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Abstract: The scheme of doubly type-II censored sampling is an important
method of obtaining data in lifetime studies. Statistical analysis of life-
time distributions under this censoring scheme is based on precise lifetime
data. However, some collected lifetime data might be imprecise and are
represented in the form of fuzzy numbers. This paper deals with the prob-
lem of estimating the scale parameter of Rayleigh distribution under doubly
type-II censoring scheme when the lifetime observations are fuzzy and are
assumed to be related to underlying crisp realization of a random sample.
We propose a new method to determine the maximum likelihood estimate
of the parameter of interest. The asymptotic variance of the ML estimate is
then derived by using the missing information principle. Their performance
is then assessed through Monte Carlo simulations. Finally, an illustrative
example with real data concerning 25 ball bearings in a life test is presented.

Key words: Doubly type-II censoring, fuzzy lifetime data, maximum likeli-
hood estimation, missing information.

1. Introduction

In many life testing experiments, the experimenter may not observe the life-
times of all inspected units in the life test. This may be because of time limitation
and/or other restrictions (such as money and material resources, etc) on data col-
lection. Censored data arises in these situations wherein the experimenter does
not obtain complete information for all the units under study. Different types of
censoring arise based on how the data are collected from the life-testing experi-
ment. The scheme of doubly type-II censored sampling is an important method
of obtaining data in life testing experiments. It can be described as follows.
Consider a life testing experiment in which n identical units are placed on test
simultaneously. The first r lifetimes may be left-censored due to negligence or
problems at the beginning of the experiment, and the experiment terminates as
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soon as the mth unit failed. Then the data constitute a type-II doubly censored
sample. Some of the earlier work on doubly censored samples was conducted by
Harter and Moore (1968) and Lalitha and Mishra (1996). Fernandez (2000) dis-
cussed Bayesian inference from type-II doubly censored Rayleigh data. Lin and
Balakrishnan (2003) obtained exact prediction intervals for failure times from one-
parameter and two-parameter exponential distributions based on doubly type-II
censored samples. Wu (2008) discussed interval estimation for Pareto distribu-
tion based on a doubly type-II censored sample. Kim and Song (2010) considered
the problem of estimating parameters and reliability function of the generalized
exponential distribution, based on type II doubly censored sample using Bayesian
viewpoints.

The above inference techniques for estimating parameters from different life-
time distributions under doubly type-II censored data are based on precise life-
time data. However, in real situations, lifetime of units sometimes can not be
recorded or measured precisely due to machine errors, human errors or some un-
expected situations. For instance, the lifetime observations may be reported as
imprecise quantities such as: “about 1000h”, “approximately 1400h”, “almost
between 1000h and 1200h”, “essentially less than 1200h”, and so on. The lack of
precision of lifetime data may be described using fuzzy sets. The classical statis-
tical estimation methods are not appropriate to deal with such imprecise cases.
Therefore we need suitable statistical methodology to handle these data as well.

In this paper, our objective is to devise the method for parameter estimation
regarding a life-test from which the doubly type-II censored data are reported in
the form of fuzzy numbers. We analyze the data under the assumption that the
lifetimes of the test units are independent identically distributed Rayleigh random
variables. In Section 2, we first present in greater detail the problem addressed
in this paper. Some preliminary concepts about fuzzy numbers is included in this
section. In Section 3, we introduce a generalization of the likelihood function
under doubly type-II censoring and obtain the maximum likelihood estimate of
the parameter of interest. Then by using the missing information principle, in
Section 4 we compute the asymptotic variance of the ML estimate. In Section
5, simulation study will be carried out to assess the performance of the proposed
methods and a real data from the life testing experiment provided by Caroni
(2002) will be studied.

2. Problem Description

The Rayleigh distribution is a special case of the Weibull distribution, which
provides a population model useful in several areas of statistics, including life
testing and reliability which age with time as its failure rate is a linear func-
tion of time. Bhattacharya and Tyagi (1990) mentioned that in some clinical
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studies dealing with cancer patients, the survival pattern follows the Rayleigh
distribution. Dyer and Whisenand (1973) demonstrated the importance of this
distribution in communication engineering. A number of authors have considered
the problem of estimation of the scale parameter of Rayleigh distribution using
different types of censoring and non-censoring data. Among others, Raqab and
Madi (2002) considered the estimation of the predictive distribution of the total
time on test up to a certain failure in a future sample on the basis of a dou-
bly censored random sample of failure times drawn from a Rayleigh distribution.
Kim and Han (2009) discussed estimation of the scale parameter of the Rayleigh
distribution under general progressive censoring. Lee et al. (2011) obtained a
Bayes estimator under the Rayleigh distribution with the progressive Type II
right censored sample.

