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Abstract: It is well known that the ordinary least squares (OLS) regression
estimator is not robust. Many robust regression estimators have been pro-
posed and inferential methods based on these estimators have been derived.
However, for two independent groups, let θj(X) be some conditional mea-
sure of location for the jth group, given X, based on some robust regression
estimator. An issue that has not been addressed is computing a 1−α confi-
dence interval for θ1(X)− θ2(X) in a manner that allows both within group
and between group hetereoscedasticity. The paper reports the finite sam-
ple properties of a simple method for accomplishing this goal. Simulations
indicate that, in terms of controlling the probability of a Type I error, the
method performs very well for a wide range of situations, even with a rela-
tively small sample size. In principle, any robust regression estimator can be
used. The simulations are focused primarily on the Theil-Sen estimator, but
some results using Yohai’s MM-estimator, as well as the Koenker and Bas-
sett quantile regression estimator, are noted. Data from the Well Elderly II
study, dealing with measures of meaningful activity using the cortisol awak-
ening response as a covariate, are used to illustrate that the choice between
an extant method based on a nonparametric regression estimator, and the
method suggested here, can make a practical difference.

Key words: ANCOVA, bootstrap methods, Theil-Sen estimator, Well El-
derly II study.

1. Introduction

For two independent groups, assume that for the jth group (j = 1, 2) Yj is
some outcome variable of interest and Xj is some covariate such that

Yj = β0j + β1jXj + λj(X)εj , (1)

where β0j and β1j are unknown parameters and εj is a random variable having
variance σ2j and mean equal to zero. So based on (1),

θj(X) = β0j + β1jXj ,
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is the some conditional measure of location for Y given X. Classic inferential
methods based on (1) assume two types of homoscedasticity. The first is within
group (WG) homoscedasticity, meaning that λj(X) ≡ 1 and the other is be-
tween group (BG) homoscedasticity, meaning that σ21 = σ22. And of course,
these methods are based on the least squares regression estimator. It is well
known, however, that the ordinary least squares (OLS) regression estimator is
not robust (e.g., Huber and Ronchetti, 2009; Hampel et al., 1986; Staudte and
Sheather, 1990; Wilcox, 2012). Included among the concerns about OLS is that
its efficiency can be relatively poor when the error term εj has a heavy-tailed
distribution, particularly when there is WG heteroscedasticity (Wilcox, 2012, p.
515). Another concern is that even a single outlier can result in a distorted and
misleading summary of the association among the bulk of the points. In addition,
when there is WG heteroscedasticity, classic methods are using an invalid esti-
mate of the relevant standard errors (e.g., Godfrey, 2006; Long and Ervin, 2000).
Numerous robust regression estimators have been derived that are aimed at deal-
ing with known concerns associated with OLS, and inferential methods based on
these estimators have been developed as well (e.g., Heritier et al., 2009; Maronna
et al., 2006; Wilcox, 2012). But evidently, there are no results on methods aimed
at testing

H0 : θ1(X) = θ2(X), (2)

for some specified value for X, which allow both types of heteroscedasticity. The
goal in this paper is to suggest a simple method for accomplishing this goal and
to report simulation results on how well it performs when the sample sizes are
relatively small.

A related goal is comparing the slopes and intercepts based on robust re-
gression estimators, and such techniques have already been derived (e.g., Wilcox,
2012). Of course, if the regression lines are not parallel, this raises the issue of
determining the range of X values for which there is a high degree of certainty
that θ1(X) < θ2(X), as well as a range of X values for which we can be reason-
ably certain that θ1(X) > θ2(X). As is evident, testing (2) helps address these
problems (cf. Johnson and Neyman, 1936; Wilcox, 1987).

Wilcox (2012, Section 11.11) summarizes a collection of methods aimed at
testing (2) based in part on a nonparametric regression estimator. More precisely,
a running interval smoother is used to estimate θj(X) that makes no assumptions
about the parametric form of the regression lines. Let (Y1j , X1j), · · · , (Ynjj , Xnjj)
be a random sample from some bivariate distribution corresponding to the jth
group. Briefly, given X, the method determines the Xij values that are close to
X in terms of a robust measure of variation (the median absolute deviation). To
elaborate, let

