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Abstract: Copulas have recently emerged as practical methods for multivari-
ate modeling. To our knowledge, only a limited amount of work has been
done to apply copula-based modeling in context analysis. In this study,
we generalized Clayton copula under the appropriate weighted function. In
some examples, bivariate distributions by using the weighted Clayton cop-
ula are generalized. Also the properties of generalized Clayton copula are
provided. The Clayton copula and weighted Clayton model cannot be used
for negative dependence. These have been used to study left tail depen-
dence. This property is stronger in weighted Clayton model with respect to
ordinary Clayton copula. It will also be shown that the generalized Clayton
copula is suitable for the probable modeling of the hydrology data.

Key words: Clayton copula, measures of dependence, the hydrology data,
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1. Introduction

There exists plenty of evidence for dependence among variables, ignoring the
dependence structure solely for mathematical simplicity. As shown by De Michele
et al. (2005), among other consequences, failure to take into account the depen-
dence between variables may lead to overestimation and underestimation of the
parameters of the model.

Copulas have recently emerged as practical and efficient methods for analysis
of multivariate events (e.g., Joe, 1997; Nelsen, 2006). Hydrological application of
copulas has surged (see, e.g., Genest and Favre, 2007; Gebremichael and Krajew-
ski, 2007 and others in a special issue of Journal of Hydrological Engineering). An
important advantage of using copulas is that the marginal behavior and the de-
pendence structure can be studied separately. Copula modeling has been applied
in design storm analysis recently, with most applications in bivariate analysis. De
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Michele and Salvadori, in a sequence of papers (De Michele and Salvadori, 2005;
Salvadori and De Michele, 2004a, b), modeled the dependence between storm
intensity and duration.

Zhang and Singh (2007) and Kao and Govindaraju (2007) modeled the depen-
dence between peak intensity and depth, depth and duration, and peak intensity
and duration. One of the most popular parametric families of copulas is the
Clayton copula family, defined as

CC(u, v) = [u−β + v−β − 1]
− 1
β , β > 0. (1)

Clayton (1978) examines this family in detail. Inverting this survival copula, we
obtain a joint survival function

H̄(x, y) = (x+ y + 1)−β, x ≥ 0, y ≥ 0, β > 0, (2)

where X and Y are identical type II Pareto distributions F̄ (x) = (1 + x)−β and
F̄ (y) = (1 + y)−β respectively (Genest and Rivest, 1993).

This assay aims at extending family copula of Clayton by considering the
weighted function. The weighted distributions arise when a random sample from
the entire population of interest cannot be obtained (as in the tails) or it is not
desired (as in the selection models). An important advantage of using weighted
copulas is that the marginal behavior and the dependence structure can be stud-
ied separately. This study applies the weighted copula modeling in design hy-
drology analysis, with most applications in bivariate analysis, for example, the
dependence modeled between storm intensity and duration, peak intensity and
depth, depth and duration, and peak intensity and duration. It also attempts to
study values of dependence. Then it describes the new family and provides some
examples of copulas taken in this family, in Section 2. The associated Kendall’s
τk and tail dependence coefficient are studied in Section 3. The application of the
generalized Clayton copula in the analysis of the probable modeling of the hy-
drology data will be studied in Section 4. And finally, the results of this research
will be carried out in Section 5.

2. Weighted Clayton Copula

The density f(x) of a potential observation can be distorted so that it may
be multiplied by some non-negative weight function W (x) involving parameters
(Patil and Rao, 1978; Mahfoud and Patil, 1982). Thus the observed data is a
random sample from the following weighted version of f(x). Now; we propose
a new family of the generalized Clayton copula by using weighted distribution
function of type II Pareto distribution. The weighted distributions arise when a
random sample from the entire population of interest cannot be obtained (as in
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the tails) or it is not desired (as in the selection models). Let X be a random
variable with density f(x) and w(x) be non-negative real valued function so that
E[w(X)] <∞. Then weighted random variable X, say Xw, will have a weighted
pdf of

fXw(x) =
w(x)fX(x)

E[w(X)]
. (3)

Now let X be type II Pareto distribution and w(x) = (1 + x)−α, α ≥ 0, be
non-negative real valued function. Then the weighted pdf of X is

fXw(x) = (α+ β)(1 + x)−(α+β)−1, x ≥ 0, α ≥ 0, β > 0, (4)

and weighted distribution function is

F̄Xw(x) = (1 + x)−(α+β), x ≥ 0, α ≥ 0, β > 0. (5)