The density, reliability and hazard (failure rate) functions of the Rayleigh (σ)
distribution are given, respectively, by

f(x) =
x

σ2
e−x

2/(2σ2); x > 0; σ > 0, (1)

R(t) = e−t
2/(2σ2); t > 0, (2)

H(t) =
t

σ2
; t > 0, (3)

and cumulative distribution function (cdf)

F (x) = 1− e−x2/(2σ2); x > 0. (4)

It is clear from (3) that the pdf of Rayleigh has a linearly increasing failure rate
which makes it a suitable model for the lifetime of components that age rapidly
with time.

Consider a reliability experiment in which n identical units are placed on a
life-test. LetX1, · · · , Xn denote the lifetimes of these experimental units. Assume
that these variables are independent and identically distributed as Rayleigh (σ).
Prior to the experiment, the number m is specified such that 0 ≤ r < m ≤ n. Let
x = (xr+1, · · · , xm) denote a doubly type-II censored sample from the population
given in (1). The likelihood function for the parameter σ becomes proportional
to

L(x;σ) ∝ (σ)−2(m−r) e−w/(2σ
2)
{

1− e−x2r+1/(2σ
2)
}r
, (5)

where

w = w(x) =
m∑

i=r+1

x2i + (n−m)x2m.

The maximum likelihood estimator (MLE) of σ can be determined by numerical
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methods from the equation

∂L(x;σ)

∂σ
= 2(m− r)σ2 − w +

rx2r+1

ex
2
r+1/(2σ

2) − 1
= 0. (6)

Precisely reported lifetimes are common when data comes from specially de-
signed life tests. In such a case a failure should be precisely defined, and all tested
items should be continuously monitored. However, in real situations these test
requirements might not be fulfilled. In these cases, it is sometimes impossible to
obtain exact observations of lifetime. The obtained lifetime data may be impre-
cise most of the time. The lack of precision of lifetime data may be described
using fuzzy sets. In the following, we recall the main definitions of fuzzy sets and
some of the formula used in this paper.

Consider an experiment characterized by a probability space X = (X,BX , Pθ),
where (X,BX) is a measurable space and Pθ belongs to a specified family of prob-
ability measures {Pθ, θ ∈ Θ} on (X,BX). A fuzzy set Ã in X is characterized by
a membership function µÃ(x) which associates with each point x in X a real
number in the interval [0, 1], with the value of µÃ(x) at x representing the “grade

of membership”of x in Ã. The notion of probability was extended to fuzzy events
by Zadeh (1968) as follows.

Definition 1. Let (Rn,A, P ) be a probability space in which A is the σ-field of
Borel sets in Rn and P is a probability measure over Rn. Then, a fuzzy event in
Rn is a fuzzy subset Ã of Rn, whose membership function µÃ is Borel measurable.

The probability of a fuzzy event Ã is defined by:

P (Ã) =

∫
µÃ(x)dP. (7)

In particular, assume that P is the probability distribution of a continuous ran-
dom variable Y with p.d.f. g(Y ). The conditional density of Y given Ã is given
by

g(y | Ã) =
µÃ(y)g(y)∫
µÃ(u)g(u)du

. (8)

The set consisting of all observable events from the experiment X determines a
fuzzy information system associated with it, which is defined as follows.

Definition 2. (Tanaka et al., 1979). A fuzzy information system (f.i.s.) X̃
associated with the experiment X is a fuzzy partition F = {x̃1, · · · , x̃K} of X,
i.e., a set of K fuzzy events on X satisfying the orthogonality condition

K∑
k=1

µx̃k(x) = 1,
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where µx̃k denotes the membership function of x̃k.