Nj(X) = {i : |Xij −X| ≤ fj ×MADNj},
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where MADj is the usual sample median based on |X1j −Mj |, · · · , |Xnjj −Mj |,
Mj is the median of X1j , · · · , Xnjj and MADNj is MADj/0.6745. Under normal-
ity, MADj/0.6745 estimates the usual population standard deviation. So roughly,
under normality, X is said to be close to Xij if X is within fj standard deviations
of Xij . The constant fj , called a span, is chosen in a manner that provides a
reasonably good approximation of the regression line even when there is curva-
ture. (Using fj = 0.8 or 1 usually gives good results.) The method estimates
θj(X) with a trimmed mean applied to the corresponding Yij values, meaning
the Yij values such that i ∈ Nj(X). The hypothesis of equal trimmed means is
tested with the method derived by Yuen (1974). Bootstrap methods are available
as well. It is evident that if indeed there is curvature, this approach can have
more power than any method that assumes the regression lines are straight. But
simultaneously, if indeed the regression lines are reasonably straight, there is the
concern that power might be reduced substantially compared to a method that
assumes there is no curvature. The reason is that given X, the nonparametric
method uses only those Yij values such that i ∈ Nj(X) when testing (2). As illus-
trated in Section 3, the method proposed here can indeed provide a substantial
increase in power compared to the nonparametric method just described, and it
can make a difference in practice, as illustrated in Section 4.

2. Description of the Proposed Method

There are many robust regression estimators. Here the focus is on the Theil
(1950) and Sen (1968) regression estimator, but this is not to suggest that it
dominates all other regression estimators that might be used. Indeed, no single
estimator dominates based on the various criteria used to compare estimators.
But the Theil-Sen estimator performs relatively well in terms of handling outliers
and it has good efficiency, particularly when there is heteroscedasticity.

For convenience, momentarily consider a single group and let (Y1, X1), · · · ,
(Yn, Xn) be a random sample from some bivariate distribution. The regression
estimator proposed by Theil (1950) was based on the strategy of finding a value
for the slope, b1, that makes Kendall’s correlation tau between Yi − b1Xi and Xi

(approximately) equal to zero. Sen (1968) showed that this is tantamount to the
following method. For any i < i′, for which Xi 6= Xi′ , let

Sii′ =
Yi − Yi′
Xi −Xi′

.

The Theil-Sen estimate of the slope is b1, the median of all the slopes represented
by Sii′ . The intercept is estimated with

My − b1Mx,
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where My and Mx are the usual sample medians of the Y and X values, re-
spectively. Dietz (1987) showed that the Theil-Sen estimator has an asymptotic
breakdown point of 0.293, where roughly the breakdown point of an estimator
refers to the proportion of points that must be altered to make it arbitrarily large
or small. So about 29% of the points must be altered in order to make the Theil-
Sen estimate of the slope (or intercept) arbitrarily large or small. In practical
terms, it offers protection against the event of outliers completely distorting the
nature of the association among the bulk of the points. In contrast, OLS has a
breakdown point of 1/n. That is, a single outlier can result in a highly mislead-
ing summary of the association. For results on the small-sample efficiency of the
Theil-Sen estimator, see Dietz (1989), Talwar (1991) and Wilcox (1998).

Various strategies for testing (2) were considered that did not perform well
in simulations. For brevity, attention is focused on the one method that was
found to be reasonably satisfactory. First, generate a bootstrap sample from the
jth group by randomly sampling nj vectors of observations, with replacement,
from (X1j , Y1j), · · · , (Xnjj , Ynjj) yielding (X∗1j , Y

∗
1j), · · · , (X∗njj

, Y ∗njj
). Compute

the Theil-Sen estimate of the slope and intercept based on this bootstrap sample
and label the results β∗1j and β∗0j , respectively. For X specified, let Ŷ ∗j = β∗0j +

β∗1jX. Repeat this process B times yielding Ŷ ∗jb (b = 1, · · · , B). Then, from basic
principles (e.g., Efron and Tibshirani, 1997), an estimate of the squared standard
error of θ̂j(X) = b0j + b1jX is

τ̂2j =
1

B − 1

∑
(Ŷ ∗jb − Ȳ ∗j )2, (3)

where Ȳ ∗j =
∑
Ŷ ∗jb/B. Here, B = 100 is used. Letting z be the 1− α/2 quantile

of a standard normal distribution, an approximate 1 − α confidence interval for
θ1(X)− θ2(X) is

θ̂1(X)− θ̂2(X)± z
√
τ̂21 + τ̂22 . (4)

Note that the method is readily extended to the case of p > 1 covariates.
When testing (2) for two or more choices for X, an issue is controlling the

familywise error (FWE) rate, meaning the probability of one more Type I errors.
There are, of course, various strategies that might be used, such as some sequen-
tially rejective method that improves on the Bonferroni method (e.g., Hochberg,
1988; Rom, 1990), or one might simply replace z in (4) with the 1−α quantile of
a C-variate Studentized maximum modulus distribution with infinite degrees of
freedom, where C is the number of tests to be performed. A few results based on
this last strategy are reported in Section 3 when C is relatively small. Hochberg’s
method was considered as well, it was found to be less satisfactory, so the details
of the method are omitted. However, in the final section of the paper, it is argued
that this issue is in need of further research.
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3. Simulation Results

