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Abstract:
A basic assumption concerned with general linear regression model is

that there is no correlation (or no multicollinearity) between the explana-
tory variables. When this assumption is not satisfied, the least squares
estimators have large variances and become unstable and may have a wrong
sign. Therefore, we resort to biased regression methods, which stabilize
the parameter estimates. Ridge regression (RR) and principal component
regression (PCR) are two of the most popular biased regression methods
which can be used in case of multicollinearity. But the r-k class estimator,
which is composed by combining the RR estimator and the PCR estimator
into a single estimator gives the better estimates of the regression coefficients
than the RR estimator and PCR estimator.

This paper explores the multiple regression technique using r-k class
estimator between TFR and other socio-economic and demographic variables
and the data has been taken from the National Family Health Survey-III
(NFHS-III): 29 states of India. The analysis shows that use of contraceptive
devices shares the greatest impact on fertility rate followed by maternal care,
use of improved water, female age at marriage and spacing between births.

Key words: Multicollinearity, principal component regression (PCR) esti-
mator, r-k class estimator, ridge regression (RR) estimator, total fertility
rate (TFR).

1. Introduction

In developing countries, overpopulation is considered to be one of the most
basic cause of underdevelopment. The developing countries already facing a lack
in their resources, and with the rapidly increasing population, the resources avail-
able per person are reduced further, leading to increase poverty, malnutrition, and
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other large population related problems. Given this situation, the governments
of developing countries, along with non-government organizations, are trying to
address this problem by conducting research on the determinants of fertility. In-
dia is also dealing with this acute problem, which tends to nullify most of the
efforts to encourage development. The government of India has been organizing
several programs for controlling the population increase and has been investing
the lot of money for controlling the birth rate. Some of the programs have been
successful and the rate of increase has also reduced, but has still to reach the
sustainable rate. A question of concern to demographers and other social scien-
tists is whether this decline in fertility has been fostered mainly by the family
planning programs. Indeed, this reduction in fertility has in some cases led to
the belief that the gap between the fertility levels of the different states of In-
dia can be substantially reduced by the socialization of family planning services.
Available evidence, however, showing that the India has considerable fertility as
well as contraceptive use differentials among the various states. These differ-
entials can well be attributed to the fact that socio-economic factors are often
differentially distributed across social groups that exists in a society or between
societies. Moreover, given that various states of India differ considerably in terms
of socio-economic development, it may be that greatest reduction in fertility in
those states that experienced significant socio-economic development.

The effect of socio-economic factors on fertility have been examined in a num-
ber of studies. Education depresses fertility by increasing the age at marriage,
and by increasing the likelihood of contraceptive use (Casteline et al., 1984; Di-
amond et al., 1997). Other researchers also reported similar depressant effect of
education on fertility (Entwisle and Mason, 1985; Rubin-Kurtzman, 1987; Jiang,
1986; Krishnan, 1988; Prada and Ojeda, 1986; Shapiro and Tambashe, 1994;
Kravdal, 2002). Place of residence has also been found to be significantly related
to fertility: total fertility rates are higher among rural women than among urban
women (Alam and Casterline, 1984; Rubin-Kurtzman, 1987; Prada and Ojeda,
1986). Income is negatively related to fertility (Rubin-Kurtzman, 1987; Jiang,
1986).

Since Total Fertility rate is the most important measure of fertility in de-
mography and TFR is affected by many socio-economic and other development
factors. Hence the main objective of this paper is to know that up to what extent
and how the socio-economic and other development factors impact the fertility
level of India. It is believed that socio-economic and other development factors
do exert significantly independent as well as the joint impact on fertility after
eliminating the effect of the family planning programs and policies. An attempt
has been made in this paper to identify these factors and their relative contribu-
tions towards the variation in the fertility level of India. The importance of the
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study derives from the fact that it is necessary to identify those population groups
whose fertility is high but reducible through changes in government policies and
the redistribution of available resources.

