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Abstract: The aim of this study is to model the progression of HIV/AIDS
disease of an individual patient under ART follow-up using semi-Markov pro-
cesses. Recorded hospital data were obtained for a cohort of 710 patients at
Felege-Hiwot referral hospital, Ethiopia, who have been under ART follow-
up from June 2005 to August 2009. States of the Markov process are defined
by the seriousness of the sickness based on the CD4 counts in cells/microliter.
The five states considered are: state one (CD4 count > 500); state two (350
< CD4 count ≤ 500); state three (200 < CD4 count ≤ 350); state four (CD4
count ≤ 200); and state five (Death). The first four states are named as
good or alive states. The findings obtained from the current study are as
follows: within the good states, the transition probability from a given state
to the next worse state increases with time, gets optimum at a time and
then decreases with increasing time. This means that there is some period
of time when such probability is highest for a patient to transit to a worse
state of the disease. Moreover, the probability of dying decreases with in-
creasing CD4 counts over time. For an HIV/AIDS patient in a specific state
of the disease, the probability of being in same state decreases over time.
Within the good states, the results show that probability of being in a better
state is non-zero, but less than the probability of being in worse state. At
any time of the process, there is more likely to be in worse state than to
be in better one. The conditional probability of staying in same state until
a given number of month decreases with increasing time. The reliability
analysis also revealed that the survival probabilities are all declining over
time. This implies that patient conditions should be improved with ART to
improve the survival probability.
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1. Introduction

Infection by the human immunodeficiency virus (HIV) gradually evolves to
the acquired immune deficiency syndrome (AIDS), and AIDS evolves to death
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if not handled carefully. One may consider this progression of HIV infection to
AIDS and then to death as a stochastic process. By splitting the progression
into various states of the disease based on the immunological indicators namely
CD4+ count including death as one state (Janssen and Monica, 2001).

The HIV/AIDS patients are being treated by the drug antiretroviral therapy
(ART). It is found to reduce mortality and improve quality of life of the patients.
The effect, however, varies from country to country (Braitstein et al., 2006).
Egger (2007) indicated that several predictors of mortality for HIV/AIDS patients
though on ART. These include CD4 count, viral load, total lymphocytes, body
mass index and adherence.

The probability that an HIV/AIDS patient transition from one state to an-
other depends on how long he/she has spent in that state. As time spent in each
stage of the disease can’t be predictable on the basis of clinical and immunolog-
ical measures, this needs to be modeled by the semi-Markov stochastic process
(Viladent and Ackere, 2007; Giuseppe et al., 2007). A stochastic process that can
be in any one of possible states and that each time it enters a state it remains
there for a random amount of time and then makes a transition into another
state with some probability defines semi-Markov process (Ross, 2007). A special
case is that if the amount of time that the process spends in each state before
making a transition is identically a unit, the semi-Markov process becomes just
a Markov chain.

Numerical analyses of the homogeneous semi-Markov process are dealt by
Corradi et al. (2004) and Janssen and Monica (2001). Other more readings in-
clude D’Amico et al. (2009), Davidov and Zelen (2000), and Satten and Sternberg
(1999).

In this paper, we present the results of modelling of the progression of HIV/
AIDS so as to predict the future clinical state and survival probability of a patient.
These are: the conditional probability that an HIV/AIDS patient given that
he/she is in a known state of the disease, after a period of time, be in the next
subsequent worse state of the disease; the conditional probability that a patient is
staying in the same disease state until a specific time t; and the probability that
an HIV/AIDS patient survives for a specific time given his/her starting state of
the disease.

2. Homogenous Semi-Markov Process Model

Homogenous semi-Markov process (HSMP) was initiated in the 1950s (Levy,
1954). Some of the recent studies on the semi-Markov processes include Corradi
et al. (2004) and Giuseppe et al. (2007). Derivation of the HSMP model is given
in the Appendix. In this paper, a computer program for solving the evolution
equations is developed in the R statistical software version 2.6.2.
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3. Data

In the current paper, the data on CD4 counts of HIV/AIDS patients on follow-
up during 2005-2009 were obtained from Felege-Hiwot referral hospital at Bahir
Dar, Ethiopia. We identify four states of the Markov process of the seriousness
of HIV/AIDS sickness based on the CD4 counts of a patient as in Giuseppe et
al. (2007). The states are defined as:

SI : CD4 count > 500 cells/microliter.

SII : 350 < CD4 count ≤ 500 cells/microliter.