Theorem. Let (X,Y ) be a type II joint Pareto survival distribution. Then
under weight function W (x, y) = [x + y + 1]−α for β > 0, α ≥ 0, the weighted
Clayton copula is

CCw (u, v) = [u−(β+α) + v−(β+α) − 1]
− 1
β+α , α ≥ 0, β > 0, (6)

and weighted type II Pareto joint survival function is

H̄(x, y) = [x+ y + 1]−(β+α), x, y ≥ 0, β > 0, α ≥ 0, (7)

where Xw, Y w are two identical weighted type II Pareto random variables with
survival weighted function F̄Xw(x) = (1 + x)−(α+β), x ≥ 0, α ≥ 0, β > 0 and
F̄Y w(y) = (1 + y)−(α+β), y ≥ 0, α ≥ 0, β > 0, respectively.

Proof. For any pair random variables (X,Y ), form (2) it is easy to show that
joint pdf for (X,Y ) is

h(X,Y )(x, y) = β(β + 1)(x+ y + 1)−(β+2), x, y ≥ 0, β > 0. (8)

Under weight function W (x, y) = [x+ y + 1]−α for α ≥ 0, a type II joint Pareto
weighted density function of (X,Y )w, by

hw(x, y) =
w(x, y)h(x, y)

E[w(X,Y )]
, (9)

is

hw(x, y) = (α+ β)(α+ β + 1)(x+ y + 1)−(α+β), x, y ≥ 0, β > 0, α ≥ 0, (10)
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with a marginal weighted density such as (5) for Xw, Y w and type II joint
weighted survival function

H̄w(x, y) = [x+ y + 1]−(β+α), x, y ≥ 0, β > 0, α ≥ 0. (11)

Then the marginal weighted survival functions F̄Xw and ḠY w are F̄Xw(x) =
(1 + x)−(β+α), x ≥ 0 and ḠY w(y) = (1 + y)−(β+α), y ≥ 0 respectively. Let
ϕ(t) = t−β − 1 for t in [0, 1] and θ > 0. Because ϕ(0) = ∞, ϕ is strict. Thus
ϕ[−1](t) = (1 + t)−1/β, now by using Lemma 4.1.2 (Nelsen, 2006), we have

CCw (u, v) = [u−(β+α) + v−(β+α) − 1]
− 1
β+α . (12)

Relation (12) is called the weighted Clayton copula.
The copula density (12) is provided by

cCW (u, v) =
∂2

∂u∂v
CCW (u, v)

= (β + α+ 1)u−(β+α−1)v−(β+α−1)[u−(β+α) + v−(β+α) − 1]
− 1
β+α
−2
.

Corollary. The generalized weighted Clayton copula for d-dimensional is

CCW (u1, u2, · · · , ud) =

(
d∑
i=1

u
−(β+α)
i − d+ 1

)− 1
β+α

,

and for a sub-dimensional of the above relation we have

CCW (uk+1, uk+2, · · · , ud) =

(
d∑

i=k+1

u
−(β+α)
i − (d− k − 1)

)− 1
β+α

.

Proof. Let ϕα+β(t) = t−(α+β)−1 for α+β > 0, which generators a subfamily of
the bivariate weighted Clayton family, the subfamily whose generators are strict.

Here ϕ
[−1]
α+β(t) = (1 + t)−1/(α+β), this is easily shown to be complete monotone

on [0,∞). Thus we can generalize the weighted Clayton family of 2-copulas to a
family of d-copulas for α+ β > 0 and any d ≥ 2.

One of the advantages of the weighted Clayton model is that we can use
this model, and generalize bivariate weighted distributions. Some examples are
mentioned in the following sections.

Example 2.1. (Generalized weighted bivariate beta distribution).
Let X ∼ beta(θ, 1), Y ∼ beta(θ, 1) then u = xθ, v = yθ and the generalized
weighted bivariate beta distribution will be

H(x, y) = [x−θ(α+β) + y−θ(α+β) − 1]
− 1
α+β , α ≥ 0, β > 0, θ > 0.
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Note 1. When θ = 1, then the generalized weighted bivariate uniform distribu-
tion becomes

H(x, y) = [x−(α+β) + y−(α+β) − 1]
− 1
α+β , α ≥ 0, β > 0.

Example 2.2. (Generalized weighted bivariate Weibull distribution).

Let X ∼ W (θ, λ), Y ∼ W (θ, λ) then u = 1 − e−λx
θ
, v = 1 − e−λy

θ
and the

generalized weighted bivariate Weibull distribution will be

H(x, y) = [(1− e−λxθ)−(α+β) + (1− e−λyθ)−(α+β) − 1]
− 1
α+β ,

α ≥ 0, β > 0, θ > 0, λ > 0.