2. Data and Method

The dependent variable is the total fertility rate (defined as average number
of children a woman has in her lifetime). Total fertility rate is affected by many
demographic, social, cultural, and economic variables. The explanatory variables
considered in the present study are those, that appeared influential in fertility
variation. These variables are Human development index (HDI = X1), infant
mortality rate (IMR = X2), defined as infant deaths per thousand live births,
percent of population using contraceptive devices (any method = X3), median
age at marriage of male (= X4), median age at marriage for female (= X5),
median number of months since preceding birth (= X6), percent of population
using improved water for drink (= X7), male literacy rate (= X8), female literacy
rate (= X9) and percent of mothers who are taking maternal care (= X10).
Here, the independent variables that we have considered are discrete as well as
of continuous in nature for e.g., X4, X5 and X6 are continuous variables while
the others are discrete in nature. But we have confined ourselves for the integral
values of the age at marriage and birth intervals. But it can be considered as the
continuous case (Sufian, 2005). In the analysis, the data on the several variables
was taken from National Family Health Survey-III (NFHS-III) about 29 Indian
states. National family health survey is the nationwide sample survey which
consider the following sampling design and techniques of data collection.

Sample Design: The urban and rural samples within each state were drawn
separately and, to the extent possible, the sample within each state was allocated
proportionally to the size of the state’s urban and rural populations. A uniform
sample design was adopted in all the states. In each state, the rural sample was
selected in two states: the selection of primary sampling units (PSUs), which
are villages, with probability proportional to population size (PPS) at the first
stage, followed by the random selection of households within each PSU in the
second stage. In urban areas, a three-stage procedure was followed. In the first
stage, wards were selected with PPS sampling. In the next stage, one census
enumeration block (CEB) was randomly selected from each sample ward. In the
final stage, households were randomly selected within each sample CEB. Each
ward comprises several enumeration blocks (CEB) created for the census. A list
of all the CEBs in a selected ward formed the sampling frame at the second stage.
Such lists of CEBs in the selected wards were made available for use for NFHS-
III by the census office on request. Each CEB is comprised of about 150-200
households.
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Sample Selection: In rural areas, the 2001 Census list of villages served as
the sampling frame. the list was stratified by a number of variables. The first level
of stratification was geographic, with districts being subdivided into contiguous
regions. Within each of these region, villages were further stratified using selected
variables from the following list: village size, percentage of males working in
the non-agricultural sector, percentage of the population belonging to scheduled
castes or scheduled tribes, and female literacy. In addition to these variable, HIV
prevalence status, i.e., “High”, “Medium” and “Low” as estimated for all the
districts in high HIV prevalence states, was used for stratification in the high
HIV prevalence states. Female literacy was used for implicit stratification (i.e.,
the villages were ordered prior to selection according to the proportion of females
who were literate) in most states although it may be an explicit stratification
variables in a few states.

The mean and standard deviation are given in the table below.

Table 1: Means and standard deviations of total fertility rate and ten predictor
variables: 29 states of India

Variables
Descriptive Statistics

Mean Standard deviation

TFR 2.628 0.695
HDI 0.629 0.112
IMR 47.272 15.881
Contraceptive Use 55.121 12.815
Male age marriage 22.231 12.142
Female age at marriage 35.434 15.792
Birth Interval 32.441 3.139
Improved Water 81.934 12.358
Male Literacy rate 80.817 7.798
Female Literacy rate 62.655 15.674
Maternal Care 60.421 20.284

Table 1 presents the means and standard deviations of the dependent as well
as explanatory variables. State-wise TFR is taken in data and then the mean
and standard deviation has been computed. The TFR has an average value of
2.62 children per woman varying from lows of 1.79 children in Goa and Andhra
Pradesh, 1.8 children in Tamil Nadu, 1.94 children in Himachal Pradesh and
many other states also highs of 4.2 children in Bihar, 3.8 children in Meghalaya
and 3.6 children in Jharkhand. We hypothesize that contraceptive use, female
and male age at marriage, birth interval, use of improved water, HDI, female
and male literacy rate and maternal care will be negatively related to the total
fertility rate while positive relationships are expected between TFR and each of
the IMR.
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The most commonly used estimator for the estimation of parameters is the
ordinary least square (OLS) estimator. Under certain assumptions, least square
method produce estimators with desirable properties. In some instances (e.g.,
when one or more assumptions do not hold) other estimators may be superior
to ordinary least square (OLS). The other estimators are maximum likelihood,
ridge, principal components and r-k class estimator.