SIII : 200 < CD4 count ≤ 350 cells/microliter.

SIV : CD4 count ≤ 200 cells/microliter.

D : Death.

Among the states of the semi-Markov process, the death state D is considered to
be an absorbing state − meaning that once a patient is in the death state she/he
will never be in the others states and rather stays there forever. The state D is
categorized as “bad” and the others SI, SII, SIII and SIV as “good” states.

 

Among the states of the semi-Markov process, the death state D is considered to be an absorbing 

state - meaning that once a patient is in the death state she/he will never be in the others states 

and rather stays there forever. The state D is categorized as “bad” and the others SI, SII, SIII and 

SIV as “good” states.  

 

Figure 1. Communication between the states of the process. 

Frequencies and estimated transition probabilities of between the states are summarized from the 

data and displayed in Table 1. The solutions for the transition probabilities )(tijφ  at time t using 

the algorithm are obtained with m = 5 states, T = 200 months, transition probability matrix P as 

given in Table 1.  

Table 1. Frequencies and probabilities of the transitions of the states of the process.  

State SI SII SIII SIV D 
SI 244 (0.6025) 92 (0.2272) 35 (0.0864) 25 (0.0617) 9 (0.0222) 
SII 108 (0.1949) 260 (0.4693) 112 (0.2022) 55 (0.0993) 19 (0.0343) 
SIII 32 (0.0531) 103 (0.1708) 299 (0.4959) 143 (0.2371) 26 (0.0431) 
SIV 12 (0.0211) 54 (0.0951) 99 (0.1743) 343 (0.6039) 60 (0.1056) 
D 0 0 0 0 114 (1.0) 
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Figure 1: Communication between the states of the process

Frequencies and estimated transition probabilities of between the states are sum-
marized from the data and displayed in Table 1. The solutions for the transition
probabilities φij(t) at time t using the algorithm are obtained with m = 5 states,
T = 200 months, transition probability matrix P as given in Table 1.
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Table 1: Frequencies and probabilities of the transitions of the states of the
process

State SI SII SIII SIV D

SI 244 (0.6025) 92 (0.2272) 35 (0.0864) 25 (0.0617) 9 (0.0222)

SII 108 (0.1949) 260 (0.4693) 112 (0.2022) 55 (0.0993) 19 (0.0343)

SIII 32 (0.0531) 103 (0.1708) 299 (0.4959) 143 (0.2371) 26 (0.0431)

SIV 12 (0.0211) 54 (0.0951) 99 (0.1743) 343 (0.6039) 60 (0.1056)

D 0 0 0 0 114 (1.0)

4. Results and Discussion

Results of the modelling are displayed in Figures 2-5.

First, transitions within the “good” sates are considered. The conditional
probability that an HIV/AIDS patient who is currently in a given state i ∈ {SI,
SII, SIII} will be in the subsequent “worse” state after t months is displayed in
Figure 2(a). Such progressions are from SI to SII, SII to SIII and SIII to SIV.
Each plot is parabolic curve with optimal/peak points (42, 0.27), (60, 0.24) and
(65, 0.27) in the time-probability axis. The peaks may indicate there is time
when a patient will be at highest risk of being at worse state. Moreover, the
transition probability from SII to SIII is the lowest as compared to the others. It
is interesting to find out that, within the good states, thetransition probability
from a given state to the next worse state increases with time, gets optimum at
a time and then decreases with increasing time.

Second, transitions to the “bad” or death state are considered. The condi-
tional probability that an HIV/AIDS patient who is currently in a given state i ∈
{SI, SII, SIII, SIV} will be in the “bad or death state after t months is displayed
in Figure 2(b). These are from SI to D, SII to D, and SIII to D and SIV to D.
The probability of dying after 200 months is 0.39 for a patient who is in the first
stage, 0.44 for one who is in the second stage, 0.48 for one who is in the third
stage and 0.54 for one who is in the fourth stage of the disease. Each plot is
an increasing parabolic curve over time with no optimal/peak point. This can
be interpreted as the probability that an HIV/AIDS patient with any one of the
good states will be in death state is increasing with time. Moreover, a patient
who is in the fourth state has the highest probability of dying after any given t
months, while that of one who is in first state is the lowest probability throughout
the time.