Note 2. When θ = 1, the generalized weighted bivariate exponential distribution
obtained is

H(x, y) = [(1− e−λx)−(α+β) + (1− e−λy)−(α+β) − 1]
− 1

(α+β) , α ≥ 0, β > 0, λ > 0.

Note 3. When θ = 2 by replacing 1/2λ instead of λ, the generalized weighted
bivariate Rayleigh distribution obtained will be obtained as

H(x, y) = [(1− e−
x2

2λ )−(α+β) + (1− e−
y2

2λ )−(α+β) − 1]
− 1

(α+β) , α ≥ 0, β > 0, λ > 0.

3. Calculating Measures of Dependence

In this section we will look at different ways in which copulas can be used
in the study of dependence between random variables. For a historical review of
association measures and concepts of independence see Gebremichael and Kra-
jewski (2007), Genest and Rivest (1993), and Hutchinson and Lai (1990).

3.1 Kendall’s τ k

Let X and Y be continuous random variables whose copula is C. Then the
population version of Kendall’s tau for X and Y (which we will denote by τk will
be given by

τk = 4

∫ 1

0

∫ 1

0
C(u, v)dC(u, v)− 1, (13)

where C is the copula associated to (X,Y ). So, the Kendall’s τk of the generalized
Clayton copula will be given by

τk =
β + α

β + α+ 2
.
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3.2 Tail Dependence

The concept of tail dependence relates to the amount of dependence in the
upper-right quadrant tail or lower-left-quadrant tail of a bivariate distribution
(Farlie, 1960). It is a concept that is relevant for the study of dependence between
extreme values. It turns out that tail dependence between two continuous random
variables X and Y is a copula property and hence, the amount of tail dependence
is invariant under strictly increasing transformations of X and Y .

Definition 1. Given that concerning a bivariate copula C, we have

LU = lim
u→1

1− 2u+ C(u, u)

1− u
. (14)

Will have C has upper tail dependence if LU ∈ (0, 1], and upper tail independence
if LU = 0.

Definition 2. The concept of lower tail dependence can be defined in a similar
way. If the limit,

LL = lim
u→0

C(u, u)

u
. (15)

exists, then C has lower tail dependence if LL ∈ (0, 1], and lower tail independence
if LL = 0. For copulas without a simple closed form an alternative formula for LL
is more useful. So, the upper tail dependence of the generalized Clayton copula
by using (14) is, LU = 0 and the lower tail dependence of the generalized Clayton
copula by using (15) is, LL = 2−1/(β+α).

It should be noted that 2−1/(β+α) for fixed β is increasing function in α,
therefore the lower tail dependence parameter in weighted Clayton copula is
greater than tail dependence in Clayton copula.

4. Application of Weighted Clayton Copula

Information is needed in analysis and management of water resources, the
most important part of which is the study of features frequency of drainage area
and discharge. Our data are for 22 watersheds in the Western Coastal Plain of
Maryland and Virginia. The data include the drainage area (A, miles2), and
discharge (Q, cfs) (McCuen Richard H., p.122, 2003). Considering the high cor-
relation of these two features, some tools must be used to reveal the amount of
relationship and impact which exists in the analysis; therefore it is necessary to
determine the joint distribution of the two features, drainage area and discharge.
Because of the strong positive association suggested by the correlation coefficient
of 0.933, we reject independent assumption between two variables (sig. = 0.000).
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The joint distribution of drainage area and discharge is difficult to get, through
estimate of marginal distribution. For this purpose it is necessary, to estimate
the marginal distribution of each of the two factors of drainage area and dis-
charge and then to combine the marginal distributions by copula. In this paper
distributions fitted to the data are Weibull, Gamma, Gamma (3p), Pearson 6,
log-Pearson 3, log-logistic (3p), Pareto type II, lognormal, lognormal (3p), expo-
nential, exponential (2p), and finally, for data of drainage area, the type II Pareto
distribution with the parameters of µ1 = 3.4566 and σ1 = 46.352, and for data
of discharge the type II Pareto distribution with parameters of µ2 = 4.9481 and
σ2 = 6336.2 will better fit.

The results of fit type II Pareto distribution to data sets are illustrated in
Table 1.