The “n” observations for the dependent variable Y are determined by

yi = β0 + β1xi1 + β2xi2 + · · ·+ βpxip + εi, i = 1, 2, · · ·n, (2.1)

(2.1) can also be written as

Y = β0 +
10∑
j=1

βjXj + ε, (2.2)

where Y is the response variable, i.e., TFR and X1, X2, · · · , X10 are the predictor
variables, β0 is the intercept term. It gives the mean or average effect on Y of all
the variables excluded from the model and βi’s are partial regression coefficients
or the slope parameters describing the relation between the response and predictor
variables, on the other hand partial regression coefficients measures the change
in the mean value of Y corresponding to per unit change in Xj , when all other
predictor variables are held constant.

Consider the standard matrix form of the above multiple linear regression
model

Y = Xβ + ε, (2.3)

where X = (xij) is a fixed n × p + 1 matrix. [(xij) is the ith observation on the
jth independent variable] and is of full rank p (p ≤ n), Y = (yi) is an n×1 vector
of observations on the dependent variables, β is a p + 1 × 1 unknown column
vector of regression coefficients, and ε = (εi) is an n× 1 vector of random errors;
E(ε) = 0, E(εε′) = σ2In, where In denotes the n × n identity matrix, i.e., ε ∼
N (0, σ2In).

Let us assume that the variables have been standardized by subtracting their
sample means and dividing by their sample standard deviations. Then the model
given in (2.3) will be

Yn×1 = Xn×pβp×1 + εn×1. (2.4)

Now, we wish to estimate the p × 1 vector β of regression coefficients. The
variables are assumed to be standardized so that X ′X is in the form of corre-
lation matrix, and the vector X ′Y is the vector of correlation coefficients of the
dependent variable with each explanatory variable.
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The least squares (LS) estimator, β̂ of the parameters are given by

β̂ = (X ′X)−1X ′Y. (2.5)

Here the assumption for ordinary least square (OLS),

1. X is set of fixed numbers.

2. X is full column rank matrix, i.e., rank of X should be p.

3. Predictor variables (X1, X2, · · · , Xp) are linearly independent, i.e., X ′X is
non-singular matrix means |X ′X| 6= 0.

OLS has been treated as the best estimator for a long time. However, many
results have proved that the OLS estimator is no longer a good estimator when the
multicollinearity is present (Al-Hassan, 2008). In multiple linear regression mod-
els, we usually assume that the explanatory variables are independent. However,
in practice, there may be strong or near to strong linear relationships among the
explanatory variables. In that case the independent assumptions are no longer
valid, which causes the problem of multicollinearity. Multicollinearity is a statisti-
cal phenomenon in which two or more predictor variables in a multiple regression
model are highly linearly related or correlated. If our goal is simply to predict Y
from a set of X variables, then multicollinearity is not a problem. The predictions
will still be accurate, and the overall R2 quantifies how well the model predicts
the Y values. If our goal is to understand how the various X variables impact
Y , then multicollinearity is a big problem. In the presence of multicollinearity, it
is impossible to estimate the unique effects of individual variables in the regres-
sion equation. Multicollinearity increases the standard errors of the coefficients.
Increased standard error means that coefficients for some independent variables
may be found insignificant, whereas without multicollinearity and with lower
standard errors, these same coefficients might have been found to be significant.
Moreover, the LS estimates are likely to be too large in absolute value and pos-
sibly, of the wrong sign (Al-Hassan, 2008). Therefore, multicollinearity becomes
one of the serious problems in the linear regression analysis. Multicollinearity
only affects calculations regarding individual predictors, i.e., a multiple regres-
sion model with correlated predictors can indicate how well the entire bundle of
predictors predicts the outcome variable, but it may not give valid results about
any individual predictor, or about which predictors are redundant with respect
to others.

Diagnosing Multicollinearity

In order to lay the foundation for detection of multicollinearity problem, some
classic symptoms are present in our data:
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• The F is highly significant (p-value-0.000), implying that the variables are
chosen are valid explanatory variables (Chatterjee and Price, 1977, p. 146)
and most of the regression coefficients are insignificant at 5% level of sig-
nificance, which can be seen from the Table 2.

• The value of R2 is quite large, i.e., 0.899.

• Variance inflation factor (VIF) of HDI and Female literacy rate is greater
than 10, i.e., 10.337 and 11.019 respectively.

• Sometimes eigenvalues, condition indices and the condition number can be
referred in examining multicollinearity. The condition number (k) is given
as the square root of the largest eigenvalue (max(λ)) divided by the smallest
eigenvalue (min(λ)), i.e.,

k =

√
max(λ)

min(λ)
.