We now examine a brief example illustrating the preceding concept:

Example 1. An investigator is interested in analyzing the amount of an adverse
substance extracted from a special brand of cigarettes (experiment X). Assume
that the investigator has not a mechanism of measurement sufficiently precise to
determine exactly the amount of the adverse substance of cigarettes, but rather
he can only approximate them by means of the following fuzzy observations:
x̃1 = “approximately lower than 10 milligrams”, x̃2 = “approximately 15 to
20 milligrams”, x̃3 = “approximately 25 milligrams”, x̃4 = “approximately 30
milligrams”, x̃5 = “approximately 35 to 40 milligrams”, x̃6 = “approximately
higher than 45 milligrams”, which are characterized by the membership functions
in Figure 1 (Clearly, a f.i.s. X̃ = {x̃1, · · · , x̃7} can be immediately constructed
by defining µx̃7 = 1−

∑6
i=1 µx̃i).
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Figure 1: Membership functions of the fuzzy observations x̃1, x̃2, x̃3, x̃4, x̃5
and x̃6

In order to model imprecise lifetimes, a generalization of real numbers is
necessary. These lifetimes can be represented by fuzzy numbers. A fuzzy number
is a subset, denoted by x̃, of the set of real numbers (denoted by R) and is
characterized by the so called membership function µx̃(·). Fuzzy numbers satisfy
the following constraints (Dubois and Prade, 1980):

(1) µx̃ : R −→ [0, 1] is Borel-measurable;
(2) ∃x0 ∈ R : µx̃(x0) = 1;
(3) The so-called λ−cuts (0 < λ ≤ 1), defined as Bλ(x̃) = {x ∈ R : µx̃(x) ≥

λ}, are all closed interval, i.e., Bλ(x̃) = [aλ, bλ], ∀λ ∈ (0, 1].
With the definition of a fuzzy number given above, an exact (non-fuzzy)

number can be treated as a special case of a fuzzy number. For a non-fuzzy
real observation x0 ∈ R, its corresponding membership function is µx0(x0) = 1.
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Usually, LR-type fuzzy numbers (the triangular and trapezoidal fuzzy numbers
are special cases of the LR-type fuzzy numbers) are most convenient and useful
in describing fuzzy lifetime observations. Therefore, we shall focus on the set of
LR-type fuzzy numbers.

Definition 3. (Zimmermann, 1991, p. 62). Let L (and R) be decreasing, shape
functions from R+ to [0, 1] with L(0) = 1; L(x) < 1 for all x > 0; L(x) > 0 for all
x < 1; L(1) = 0 or (L(x) > 0 for all x and L(+∞) = 0). Then a fuzzy number x̃
is called of LR-type if for c, a > 0, b > 0 in R,

µx̃(x) =

{
L( c−xa ), x ≤ c,
R(x−cb ), x ≥ c,

where c is called the mean value of x̃ and a and b are called the left and right
spreads, respectively. Symbolically, the LR-type fuzzy number is denoted by
x̃ = (a, c, b).

Example 2. Assume that n identical batteries are placed on a test, and we are
interested in the lifetime of these batteries. The unknown lifetime xi of battery
i may be regarded as a realization of a random variable Xi induced by random
sampling from a total population of batteries. A tested battery may be considered
as failed, or -strictly speaking- as nonconforming, when at least one value of its
parameters falls beyond specification limits. In practice, however, the observer
does not have the possibility to measure all parameters and is not able to define
precisely the moment of a failure. So, he/she determines two intervals for the
lifetime of each battery i:

• an interval [ai, di] certainly containing xi;

• an interval [bi, ci] containing highly plausible values for xi.

This information may be encoded as a trapeozoidal fuzzy number x̃i = (ai, bi, ci, di)
with support [ai, di] and core [bi, ci], interpreted as a possibility distribution con-
straining the unknown value xi.

In the next section, we will introduce a generalization of the likelihood func-
tion based on the doubly type-II censoring when the lifetime observations are
reported in the form of LR-type fuzzy numbers. The maximum likelihood esti-
mate of the scale parameter of Rayleigh model will then be obtained using EM
algorithm.

3. Maximum Likelihood Estimation

Suppose that n independent units are put on a test and that the lifetime
distribution of each unit is given by (1). Now consider the problem where under
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the doubly type-II censoring scheme, failure times are not observed precisely and
only partial information about them are available in the form of fuzzy numbers
x̃i = (ai, ci, bi), i = r + 1, · · · ,m, with the corresponding membership functions
µx̃r+1(·), · · · , µx̃m(·). Let c(r+1) ≤ c(r+2) ≤ · · · ≤ c(m) denote the ordered values
of the means of these fuzzy numbers. The lifetime of the first r missing units can
be modeled by fuzzy numbers ỹ1, · · · , ỹr with the membership functions

µỹk(y) =

{
1, y < c(r+1),

0, y ≥ c(r+1),
k = 1, · · · , r.