Third, the conditional probability of a patient making changes in disease
states given his/her current status is computed and displayed in Figure 3. The
results show that the probabilities of being in state j ∈ {SI, SII, SIII, SIV, D}
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Figure 2: Conditional probabilities that a patient will be in state j after t
months given that she/he is currently in state i (a) i ∈ {SI, SII, SIII}, j ∈ {SII,
SIII, SIV} (b) i ∈ {SI, SII, SIII, SIV}, j ∈ {D}

after a month t given that he/she entered at time 0 in state i ∈ {SI, SII, SIII, SIV}.
The results plotted can be interpreted as follows. For an HIV/AIDS patient in a
specific state of the disease, the probability of being in same state decreases over
time. With the good or alive states, the results show that probability of being in
a better state is non-zero, but less than the probability of being in worst states.
That is, for a patient there is more likely to be in worse state than to be in better
one, relatively speaking.

Fourth, the probability of staying in same state is computed. See Figure 4.
The conditional probability that a patient stays in state one, two, three and four
for at least 24 months are 0.14, 0.19, 0.21 and 0.24 respectively. It is increasing
with increasing seriousness of the disease. Within the good states, it is more
likely for a patient to stay in a worse state than in a better one. Of course, the
death state is an absorbing state, i.e., once a patient enters the death state he/she
stays in same state forever. It is also interesting to find out that the conditional
probability of staying in same state until a given number of month decreases with
increasing time. So there is a possibility of changing from one state to another
which is a non-zero probability.

Fifth, the survival probability is computed. See Figure 5. The survival prob-
ability that a patient who is at the first state of the disease will be alive until 120
months is about 0.78, while that of one who is in the fourth state of the disease
about 0.62. Thus a patient in first state is better survivor than that who is in the
fourth state – of course second and third states also. Other results in the figure
reveal that the survival probabilities are all decreasing with increasing time.
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Figure 3. Conditional probabilities of being in next state j after a month t given the starting state 
i. (a) Starting state SI,  (b) Starting state SII,  (c) Starting state SIII,  (d) Starting state SIV. 
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Figure 5: Reliability or survival probability of a patient at t months with known
starting state

5. Conclusions and Recommendations

The semi-Markov process model is applied to capture the AIDS dynamic
progression of a patient. The model considers the randomness of the time that
a patient spends in a given state of the disease. The following can be concluded
from this study.

Within the good states, the transition probability from a given state to the
next worse state increases with time, gets optimum at a time and then decreases
with increasing time. This means that there is some period of time when such
probability is highest for a patient to transit to a worse state of the disease.
Intervention for patient care may minimize such effect.

The probability that an HIV/AIDS patient with any one of the good states
will be in death state is increasing with time, irrespective of the current state
of the patient. Being in the fourth state (low CD counts) leads to the highest
probability of dying at a specific time as compared to the other states. More
generally, the probability of dying decreases with increasing CD4 counts over
time. For an HIV/AIDS patient in a specific state of the disease, the probability
of being in same state decreases over time. Within the good states, the results
show that probability of being in a better state is non-zero, but less than the
probability of being in worse state. At any time of the process, there is more
likely to be in worse state than to be in better one.

Within the good states, it is more likely for a patient to stay in a worse state
than in a better one at any time of the process. The death state is an absorbing
state, i.e., once a patient is death state he/she stays in same state forever. The
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conditional probability of staying in same state until a given number of month
decreases with increasing time. So there is a possibility of changing from one
state to another with non-zero probability. The reliability analysis indicates that
the survival probabilities are all decreasing with increasing time, implying that
patient conditions should be improved to maintain the survival probability as
high as possible.

In general, the survival probability of an HIV/AIDS patient depends on
his/her current state of the disease in such a way that the lower CD4 counts
the higher is the risk to be in worse health state or death state. The dynamic
nature of the AIDS progression is confirmed with particular findings that there
is more likely to be in worse state than better one unless interventions are made.
It is recommendable to keep up the ongoing ART treatment services in most
effective ways with the careful considerations of recent disease status of patients.

Appendix: Derivation of the HSMP Model

Giuseppe et al. (2007) defines homogenous semi-Markov process (HSMP)
model as follows:

Let Xn : Ω → S be the stochastic process with state space S = {S1, S2, · · · ,
Sm} and Tn : Ω → < be the time of the nth transition, with Ω domain of the
process and < set real numbers. Here the time is a random variable.