In our case, k = 11.406, when there is no collinearity at all, the eigenvalues,
condition indices and condition number will all equal to one. As collinearity
increases, eigenvalues will be both greater and smaller than 1 (eigenvalues
close to zero indicate a multicollinearity problem), and the condition indices
or the condition number will increase.

Table 2: β-Coefficients

Model

Unstandardized
Coefficients

Standardized
Coefficients

t p-value
Collinearity Statistics

B Std. Error Beta Tolerance VIF

Constant 4.679 1.975 2.370 0.029

HDI 0.630 1.490 0.102 0.423 0.678 0.097 10.337

IMR -0.001 0.010 -0.029 -0.131 0.898 0.113 8.857

Contraceptive Use -0.034 0.007 -0.620 -4.705 0.000 0.322 3.101

Male age marriage -0.008 0.011 -0.136 -0.698 0.494 0.147 6.787

Female age at marriage 0.020 0.008 0.445 2.314 0.033 0.152 6.587

Birth Interval -0.025 0.024 -0.111 -1.019 0.322 0.472 2.117

Improved Water -0.007 0.006 -0.121 -1.081 0.294 0.444 2.253

Male Literacy rate 0.013 0.018 0.144 0.706 0.489 0.135 7.402

Female Literacy rate 0.005 0.011 0.117 0.472 0.643 0.091 11.019

Maternal Care -0.018 0.006 -0.511 -2.785 0.012 0.167 6.002

N = 29, R2 = 0.899, adjusted R2 = .843 and F = 16.04



330 Piyush Kant Rai, Sarla Pareek and Hemlata Joshi

From the Table 3, we can see that how the explanatory variables are cor-
related. Among the explanatory variables, HDI and IMR are highly negatively
correlated (−0.89), correlation between HDI and Female age at marriage is −0.74
and there is high positive correlation between the female literacy rate and HDI
(0.89) and similarly, we can see the correlation between the all other predictor
variables. A correlation is the measurement of the relationship between two vari-
ables. A positive correlation is a direct relationship, as the amount of one variable
increases, the amount of a second variable also increases. And in a negative cor-
relation, as the amount of one variable goes up, the levels of another variable
goes down.

Table 3: Correlation matrix of predictor variables

Variables X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

X1 1.00

X2 -0.89 1.00

X3 0.34 -0.31 1.00

X4 -0.66 0.77 -0.34 1.00

X5 -0.74 0.80 -0.15 0.77 1.00

X6 0.35 -0.36 0.25 -0.53 -0.26 1.00

X7 -0.07 0.03 0.50 0.11 0.20 -0.34 1.00

X8 0.86 -0.81 0.42 -0.64 -0.80 0.26 0.03 1.00

X9 0.89 -0.86 0.35 -0.79 -0.84 0.40 -0.09 0.86 1.00

X10 0.65 -0.76 0.46 -0.82 -0.60 0.54 -0.07 0.53 0.64 1.00

One of the other way to check the multicollinearity is that if sum of the
reciprocals of the eigenvalues is greater than five times of the number of predictor
variables used then there is multicollinearity in the data. And in this data, sum
of reciprocals of the eigenvalues is 64.46 which is greater than five times the
number of predictor variables (10) used [47]. All these indicates the presence
of multicollinearity. And in case of presence of multicollinearity, the estimates
obtained by OLS estimator are not reliable and desirable if we want to know that
how predictor variables (X) impacts on response variable (Y ).

Several methods have been suggested to solve this problem. Ridge regression
(RR) and principal component regression (PCR) are two of the most popular
biased regression methods that help to discuss the problem of collinearity in the
data and provide the better solution of the problem.
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1. Ridge Regression (RR): Hoerl and Kennard (1970a) suggested the use of
X ′X + kIp, (k ≥ 0) rather than X ′X, in the estimation of β (2.5). The
resulting estimators of β are known in literature as the RR estimator, given
by

ˆβ(k) = (X ′X + kIp)
−1X ′Y. (2.6)