Also the lifetime of n − m surviving units, which are censored from the test
after the mth failure, can be encoded as fuzzy numbers z̃m+1, · · · , z̃n with the
membership functions

µz̃j (z) =

{
0, z ≤ c(m),

1, z > c(m),
j = m+ 1, · · · , n.

The fuzzy data w̃ = (ỹ1, · · · , ỹr, x̃r+1, · · · , x̃m, z̃m+1, · · · , z̃n) is thus the set of
observed lifetimes. The corresponding observed-data log-likelihood function can
be obtained using the definition of the probability of a fuzzy event as

LO(w̃;σ) = r log

[∫ c(r+1)

0

x

σ2
e−x

2/(2σ2)dx

]
− 2(m− r) log σ

+

m∑
i=r+1

log

[∫
xe−x

2/(2σ2)µx̃i(x)dx

]

+(n−m) log

[∫ ∞
c(m)

x

σ2
e−x

2/(2σ2)dx

]
= r log

[
1− e−c

2
(r+1)

/(2σ2)
]
− 2(m− r) log σ

+

m∑
i=r+1

log

[∫
xe−x

2/(2σ2)µx̃i(x)dx

]
−

(n−m)c2(m)

2σ2
, (9)

and subsequently the associated gradient is found to be

∂

∂σ
LO(w̃;σ) = −r

c2(r+1)e
−c2

(r+1)
/(2σ2)

σ3
[
1− e−c

2
(r+1)

/(2σ2)
] − 2(m− r)

σ

+

m∑
i=r+1

∫
x3

σ3 e
−x2/(2σ2)µx̃i(x)dx∫

xe−x2/(2σ2)µx̃i(x)dx
+

(n−m)c2(m)

σ3
. (10)
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To achieve estimation via ML method, it is not easy to solve the equation
∂LO(w̃;σ)/∂σ = 0, directly. In the following, Theorem 1 discusses the existence
and uniqueness of the MLE of σ.

Theorem 1. Under the doubly type-II censoring, the MLE of the scale parameter
σ of a Rayleigh population exists and is unique.

Proof. Let θ = 1/σ. Due to the invariance property of MLEs, we will show
the existence and uniqueness of the MLE of θ instead of σ. The log-likelihood
function L = LO(w̃; θ) based on a doubly type-II censored sample can be written
as

L = r log

[∫ c(r+1)

0
θ2xe−(θ

2x2)/2dx

]
+ 2(m− r) log θ

+
m∑

i=r+1

log

∫
xe−(θ

2x2)/2µx̃i(x)dx− (n−m)
θ2c2(m)

2

= r log
[
1− e−(θ

2c2
(r+1)

)/2
]

+ 2(m− r) log θ

+
m∑

i=r+1

log

∫
xe−(θ

2x2)/2µx̃i(x)dx− (n−m)
θ2c2(m)

2
. (11)

Differentiating of (11) with respect to θ yields

∂L

∂θ
= r

θc2(r+1)e
−(θ2c2

(r+1)
)/2[

1− e−(θ
2c2

(r+1)
)/2
] +

2(m− r)
θ

−θ
m∑

i=r+1

∫
x3e−(θ

2x2)/2µx̃i(x)dx∫
xe−(θ2x2)/2µx̃i(x)dx

− (n−m)θc2(m). (12)

Let g(θ) denote the function on the right-hand side of the expression in (12).
Then it is easily seen that

lim
θ→0

g(θ) =∞,

and

lim
θ→∞

g(θ) < lim
θ→∞

rθc
2
(r+1)e

−(θ2c2
(r+1)

)/2[
1− e−(θ

2c2
(r+1)

)/2
] +

2(m− r)
θ

 = 0, ∀θ ∈ (0,∞).