Simulations were used to study the small-sample properties of the proposed
method. The sample sizes were (n1, n2) = (20, 20), (20, 40), (40, 40) and (200,
200). Simulations with n1 = n2 = 200 were run as a partial check on the R
function that was used. Estimated Type I error probabilities, α̂, were based
on 2000 replications. Four types of distributions were used: normal, symmetric
and heavy-tailed, asymmetric and light-tailed, and asymmetric and heavy-tailed.
More precisely, the marginal distributions were taken to be one of four g-and-h
distributions (Hoaglin, 1985) that contain the standard normal distribution as a
special case. (The R function ghdist, in Wilcox, 2012, was used to generate ob-
servations from a g-and-h distribution.) If Z has a standard normal distribution,
then

W =

{
exp(gZ)−1

g exp(hZ2/2), if g > 0,

Zexp(hZ2/2), if g = 0,

has a g-and-h distribution where g and h are parameters that determine the
first four moments. The four distributions used here were the standard normal
(g = h = 0.0), a symmetric heavy-tailed distribution (h = 0.2, g = 0.0), an
asymmetric distribution with relatively light tails (h = 0.0, g = 0.2), and an
asymmetric distribution with heavy tails (g = h = 0.2). Table 1 shows the
skewness (κ1) and kurtosis (κ2) for each distribution. Additional properties of
the g-and-h distribution are summarized by Hoaglin (1985).

Table 1: Some properties of the g-and-h distribution

g h κ1 κ2

0.0 0.0 0.00 3.0
0.0 0.2 0.00 21.46
0.2 0.0 0.61 3.68
0.2 0.2 2.81 155.98

The intercept was taken to be β0 = 0 and two choices for the slope were used:
β1 = 0 and β1 = 1. Three choices for λ were used: λ(X) = 1, λ(X) = |X| + 1
and λ(X) = 1/(|X| + 1). For convenience, these three choices are denoted by
variance patterns (VP) 1, 2, and 3. As is evident, VP 1 corresponds to the usual
homoscedasticity assumption. VP 2 is a situation where the conditional variance
of Y is relatively large when X is close to the median of its distribution; for
values of X far from the median of its distribution the conditional variance of Y
is relatively small. VP 3 is the reverse of VP 2.

Table 2 summarizes the simulation results for n1 = n2 = 20, β1 = 0 and
α = 0.05 when using the bootstrap method in conjunction with the Theil-Sen
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estimator. Results when β1 = 1 are similar to those in Table 2, so for brevity they
are not reported. The column headed by FWE is the estimated probability of one
or more Type I errors when testing (2) at X = −1, 0 and 1. The column headed
by α̂ is the estimated probability of a Type I error when X = −1. (Similar results
are obtained for X = 0 and 1.) As can be seen, the highest estimated level is
0.052. The main difficulty is that in some situations, the estimate drops as low
as 0.014 when testing a single hypothesis, and FWE is estimated to be as low as
0.011. This occurs for VP 3 and when sampling from a relatively heavy-tailed
distribution (h = 0.2). With (n1, n2) = (20, 40), the estimated levels are much
closer to the nominal level. For example, for g = h = 0.2, the estimate of FWE
for VP 3 is 0.026 and α̂ = 0.035. Using Hochberg’s method instead, the estimated
level is smaller than those reported in Table 2. For example, under normality
and homoscedasticity, FWE using Hochberg’s method was estimated to 0.022.

Table 2: Estimates of α and FWE, n1 = n2 = 20

g h V P α̂ FWE

0.0 0.0 1 0.042 0.039
0.0 0.0 2 0.052 0.045
0.0 0.0 3 0.029 0.019
0.0 0.2 1 0.035 0.027
0.0 0.2 2 0.039 0.037
0.0 0.2 3 0.014 0.012
0.2 0.0 1 0.041 0.037
0.2 0.0 2 0.045 0.042
0.2 0.0 3 0.030 0.017
0.2 0.2 1 0.031 0.026
0.2 0.2 2 0.041 0.036
0.2 0.2 3 0.016 0.011

Table 2 does not report any results on the nonparametric ANCOVA method
because for n1 = n2 = 20, typically the method cannot be applied. The reason is
that, given X, the cardinality of the set N1(X) or N2(X) can be too small. If, for
example, there are only two points or less in N1(X) say, then performing Yuen’s
test cannot be applied. This problem tends to occur regardless of the value for
the covariate X that is chosen, but with n1 = n2 = 40 it can be avoided.