The constant k is known as biasing or ridge parameter. As k increases from
zero and continues up to infinity, the regression estimates tend toward zero.
Though these estimators result in bias, for certain value of k, they yield
minimum MSE compared to the LS estimator (Hoerl and Kennard, 1970a).
However, the MSE(β̂(k)) will depend on unknown parameters k, β and σ2,
which cannot be calculated in practice. But k has to be estimated from the
real data instead. Several methods for estimating k have been proposed and
evaluated by several researchers. Some of these researchers are Hoerl and
Kennard (1970a), Hoerl et al. (1975), McDonald and Galarneau (1975),
Lawless and Wang (1976), Hocking et al. (1976), Wichern and Churchill
(1978), Nordberg (1982), Saleh and Kibria (1993), Singh and Tracy (1999),
Wencheko (2000), Kibria (2003), Khalaf and Shukur (2005) and Al-Hassan
(2008). But Geometric Mean Method (k̂GM or GM) performs better than
the other estimators when the correlations between the explanatory vari-
ables are moderate, and for high correlations, HKB becomes better than
GM, and for extremely high correlation all estimators (except AM) perform
better than or as good as GM (Al-Hassan, 2008).Thus out of these meth-
ods for estimating k, Hoerl, Kennard and Baldwin Method (k̂HKB or HKB)
and Geometric Mean Method (k̂GM or GM) gives the better estimate of k
than the others. And in our paper, there are almost moderate correlation
between the explanatory variables. Thus we have used Geometric Mean
Method (k̂GM or GM) for estimation of k.

(i) Hoerl, Kennard and Baldwin Method (k̂HKB or HKB): Hoerl, Kennard
and Baldwin proposed a different estimator of k than the others by
taking the harmonic mean of k̂. That is

k̂HKB =
pσ̂2∑p
i=1 β̂

2
. (2.7)

(ii) Geometric Mean Method (k̂GM or GM): Kibria proposed estimating
k by using the geometric mean of k̂, which produces the following
estimator

k̂GM =
σ̂2

(
∏p

i=1 β̂
2)

1
p

. (2.8)
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2. Principal Component Regression (PCR): In principal component analysis,
the p original variables are transformed into linear combinations called prin-
cipal components. Principal components were first proposed by Person
(1901) and further developed by Hotelling (1933). Comprehensive surveys
of the field have been given by Jolliffe (1986), Jackson (1991) and Basilevsky
(1994). Other reviews are by Rao (1964), Jackson (1980; 1981), Wold et al.
(1987), Duntman (1989) (Rencher, 1998) and Jolliffe (2005). As we have
indicated, an approach to the problem of multicollinearity is PCR, in which
Y is regressed on the principal components of X’s . If we use only the larger
principal components, the large variances in β̂j ’s due to multicollinearity

are reduced, but of course we introduce some bias in the new β̂j ’s. Often,
the principal components with the highest variance are selected. However,
the low variance principal components may also be important, and in some
cases, they may even more important than those with the highest variances
(Jolliffe, 1982).

If λ1 ≥ λ2 ≥ · · · ≥ λp be the eigenvalues of the correlation matrix of
explanatory variables and e1, e2, · · · , ep are orthogonal eigenvectors corre-
sponding to the eigenvalues. Orthogonal means

e′iej =

{
0, i 6= j,

1, i = j.

Let T be the (p×p) orthogonal matrix, i.e., T = (t1, t2, · · · , tp) such that it di-
agonalizes X ′X, i.e., T ′X ′XT = Λ = diag(e1, e2, · · · , ep) where T ′T = Ip = TT ′,
being diagonal matrix consisting of eigenvalues of X ′X as its diagonal elements.
(2.4) can be written as

Y = XTT ′β + ε

⇒ Y = (XT )(T ′β) + ε

⇒ Y = X∗α+ ε,

where X∗ = (XT ) and α = (T ′β)

α̂ = (X∗
′
X∗)−1X∗

′
Y,

T ′β = (T ′T ′XT )−1T ′X ′Y,

on pre-multiplying by T both sides, we have

TT ′β = T (T ′X ′XT )−1T ′X ′Y,

β̂ = T (T ′X ′XT )−1T ′X ′Y. (2.9)
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After deleting (p− r) columns of T , Tr be the remaining eigenvectors of X ′X so
that T

′
rX
′XTr = Λr then from (2.9), the reduced model will be

β̂r = Tr(T
′
rX
′XTr)

−1T
′
rX
′Y, (2.10)

here Tr will be of p× r matrix of eigenvectors.
The purpose of principal components is to generate a reduced set of variables

that account for most of the variance of the original variables. We must therefore
decide just how many components to retain; other components will be discarded.
In reality, the number of components extracted in a principal component analysis
is equal to the number of observed variables being analysed. However, Mansfileld
et al. (1977) suggested that only the first few components account for meaningful
amounts of variance, so only these first few components are retained and used in
multiple regression analyses. Jolliffe (1982) represents the point of view of many
statisticians whose decisions depend only on the magnitude λ of the variance of
the principal component.

