive to the RF method. Figure 6 shows that RSS method exhibits stable
performance with respect to other methods. In all three methods the variation
of the OOB PEs are very high, whereas for RSS model the data points are very
close to each other. This empirically suffices that variable selection method based
on RSS model is a consistent method.
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Figure 6: Beanplot for PE performances of four different methods using Dia-
betes data
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6. Variable Stability and Model Space Revisited

Our method offers an optimal variable selection technique, but sometimes
the “optimal solution” is not the best solution. The traditional approach is
to wring every bit of information from the data, but an attempt to store and
evaluate enormous sets of data into a computer database bogs resources and at
this point the “optimal” model seems meaningless. Thus by not choosing a single
“best” model, we can also study the best set of competing models. A subset of
models are selected by the model that has the best predictive performance and
where variables begin to stabilize across the entire model space. We illustrate
our concept by using two data sets: one with moderate dimension and the other
with higher dimension.

Figure 5 shows that the prediction error line for the Diabetes data is quite
flat and the standard error is large for models of size 5 and onwards. Therefore
there is not much benefit in choosing a model of size 5 over a model of size 7 or 8
from a predictive point of view. In a given situation any model in that sub-model
space can be chosen as the “best” model.

This motivates us to examine the behavior of estimators across the model
space and to outline a pattern of variable stabilization across the model space.
The following command from the modelSampler package generates such a plot
called the variable stability plot.

R> plot.var.stability(ms.boot)

Figure 7 is a variable stability plot of the Diabetes data set. In the left frame
of the plot, the left horizontal axis represents the dimension of the model space,
the left vertical axis represents the model size specific ensemble hard shrunk esti-
mator, the right vertical axis displays the indices of variables which are selected
in the “best” model from predictive point of view. The right frame of the plot
represents RG B-color palette for model size specific prediction error. Mathe-
matical explanation of model size specific ensemble hard shrunk estimators, as
plotted in Figure 7 is as follows: For each bootstrap draw b, let (X;wb, Y,") be
the pair of bootstrapped samples drawn from the original sample. Here sz,b
is the n X ap design matrix formed from the first £ columns of the re-ordered
X where ordering is based on (4). The corresponding bootstrapped response
from the original Y is Y;" and I, is a k X k identity matrix. The hard shrunk
estimator of model size k for the b-th bootstrap is

By = (X0 X0 o+ Iak)_lX;i,b}fb*' (7)
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Figure 7: Variable stability plot for the Diabetes data. Results are based on
100 bootstrap iterations. Horizontal lines with points are model size specific
ensemble hard shrunk estimators. Shaded vertical lines are model size specific
PE. The vertical line with no shade represents the model with smallest PE

The ensemble hard shrunk estimator of model size k is
~ 1 B
B = 5 Y Bl (5)

The estimators of (8) are plotted in Figure 7.

The estimators in the plot are standardized so they are fairly comparable to
each other. Variables actually begin to stabilize from models of size eight. Other
variables are showing stability beyond models of size eight but these estimators
are very close to zero. Based on Figures 5 and 7, models of size five to eight can
be elected as the “best” set of competing models.

Figure 7 also brings forth another important issue related to the model selec-
tion problem. The entire model space for a given data set can be represented in
two categorizes (Shao, 1993): Category I model space which consists of underfit
and incorrect models and Category II model space that contains overfit models
that also have the “true” model. In Figure 7, variables begin to stabilize once in
the Category II model space. For example, from model size 5 and onwards the
variables stabilize as one moves to the Category I model space (which is model
size 1 to model size 6).
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6.1 Another Example of Variable Stability Plot

We continue this discussion with a second data set which is of higher dimen-
sion, ozone interaction data which is available in the package as OzoneI. The
original Ozone (Breiman and Friedman, 1985) data set is modified to encompass
all pairwise interactions of main effects, and B-spline basis functions of up to 6
degrees of freedom for all original predictors. The original data set consists of
203 observations on 12 variables with ozone being the outcome variable. With
this modification the 0zoneI data has 203 observations and 89 variables.

R> library("modelSampler")

R> data("OzoneI")

R> ms.boot.I <- boot.modelSampler(ozone™., Ozonel, n.iter1=2500,
+ n.iter2=2500, B=100, verbose=FALSE)

R> plot.ooberror(ms.boot.I,"Ozone interaction data")

Figure 8 is the out-of-bag prediction error plot for the ozone interaction data set.
The “best” model for this data set is found to be the model of size 13. For model
size 9 and 13, the PE is almost same and in between region almost flat. Again
for model size 13 and onwards the PE is quite flat till model size 36. Therefore
selection based on the PE may lead to choosing any model within this region. The
data set comprises of interactions between independent variables, and it is evident
that there is significant amount of association between the variables. Therefore for
better prediction in the final model,we embrace for interaction by negotiating the
interplay between variable selection and prediction. For this reason the variable
stability plot plays a decisive role in selecting the model based on the PE plot.
Figure 9 represents the variable stability plot for the ozone interaction data set.
It looks like variables begin to stabilize from models of size 13 (which is the best
model according to the analysis), but the plot suggests that larger models win
over selection based on their stability. Models of size 35 or 36 may be the desired
model based on the stabilization criterion. The following command generates the
variable stability plot for the ozone interaction data

R> plot.var.stability(ms.boot.I)

We have generated another graphics where only those variables are plotted
that emerge as the most significant variables from our analysis using the option
filter.flag=TRUE in the plot.var.stability function.