Table 1: The results of fit type II Pareto distribution to data

Test: Type II Pareto distribution for drainage area data

Kolmogorov-Smirnov Parameters

Sample Size 22 µ1 = 3.4566, σ1 = 46.352
Statistic 0.12724
p-value 0.82512

Result: Accept Type II Pareto distribution for drainage area data

Test: Type II Pareto distribution for discharge data

Kolmogorov-Smirnov Parameters

Sample Size 22 µ1 = 4.9481, σ1 = 6336.2
Statistic 0.12644
p-value 0.83064

Result: Accept Type II Pareto distribution for drainage area data

Recall. We have fitted the below Pareto (second kind) distribution to two sets
of data drainage area and discharge

F (x) = 1−
(

σ

x+ σ

)µ
, 0 ≤ x <∞.

µ = continuous shape parameter (µ > 0) and σ = continuous scale parameter
(σ > 0) (In some cases, the lower range x is the third parameter which we have
not used in this paper). So, the distributions for two sets of data drainage area
and discharge have two parameters µ and σ, called shape parameter and scale
parameter, respectively.

For estimating parameters of Clayton copula and weighted Clayton copula
the log-likelihood function is defined. All the related calculations to distribution
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function, estimating parameter and logarithm likelihood function are done by
Maple software. The MLE of parameter for the density of Clayton copula is
β̂ML,0 = 2.9494 and the MLE of parameters for the density of weighted Clayton

copula are β̂ML,1 = 2.0215 and α̂ML,1 = 1.3754 respectively. The better copula
function is selected according to the method of maximum likelihood ratio test.
The log-likelihood for the density of Clayton copula is −267.2240572 and the log-
likelihood for the density of weighted Clayton copula is −229.1154301. When one
parameter of interest is on the boundary and no nuisance parameters are on the
boundary, the asymptotic distribution of the LRT is a 50 : 50 mixture of point
mass at 0 and χ2 with 1 degree of freedom (Self and Liang, 1987), so

−2 ln[L(α̂ML,0, β̂ML,0)/L(α̂ML,1, β̂ML,1)] = 76.217 (sig. = 0.000),

where L(α̂ML,0, β̂ML,0) and L(α̂ML,1, β̂ML,1) are the maximum likelihood under the
null-hypothesis (H0 : α = 0) and under the alternative hypothesis (H1 : α > 0),
respectively.

Thus, the weighted Clayton copula function provides more changes for observ-
ing samples related to estimated value of Clayton function. So the weighted Clay-
ton copula function with the parameter of β̂ML,1 = 2.0215 and α̂ML,1 = 1.3754
can be used to determine the joint distribution between drainage area and dis-
charge. Using marginal type II Pareto distributions and the MLE of parameters
and replacing in the weighted Clayton copula, we will have the distribution of
drainage area and discharge as follows:

H(x, y) =

(1−
(

46.352

x+ 46.352

)3.4566
)−3.396

+

(
1−

(
6336.2

y + 6336.2

)4.9481
)−3.396

− 1

−0.2945 .
And the density is provided by

h(x, y) = 4.396

((
1−

(
46.352

x+ 46.352

)3.4566
)(

1−
(

6336.2

y + 6336.2

)4.9481
))−2.396

×

(1−
(

46.352

x+ 46.352

)3.4566
)−3.396

+

(
1−

(
6336.2

y + 6336.2

)4.9481
)−3.396

− 1

−2.0684.
Using this distribution, one can obtain important information on the drainage
area and discharge, for example, the probability of a drainage area less than 2.82



Weighted Clayton Copula and their Characterizations: Application 301

and a discharge less than specific 418 is 0.17213. Also, conditional distribution
can be determined by copula, and then the probabilities of how to change a factor
according to another controlled factor can be obtained.

5. Conclusions

In this paper, we proposed a new family of copulas, namely, the generalizing
Clayton family that is generated by weighted distribution function and then, we
obtained a generalized d-dimensional (Multivariate) Clayton copula. One of the
advantages of the weighted Clayton model is its usability and generalizability
to bivariate weighted distributions. This family obtains generalized bivariate
distributions. The main feature of this family is permitting the modeling of
high dependence, while the Clayton copula and weighted Clayton model cannot
be used for negative dependence. These have been used to study lower tail
dependence which as a parameter in weighted Clayton copula is greater than
lower tail dependence in Clayton copula. Moreover, it has also been shown that
the generalizing Clayton copula is a proper model for analyzing the hydrology
data problem. It should also be noted that bivariate distributions and two-
parameter copula function were analyzed. Besides, using research methodology
and the multivariate generalizing Clayton copula function, one can study the
issue of probable modeling of hydrology data with more variables.
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