The eigenvalues of the correlation matrix of the predictor variables have also
been calculated. Which are given by

λ1 = 5.9718, λ2 = 1.5576, λ3 = 1.0881, λ4 = 0.4742, λ5 = 0.2966,

λ6 = 0.2705, λ7 = 0.1258, λ8 = 0.0929, λ9 = 0.0766, λ10 = 0.0459.

Figure 1: Scree-plot
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The above figure shows the percent of variation explained by the principle
components. From this figure we can conclude that first principle component is
showing 59.7% variation, second principle component is showing 15.56% and so
on. First four principle components are showing 90.91% variation therefore we
will consider only first four principle components in our model. The first four
eigenvalues are λ1 = 5.9718, λ2 = 1.5576, λ3 = 1.0881 and λ4 = 0.4742 and the
corresponding eigenvectors are given in the matrix Tr below:

Tr =



e1 e2 e3 e4

0.37 0.01 −0.19 0.3

−0.38 −0.01 0.14 0.13

0.18 0.58 0.37 0.26

−0.36 0.07 −0.17 0.45

−0.35 0.14 0.29 0.19

0.21 −0.25 0.68 0.36

−0.03 0.75 −0.06 −0.21

0.36 0.11 −0.28 0.37

0.38 −0.02 −0.16 0.18

0.34 0.01 0.34 −0.49



.

And by using the Geometric mean method given in (2.8), the value of k is
calculated, i.e., k = 2.723501009.

PCR was first proposed by Hotelling (1957) and Kendal (1957). Hsuan (1981)
explored the relationship between PCR and RR. He proved that when the data are
severely multi-collinear, the ridge estimator can be made very close to the prin-
cipal components estimators. Baye and Parker (1984) and Nomura and Ohkubo
(1985) proposed the r − k class estimator by combining the RR estimator and
the PCR estimator into a single estimator, which performs better than the other
estimators while dealing with multicollinearity (Sarkar, 1989). The r − k class
estimator can be written in the form:

β̂r(k) = Tr(T
′
rX
′XTr + kI)−1T ′rX

′Y, (2.11)

where Tr is the matrix of eigenvectors, X and Y is the standardized matrices
of explanatory and response variables respectively and I is the (r × r) identity
matrix.

Now from the above r−k class estimator given in (2.11), we can easily estimate
the regression coefficients. Which are given in the Table 4 below:
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Table 4: Regression coefficients calculated by using r-k class estimator

Variables regression coefficients t p-value

HDI 0.0176 0.2351 0.5916

IMR 0.0714 0.9536 0.8235

Contraceptive use -0.3386 -4.5222 0.0001*

Male age at marriage 0.0325 0.4341 0.6653

Female age at marriage -0.2071 -2.7659 0.0064*

Birth Interval -0.1612 -2.1529 0.0226*

Use of improved water -0.2582 -3.4483 0.0014*

Male literacy rate 0.0330 0.4407 0.6677

Female literacy rate -0.0073 -0.0975 0.4617

Maternal care -0.2968 -3.9639 0.0005*

*p-value significant (< 0.05)

Finally, our regression model can be written as

Y = 0.0176X1 + 0.0714X2 − 0.3386X3 + 0.0325X4 − 0.2071X5

−0.1612X6 − 0.2582X7 + 0.0334X8 − 0.0073X9 − 0.2968X10.