The kernel Q = [Qij ] associated with the process and the transition probabil-
ity Pij of the embedded Markov chain is defined as follows:

Qij(t) = P [Xn+1 = j, Tn+1 − Tn ≤ t |Xn = i], (1)

Pij = lim
t→∞

Qij(t). (2)

Define the probability that the process will leave a state i in a time t as

Hi(t) = P [Tn+1 − Tn ≤ t|Xn = i] =
m∑
j=1

Qij(t). (3)

The distribution of waiting time in each state i, given that the state j is subse-
quently occupied is

Gij(t) = P [Tn+1 − Tn ≤ t |Xn = i,Xn+1 = j], (4)

which can be computed as:

Gij(t) =

{
Qij(t)
Pij

, if Pij 6= 0,

1, if Pij = 0.
(5)
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For any homogeneous semi-Markov process{X(t), t ≥ 0}, the transition prob-
abilities are given by (6) for which the solutions should be obtained using the
progression (7).

φij(t) = P [X(t) = j|X(0) = i], (6)

φij(t) = (1−Hi(t))δij +

m∑
l=1

∫ t

0
Qil(τ)φlj(t− τ)dτ. (7)

Here δij represents the Kronecker delta δ. An approximate solution of (7) can
be obtained using the general numerical integration formula given in Corradi et
al. (2004). In the same paper, they proved that the numerical solution of the
process converges to the discrete time HSMP described as an infinite countable
linear system:

φhij(kh) = dhij(kh) +
m∑
l=1

k∑
τ=1

vhij(τh)φhij((k − τ)h), (8)

where h stands for the step measure of the approximation and

dhij(kh) =

{
0, if i 6= j,
1−Hh

i (kh), if i = j,

vhij(kh) =

{
0, if k 6= 0,
Qhij(kh)−Qhij((k − 1)h), if i = j.

⇒ Φh(kh)−
k∑
τ=1

V (τh)Φh((k − τ)h) = Dh(kh). (9)

The fact that the matrix Φh(kh) is stochastic is already proved in Corradi et al.
(2004) and Janssen and Monica (2001).

For solving the progression equation, Corradi et al. (2004) proposed the fol-
lowing algorithm with suggested matrix form:

V TΦT = DT . (10)

The variables involved are the following:

m= number of states of HSMP, which 5 in this case.

T = number of periods to be examined for the transient analysis of HSMP.

P = matrix of order m of the embedded Markov chain in HSMP.
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GT = square lower-triangular block matrix order T + 1 whose blocks are of
order m.

QT = kernel of SMP.

ΦT = block vector of order T + 1 the block which are square matrices of
order m.

DT = block vector of order T + 1 the block which are the diagonal square
matrix of order m.

V T = square lower-triangular block matrix order T + 1 whose blocks are
of order m.

ST = block vector of order T+1 the block which are the diagonal square ma-
trix of order m. The diagonal element of each block t are sii =

∑m
j=1Qij(t).

Given an epoch T is fixed, matrices G and P , the algorithm solves the linear
system (10) for the unknown matrix ΦT by means of a purely iterative procedure.

The algorithm is:

(i) Read the inputs: m, T , P , GT

(ii) Construct: QT , V T , DT

V(0) = I; Q(0) = 0; S(0) = 0; D(0) = I

for t = 1 to T

Q(t) = P ∗G(t)

for i = 1 to m

sii(t) = Qi∗(t) • 1

end for

V(t) = Q(t) −Qt−1
D(t) = D(0) − S(t)

end for

(iii) Given Φ(0) = D(0), solve for ΦT

for t = 1 to T

Φ(t) = D(t)

for s = 1 to t

Φ(t) = Φ(t) + V(s) • Φ(t−s)

end for

end for
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(iv) Print the results, ΦT , QT

In the algorithm, the symbol (•) represents row column matrix product while
(∗) represents element by element product.

Furthermore, for the transition matrix P of the embedded MC in HSMP we
used P̂ij = nij/ni, where nij is the number of transition in state i given the
state j, and ni is the number of observed elements in state i. It is assumed that
process spends some time in a given state and random time has distribution G,
exponential distribution Gij(t) = 1− exp(−λijt), where λij is expected time the
process spends in state i before it enters state j from i.

In predicting the survival probability of a patient, let us first group the states
of the process into two sets A and B, where A contains all “good” states in which
the patient is alive and set B contains all “bad” states in which the patient is
not alive. Then survival probability or reliability function Ri of a patient by the
time t is given as:

Ri(t) =
∑
j∈A

φ̂ij(t). (11)

This represents the probability that a patient who is currently in any good state
i ∈ A is alive until time t; while the probability that the patient is not alive is
1−Ri.

The algorithm is programmed in the R statistical software version 2.6.2.
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