Therefore, the equation g(θ) = 0 has at least one root. To prove that the root is
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unique, we consider the first derivative of g, ǵ(θ), given by

ǵ(θ) = r
∂2

∂θ2
log

[∫ c(r+1)

0
xe−(θ

2x2)/2dx

]
− 2m

θ2

+
m∑

i=r+1

∂2

∂θ2
log

∫
xe−(θ

2x2)/2µx̃i(x)dx− (n−m)c2(m). (13)

Now let
s(θ) = e−(θ

2x2)/2,

w1(θ) =

∫ c(r+1)

0
xe−(θ

2x2)/2dx,

and

wi(θ) =

∫
xe−(θ

2x2)/2µx̃i(x)dx.

Then ǵ(θ) can be written as

ǵ(θ) = r
∂2

∂θ2
logw1(θ)−

2m

θ2
+

m∑
i=r+1

∂2

∂θ2
logwi(θ)− (n−m)c2(m).

It is clearly that s(θ) is a log-concave function of θ, and this implies that w1(θ) and
wi(θ) are also log-concave in θ (see Prekopa-Leindler inequality in the Appendix).
It follows that g is a strictly decreasing function w.r.t. θ and hence the equation
g(θ) = 0 has exactly one solution. 2

The maximum likelihood estimate of σ must be derived numerically. Ex-
pectation Maximization (EM) algorithm has emerged as a very important tool
for estimating the parameters involved in a model, especially when the available
data are incomplete. One advantage of the EM algorithm is that asymptotic vari-
ances and covariances of the EM algorithm estimates can be computed, which
is discussed in Section 4. Since the observed fuzzy data w̃ can be seen as an
incomplete specification of a complete data vector w, the EM algorithm is appli-
cable to obtain the maximum likelihood estimate of the parameter. First of all,
denote the lifetime of the missing, failed and censored units by Y = (Y1, · · · , Yr),
X = (Xr+1, · · · , Xm) and Z = (Zm+1, · · · , Zn), respectively. The combina-
tion of (Y,X,Z) = W forms the complete lifetimes and the corresponding log-
likelihood function is denoted by L(W ;σ). In the following, we use the fuzzy EM
(FEM) algorithm (Denoeux, 2011) to determine the MLE of σ.
The log-likelihood function based on the complete lifetimes W becomes propor-
tional to

L(W ;σ) ∝ −2n log σ − 1

2σ2

 r∑
k=1

y2k +

m∑
i=r+1

x2i +

n∑
j=m+1

z2j

 . (14)
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To perform the E-step of the EM algorithm, we need to compute the conditional
expectation of the complete-data log likelihood conditionally on the observed
data w̃, using the current fit σ(h) of the parameter σ:

Eσ(h) (L(W ;σ) | w̃) ∝ −2n log σ − 1

2σ2

[
r∑

k=1

Eσ(h)(Y 2
k | ỹk)

]

− 1

2σ2

 m∑
i=r+1

Eσ(h)(X2
i | x̃i) +

n∑
j=m+1

Eσ(h)(Z2
j | z̃j)

 ,
(15)

By using the expression (8), the conditional expectations α(h) = Eσ(h)(Y 2
k | ỹk),

β
(h)
i = Eσ(h)(X2

i | x̃i) and γ(h) = Eσ(h)(Z2
j | z̃j) can be obtained as follows:

α(h) = 2
(
σ(h)

)2
− c2(r+1)

e
−c2

(r+1)
/2(σ(h))2

1− e−c
2
(r+1)

/2(σ(h))2
,

β
(h)
i = Eσ(h)(X2

i | x̃i) =

∫
x3e−x

2/2(σ(h))2µx̃i(x)dx∫
xe−x2/2(σ

(h))2µx̃i(x)dx
,

γ(h) = c2(m) + 2
(
σ(h)

)2
.

The expected complete-data log likelihood can thus be written as:

Eσ(h) (L(W ;σ) | w̃) ∝ −2n log σ − 1

2σ2

[
rα(h) +

m∑
i=r+1

β
(h)
i + (n−m)γ(h)

]
.

(16)
The M-step then consists in finding σ(h+1) which maximizes Eσ(h)(L(W ;σ) | w̃).
This is easily achieved by solving the likelihood equation. From

∂

∂σ
Eσ(h)(L(W ;σ) | w̃) = 0,

we get

σ̂(h+1) =

{
1

2n

(
rα(h) +

m∑
i=r+1

β
(h)
i + (n−m)γ(h)

)}1/2

. (17)

The MLE of σ can be obtained by repeating the E- and M-steps until the dif-
ference LO(w̃;σ(h+1))− LO(w̃;σ(h)) becomes smaller than some arbitrary small
amount.