Or we can write

Total Fertility Rate = 0.0176(HDI) + 0.0714(IMR)− 0.3386(Contraceptive use)

+0.0325(Male age at marriage)− 0.2071

−0.1612(Birth Interval)− 0.2582(Use of Improved water)

+0.0334(Male literacy rate)− 0.0073(Female literacy rate)

−0.2968(Maternal Care). (2.12)

3. Conclusion

India, being a developing country, has to face several socio-demographic chal-
lenges. One of the most important problem is the population explosion or the
high birth rate. There are lot of problems associated with high birth rate. High
birth rates can cause stress on the government welfare and family programs to
support a youthful population. Additional problems faced by a country with a
high birth rate include educating a growing number of children, creating jobs for
these children when they enter to the workforce, and dealing with the environ-
mental effects that a large population can produce. Several solutions to decrease
the rate of population increase has been tried by the government of India, some
successfully, some unsuccessfully. Although the rate of increase has decreased up
to some extent but the rate has not reached to the satisfactory level yet. The
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population of India continues to increase at an alarming rate. The effects of this
population increase are evident in the increasing poverty, unemployment, air and
water pollution, shortage of food, health sources and educational resources. Thus
it is important to analyse the determinants of fertility in India to identify their
relative weights necessary for ascertaining priorities while formulating population
policies.

In order to evaluate the relative importance of the explanatory variables in
determining total fertility rate, the standardized variables have been used. The
resulted regression model given in (2.12) support the conclusion that use of con-
traceptive devices (any method) is very useful factor that has the highest impact
to decrease the total fertility rate. The family planning policies and programs
are the most important contributor in reduction of fertility rate. This lends sup-
port to the contention that the determinative factor that has fostered the recent
decline in fertility in India has been mainly by the government’s family planning
programs.

The other variable significantly related to the total fertility rate is the ma-
ternal care. A healthy, relaxed mother would be more likely to have a positive
effect on the well-being of the new born. If there is no care of mother then ob-
viously the child will be very weak and the chances of the infant mortality will
be higher. And the need of children make the higher fertility rate. Many studies
have obtained results supportive of the positive effect of infant and child mor-
tality on fertility (Adlakha, 1973; Taylor, Newman and Kelly, 1976). The idea
is conceptually related to the child survival hypothesis. Experience with, or fear
of infant and child mortality might make married couples have extra births to
replace young children who already died. As such, societies with higher infant
mortality tend to have higher fertility. Thus, the overall purpose to reduce the
fertility rate is to make an improvement in mother and child health.

In developing country like India, the use of improved water play a very impor-
tant role in the human fertility. Here in our case, its role looks vital for deciding
the TFR for the women in the period of reproductive age. We see that TFR
decreases with the use of improved water slightly more than the other negative
factors like female age at marriage, birth interval and female literacy rate. Thus
it is quite interesting to analyse the role of use of improved water on human
fertility, which is very important factor for civilize society.

The fourth important variable known to influence the fertility performance
of women is the female age at marriage, in the sense that if the female age at
marriage is low, women start having their children at an early age, and these
children, in their turn, begin to procreate early. By rising the age at marriage,
specially for women, we cut down on their reproductive span and thus reduce
fertility.
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The role of education is widely believed to be central to major changes in fer-
tility rate in India and elsewhere. Generally, having a higher level of education is
associated with later and less childbearing and higher-educated women are more
likely to have higher earning husbands or partners, so providing a further posi-
tive “income effect” on childbearing. Education also provides an opportunity to
participate in gainful employment outside the home, and this competes with the
demands of childbearing. Better educated women enjoy better access to oppor-
tunities of life, and hence lower fertility is felt more advantageous to them than
higher fertility, since with lower fertility it is easier to reap the benefits of those
opportunities. Thus an educated woman is very likely to prefer a smaller family.
Among women with no education even significant difference in the number of
children fails to make any observable difference in the level of living. As such,
societies with lower level of literacy have greater likelihoods of having larger fer-
tility rates. Education exposes a woman to a wide range of information regarding
birth control and family planning and decreases the total fertility rate.

Birth interval also impact the fertility. The model says that birth interval is
also the factor that decreases the total fertility rate but at very low level. This
indicates that in India, the spacing between the two birth is still low.

All these factors have implications for their fertility performance. Thus, al-
though the family planning programs have played the most important roles in
declining fertility, this decline should not be viewed as due, solely, to successful
family planning programs. The results of this analysis indicate that an egali-
tarian distribution of the benefits of socio-economic development over rural and
urban areas, maternal care, an increase in the level of female literacy, decrease
in the level of infant mortality, use of improved water for drink, age at marriage
and spacing between birth may be important strategies for reducing the fertility
rates in India. But the raising of age at marriage will have an impact on fertility
only when the law relating to it is uniformly enforced throughout the country.
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