From Figure 10 it is now clear that the important variables begin to stabilize
once crossing the model of size 13, but if we proceed further to models of size 35
or 36 stabilization occurs. In a nutshell one can use a combination of the variable
stability plot and the PE error plot as a graphical tool for model selection, as well
as to get an overview of the best set of competing models in any given situation.
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Ozone interaction data
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Figure 8: Out-of-bag prediction error plot for the Ozone interaction data. Re-
sults are based on 100 bootstrap iterations. Red points are model size specific
estimated PE. Gray band surrounding the red points are PE 4 standarderror
(PE). Smooth black line represents loess estimated line of PE

Figure 9: Variable stability plot for the Ozone interaction data. Results are
based on 100 bootstrap iterations. Horizontal lines are model size specific
ensemble hard shrunk estimators. Dashed vertical lines are model size specific
PE. Vertical solid line represents the model with smallest PE
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Figure 10: Variable stability plot for the Ozone interaction data. Results are
based on 100 bootstrap iterations. Horizontal lines are model size specific
ensemble hard shrunk estimators. Dash vertical lines are model size specific
PE. The vertical solid line represents the model with smallest PE. Only the
significant variables from the resulting analysis are displayed

R> plot.var.stability(ms.boot.I, filter.flag = TRUE)

The categorization of a model space is now quite distinct from Figure 10. In Fig-
ure 10, in the Category I space, variables are not stable, but proceeding towards
Category II space, variables begin to stabilize. It is worthy to note that mov-
ing forward from our “best” model towards the full model, variables lose their
stability because of these overfit models.

7. Discussion

This R package employs both frequentist and Bayesian approach to perform
variable selection: variable selection can be performed via simple FPE analysis
using the modelSampler function at the same time more stable variable selection
can be done using ensemble technique using the boot.modelSampler function.
Besides these frequentist techniques, highest posterior model selection and also
variable selection by median model (Barbieri, 2004) (variables with posterior
inclusion probability greater than or equal to 0.5) are available for Bayesian
analysis (see the output from the Diabetes data analysis). Using Gelman-Rubin
diagnostics we show that the modeSampler converges quickly. Besides stable
variable selection based on empirical study, the modelSampler package displays



modelSampler: An R Tool for Variable Selection 367

competitive prediction error performance, and it outperforms popular predictive
methods like Random Forest, Boosting and BMA.

The proposed stable estimators discuss model uncertainty and helps to illus-
trate the model space graphically. The boot.modelSampler function offers an
optimal solution but sometimes the “optimal solution” is not the best solution.
Hence while dealing with massive quantities of data with the goal to obtain an
optimal solution, boot .modelSampler would be a prolong and delayed approach,
but modelSampler offers faster solution and better performance in the area of
“data mining”.

Appendix: Gibbs Sampler

Here we outline a Gibbs sampler for drawing posterior values from (2) under
the prior (3). The prior for v are considered as: a uniform prior for w.

When running the Gibbs sampler we keep track of the different o models as
they are sampled. For this purpose we introduce the following notation. Defining

I, — 1, lf’)/k:V:TL,
71 0, otherwise.

Thus each draw for 4 has an associated binary K-tuple (I1,---,Ix) which is
identified with the model a = {k : I = 1}. Using this notation the Gibbs
sampler is defined as follows:

1. Draw (,8\'7,}7) ~ N(p,nX), where Y = (Y1, .Y}, p = SX'Y and
Y= (X'X+nl" 1)L

2. Draw ~; from

in w w
(Wil By w0) ™ 5 () sy (), k=1, K,

wy kg + Wok o wy kg + Wa k
where V =n and
2 2
wig = (1- w)vo_l/2 exp <—2€f0> and wg ) = wV /2 exp <—2ﬁ"“/> .

3. Draw w from (w|y) ~ Beta(l + #{k : I = 1},1 + #{k : I, = 0}).

4. This completes one iteration. Update I} using 7, and define a. Compute
the RSS for the current draw: RSS(a) = |[|Y — Y ()||?, where

A~

Y(a) = X—i—a(Xj_aX-i-a + I+a)_1XiaY.
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5. Computing penalized RSS values is straightforward once RSS has been
determined. For example, the AIC information criterion is defined as

AIC(a) = n 'RSS(a) + 2n" 162K,
whereas BIC is defined as

BIC(a) = n 'RSS(a) + n 162K, log(n).
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