It is showed in Denoeux (2011) that the observed-data log-likelihood LO(w̃;σ)
is not decreased after an EM iteration. Hence, convergence to some value L∗ is
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ensured as long as the sequence LO(w̃;σ(h)) for h = 0, 1, · · · , is bounded from
above.

4. Asymptotic Variance of the MLE

Louis (1982) developed a procedure for extracting the observed information
matrix when the EM algorithm is used to find maximum likelihood estimates in
an incomplete data problem. The idea of the procedure can be expressed by the
missing information principle (Louis, 1982) as follows:

Observed information = Complete information - Missing information.

We can use this procedure to compute variance of the maximum likelihood esti-
mate generated through the EM algorithm. Let Iw̃(σ), IW (σ) and IW |w̃(σ) denote
the observed information, the complete information and the missing information,
respectively. From the classical results on the Rayleigh distribution, the complete
data information, IW (σ), is given by

IW (σ) = −E
(
∂2L(W ;σ)

∂σ2

)
=

4n

σ2
. (18)

The expected information for conditional distribution of W given w̃ (missing
information) is

IW |w̃(σ) =

r∑
k=1

I
(k)
Y |ỹ(σ) +

m∑
i=r+1

I
(i)
X|x̃(σ) +

n∑
j=m+1

I
(j)
Z|z̃(σ), (19)

in which

I
(k)
Y |ỹ(σ) = E

[(
∂ log f(Yk | ỹk;σ)

∂σ

)2
]
, (20)

I
(i)
X|x̃(σ) = E

[(
∂ log f(Xi | x̃i;σ)

∂σ

)2
]
, (21)

and

I
(j)
Z|z̃(σ) = E

[(
∂ log f(Zj | z̃j ;σ)

∂σ

)2
]
. (22)

Using (8), the logarithm of the conditional distribution of Yk given ỹk becomes

log f(Yk | ỹk; θ) = logµỹk(yk) + log yk − 2 log σ − yk
2

2σ2

− log

[∫
yk
σ2
e−yk

2/(2σ2)µỹk(yk)dyk

]
. (23)
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Differentiating of (23) with respect to σ yields

∂ log f(Yk | ỹk;σ)

∂σ
= − 2

σ
+
yk

2

σ3
−Qk, (24)

where

Qk =

∫
(yk

3

σ5 − 2yk
σ3 )e−yk

2/(2σ2)µỹk(yk)dyk∫ yk
σ2 e−yk

2/(2σ2)µỹk(yk)dyk
.

By using (23) and (24), we have

E

[(
∂ log f(Yk | ỹk;σ)

∂σ

)2
]

=
ζk
σ6
− 2

σ3

(
2

σ
+Qk

)
ϑk +

(
2

σ
+Qk

)2

, (25)

with

ζk =

[∫
yk

5e−yk
2/(2σ2)µỹk(yk)dyk∫

yke−yk
2/(2σ2)µỹk(yk)dyk

]
,

and

ϑk =

[∫
yk

3e−yk
2/(2σ2)µỹk(yk)dyk∫

yke−yk
2/(2σ2)µỹk(yk)dyk

]
.

Similarly I
(i)
X|x̃(σ) and I

(j)
Z|z̃(σ) can be obtained as,

E

[(
∂ log f(Xi | x̃i;σ)

∂σ

)2
]

=
ηi
σ6
− 2

σ3

(
2

σ
+ Pi

)
δi +

(
2

σ
+ Pi

)2

, (26)

with

Pi =

∫
(xi

3

σ5 − 2xi
σ3 )e−xi

2/(2σ2)µx̃i(xi)dxi∫
xi
σ2 e−xi

2/(2σ2)µx̃i(xi)dxi
,

ηi =

[∫
xi

5e−xi
2/(2σ2)µx̃i(xi)dxi∫

xie−xi
2/(2σ2)µx̃i(xi)dxi

]
,

and

δi =

[∫
xi

3e−xi
2/(2σ2)µx̃i(xi)dxi∫

xie−xi
2/(2σ2)µx̃i(xi)dxi

]
.