As previously mentioned, it is evident that the nonparametric ANCOVA
method in Wilcox (2012) can have more power than the method studied here
due to curvature. A practical issue is whether the reverse ever happens. Con-
sider the case of normality and homoscedasticity, β12 = β02 = 0, but β12 = 0.5
and β02 = 0.65. With n1 = n2 = 40, the method in Section 2 has power ap-
proximately equal to 0.82 for X = −1, and the nonparametric method has power
0.73.
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4. An Illustration

In the Well Elderly II study by Jackson et al. (2009), a general goal was to
assess the efficacy of an intervention strategy aimed at improving the physical
and emotional health of older adults. A portion of the study was aimed at un-
derstanding the impact of intervention on a measure of meaningful activities as
measured by the Meaningful Activity Participation Assessment (MAPA) instru-
ment (Eakman et al., 2010). Extant studies (e.g., Clow et al., 2004; Chida and
Steptoe, 2009) indicate that measures of stress are associated with the cortisol
awakening response (CAR), which is defined as the change in cortisol concentra-
tion that occurs during the first hour after waking from sleep. (CAR is taken to
be the cortisol level after the participants were awake for about an hour minus
the level of cortisol upon awakening.)

Here, MAPA scores for a control group are compared to a group that received
intervention using CAR as a covariate. Figure 1 shows a scatterplot of the data
and the Theil-Sen regression lines for the two groups, where the solid line cor-
responds to the control group. (Points indicated by 0 correspond to the control
group. Also, leverage points were removed.) The sample sizes are n1 = 232
and n2 = 141. A running interval smoother suggests that the regression line
when predicting MAPA with CAR is well approximated by a straight line and a
test of the hypothesis that the regression lines are straight (using the R function
lintest in Wilcox, 2012, Section 11.6.2) failed to reject at the 0.05 level. (The
p-values were p = 0.28 for the control group and 0.34 for the intervention group).
For the points X = −0.32 and 0.15, the p-values corresponding to the null hy-
pothesis given by (2) are 0.048 and 0.044, respectively, suggesting that with a
reasonably high degree of certainty, the lines cross somewhere inside the interval
(−0.32, 15). In contrast, using the nonparametric method based on the running
interval smoother, the p-values are 0.13 and 0.10, respectively.

5. Concluding Remarks

It is evident that simulations cannot establish that a method performs well
in all situations that might be encountered. However, all indications are that
the method considered here performs well when the Theil-Sen estimator is used,
except with a very small sample size, in which case the actual level can drop well
below the nominal level. Moreover, the non-normal distributions and the types
of heteroscedasticity used in the simulations would seem to cover a wide range of
situations. Also, alternative bootstrap methods that were considered performed
poorly. Consequently, the method studied here is recommended.
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Figure 1: Regression lines for predicting MAPA with CAR. The solid line is
the control group and the dashed line is the group that received intervention

A few simulations were run with the Theil-Sen estimator replaced by the
robust MM-estimator derived by Yohai (1987) or the Koenker and Bassett (1978)
quantile regression estimator. With n1 = n2 = 20, situations are encountered
where these two alternative estimators cannot be computed based on a bootstrap
sample. This problem did not occur with n1 = n2 = 40. With n1 = n2 = 40,
it appears that control over the Type I error probability is similar to using the
Theil-Sen estimator, with the actual levels being a bit lower. But a more extensive
study is needed.

Although FWE was controlled reasonably well using the Studentized maxi-
mum modulus distribution, a speculation is that Hochberg’s method will provide
more power in some situations despite the results reported here. The reason is
that if the covariate values are sufficiently similar, the p-values when testing (2)
will be similar as well. Imagine, for example, that three hypotheses are tested
and that all three p-values are equal to 0.049. Then by Hochberg’s method, all
three would be rejected at the 0.05 level, but using the Studentized maximum
modulus distribution, none would be rejected.

The method studied here is readily generalized to more than one covariate.
Some additional simulations were run with two predictors, X1 and X2, with
n1 = n2 = 40, where now for the heteroscedastic case λ(X1, X2) = |X1| + 1
and λ(X1, X2) = 1/(|X1| + 1) were used. For the distributions in Table 2, the
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estimated probability of a Type I error at (X1, X2) = (0, 0) ranged between 0.021
and 0.038. But this issue is in need of further study.

A related goal is finding some global test of the hypothesis that the regression
lines do not differ for any covariate value that might be chosen. That is, the goal
is to test the hypothesis that simultaneously, β01 = β02 and β11 = β12. There are
methods for performing separate tests of

H0 : β01 = β02,

and

H0 : β11 = β12,

via a robust regression estimator that allows heteroscedasticity (e.g., Wilcox,
2012), but there are no results on a single global test of the hypothesis that both
β01 = β02 and β11 = β12 are true. Methods for accomplishing this goal are under
investigation.

Finally, the R function ancpar is available for applying the method in Section
2. It is contained in the R package Rallfun-v19, which is stored at http://college.
usc.edu/labs/rwilcox/home.
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