E

[(
∂ log f(Zj | z̃j ;σ)

∂σ

)2
]

=
τj
σ6
− 2

σ3

(
2

σ
+Gj

)
πj +

(
2

σ
+Gj

)2

, (27)

with

Gj =

∫
(
zj

3

σ5 −
2zj
σ3 )e−zj

2/(2σ2)µz̃j (zj)dzj∫ zj
σ2 e−zj

2/(2σ2)µz̃j (zj)dzj
,
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τj =

[∫
zj

5e−zj
2/(2σ2)µz̃j (zj)dzj∫

zje−zj
2/(2σ2)µz̃j (zj)dzj

]
,

and

πj =

[∫
zj

3e−zj
2/(2σ2)µz̃j (zj)dzj∫

zje−zj
2/(2σ2)µz̃j (zj)dzj

]
.

Then, by the missing information principle, the observed information Iw̃(σ) can
be obtained as

Iw̃(σ) = IW (σ)− IW |w̃(σ). (28)

The asymptotic variance of the ML estimate for σ can be determined by inverting
the observed information Iw̃(σ̂).

5. Numerical Study

In this section, we present a Monte Carlo simulation study and one example to
illustrate the methods of inference developed in this paper. First, for fixed σ = 1
and different choices of n, m and r, we have generated doubly type-II censored
samples from Rayleigh distribution, using the method proposed by Aggarwala
and Balakrishnan (1998), as follows.

(1) Generate Vm from the beta distribution with parameters n− r and r + 1.
(2) Independently generate Zr+i from U(0, 1) for i = 1, · · · ,m− r − 1.

(3) Set Vr+i = Z
1/ar+i

r+i , ar+i = i+ n−m, i = 1, · · · ,m− r − 1.
(4) Set Ur+i = 1− Vm−i+1Vm−i+2 · · ·Vm, i = 1, · · · ,m− r.
(5) Thus, Xi = F−1(Ui), i = r+ 1, · · · ,m, is the desired doubly type-II censored
sample from the Rayleigh distribution.

Then each realization of x was fuzzified using the f.i.s. shown in Figure 2, and
the MLE of σ for the fuzzy sample were computed using the iterative algorithm
(17). We have used the initial estimate to be σ(0) = (

∑m
i=1 x

2
i /2m)1/2. The

iterative process stops when the relative change of the log-likelihood becomes
less than 10−6. The average values of the estimates, the average number of
iteration needed for convergence and the simulated values of V ar(σ̂) as well as the
approximate values determined by averaging the corresponding values obtained
from the observed Fisher information, based on 1000 replication, are presented
in Table 1.

Some of the points are quite clear from Table 1. The performance of the MLEs
are satisfactory in terms of the average values and variances of the estimates. For
fixed n as m increases, the variances decrease for all cases as expected. From this
table, we also observe that the approximate values determined from observed
Fisher information are quite close to the simulated variances even for moderate
values of m.
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Figure 2: Fuzzy information system used to encode the simulated data

Table 1: Averages and variances of the MLE, variances from averaged observed
Fisher information and average number of iterations (AI) for different sample
sizes

n r m σ̂ V ar(σ̂) (Iw̃(σ̂))
−1

AI

20 0 10 1.0030 0.0251 0.0242 9.993
20 0 15 1.0018 0.0197 0.0180 5.957
20 5 10 0.9837 0.0270 0.0253 9.337
20 5 15 0.9976 0.0204 0.0189 5.167

30 0 15 1.0222 0.0182 0.0173 9.993
30 0 20 1.0018 0.0133 0.0130 6.999
30 0 25 1.0017 0.0128 0.0116 5.159
30 5 15 1.0081 0.0179 0.0171 9.648
30 5 20 0.9959 0.0130 0.0127 6.480
30 5 25 1.0004 0.0117 0.0112 4.558

40 0 20 1.0084 0.0145 0.0130 9.994
40 0 25 1.0040 0.0116 0.0115 7.075
40 0 30 0.9972 0.0104 0.0101 5.685
40 5 20 0.9927 0.0142 0.0128 9.823
40 5 25 1.0027 0.0110 0.0104 7.003
40 5 30 1.0012 0.0104 0.0098 5.350

50 0 25 1.0072 0.0117 0.0104 9.998
50 0 30 1.0033 0.0093 0.0086 8.001
50 0 35 1.0031 0.0078 0.0074 6.017
50 5 25 1.0098 0.0132 0.0124 9.911
50 5 30 1.0066 0.0091 0.0086 7.957
50 5 35 1.0024 0.0085 0.0079 6.006
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Example 3. (Real life data). In this example, we analyze the ball bearing data,
which was given by Caroni (2002) and represents the failure times of 25 ball
bearings in endurance test. The observed failure times are shown in Table 2. For
this data set, Raqab and Madi (2002) indicated that the one-parameter Rayleigh
distribution provides a satisfactory fit.

Table 2: Failures of 25 ball bearing data for Example 3

i 1 2 3 4 5 6 7 8 9
xi 17.88 28.92 33.00 41.52 42.12 45.60 48.48 51.84 51.96

i 10 11 12 13 14 15 16 17 18
xi 54.12 55.56 67.80 67.80 67.80 68.64 68.64 68.88 84.12

i 19 20 21 22 23 24 25
xi 93.12 98.64 105.12 105.84 127.92 128.04 173.40

Now consider that the observer has not a mechanism of measurement suf-
ficiently precise to determine exactly the moment of a failure. So, such data
may be reported as imprecise quantities. Assume that imprecision of the failure
times of the ball bearings is formulated by fuzzy numbers x̃i = (ai, xi, bi), where
ai = 0.05xi and bi = 0.03xi with membership functions

µx̃i(x) =

{
x−(xi−ai)

ai
, xi − ai ≤ x ≤ xi,

(xi+bi)−x
bi

, xi ≤ x ≤ xi + bi,
i = 1, · · · , 25.

Suppose that the first 5 lifetimes and the last 5 lifetimes out of n inspection items
are missing, then we can only obtain a doubly type-II censored sample

(2.280, 45.60, 1.368), (2.422, 48.48, 1.466), (2.592, 51.84, 1.555), (2.598, 51.96, 1.558),
(2.706, 54.12, 1.623), (2.778, 55.56, 1.667), (3.390, 67.80, 2.034), (3.390, 67.80, 2.034),
(3.390, 67.80, 2.034), (3.432, 68.64, 2.059), (3.432, 68.64, 2.059), (3.434, 68.88, 2.061),
(4.206, 84.12, 2.523), (4.656, 93.12, 2.794), (4.932, 98.64, 2.959).

From these fuzzy data and using the starting value σ(0) = (
∑30

i=1 x
2
i /30)1/2 =

48.0513 which is the estimate of the parameter computed over the centers of
each fuzzy numbers, the final MLE of σ is found from (17) to be σ̂ = 55.1901.
The complete information, the missing information and the observed information
are IW (σ̂) = 0.0328, IW |w̃(σ̂) = 0.0066 and Iw̃(σ̂) = 0.0261, respectively. By
inverting the Iw̃(σ̂), we have V ar(σ̂) = 38.1882.

6. Conclusion

Although the maximum likelihood estimation of the parameter of Rayleigh
distribution based on censored data has been studied extensively, traditionally
it is assumed that the data available are performed in exact numbers. In real
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world situations, however, we deal with non-precise (fuzzy) data. Therefore, the
conventional procedures used for estimating the unknown parameter of Rayleigh
distribution will have to be adopted to the new situation. In this paper we
have introduced a generalization of the likelihood function under doubly type-
II censoring scheme when the lifetime observations are fuzzy numbers and have
obtained maximum likelihood estimate of the scale parameter of Rayleigh model.
We have then derived the asymptotic variance of the ML estimate by using the
missing information principle. Based on the results of the simulation study, we
see clearly that, as the effective sample size m increases, the performances of
the MLEs in terms of variances become better. We also note from Table 1 that
the average values of variances determined from the observed Fisher information
are quite close to the simulated variances. The study of the applicability of the
proposed approach in estimating the parameters of lifetime distributions under
the other censoring schemes such as Hybrid type-II and Hybrid progressive type-
II censoring are possible topics for further research.

Appendix

In mathematics, the Prekopa-Leindler inequality is an integral inequality
closely related to the reverse Young’s inequality, the Brunn-Minkowski inequality
and a number of other important and classical inequalities in analysis.

Statement of the inequality (Gardner, 2002):
Let 0 < λ < 1 and let f, g and h be non-negative integrable functions defined

on Rn satisfying
h ((1− λ)x+ λy) ≥ f(x)1−λg(y)λ,

for all x, y ∈ Rn. Then∫
Rn

h(x)dx ≥
(∫

Rn

f(x)dx

)1−λ(∫
Rn

g(x)dx

)λ
.
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