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Abstract: In this study, the data based on nucleic acid amplification tech-
niques (Polymerase chain reaction) consisting of 23 different transcript vari-
ables which are involved to investigate genetic mechanism regulating chlamy-
dial infection disease by measuring two different outcomes of muring C.
pneumonia lung infection (disease expressed as lung weight increase and
C. pneumonia load in the lung), have been analyzed. A model with fewer
reduced transcript variables of interests at early infection stage has been
obtained by using some of the traditional (stepwise regression, partial least
squares regression (PLS)) and modern variable selection methods (least ab-
solute shrinkage and selection operator (LASSO), forward stagewise regres-
sion and least angle regression (LARS)). Through these variable selection
methods, the variables of interest are selected to investigate the genetic
mechanisms that determine the outcomes of chlamydial lung infection. The
transcript variables Tim3, GATA3, Lacf, Arg2 (X4, X5, X8 and X13) are
being detected as the main variables of interest to study the C. pneumonia
disease (lung weight increase) or C. pneumonia lung load outcomes. Models
including these key variables may provide possible answers to the problem
of molecular mechanisms of chlamydial pathogenesis.

Key words: LASSO, multicollinearity, partial least squares regression, step-
wise regression, variable selection.

1. Introduction

Chlamydophila pneumonia (C. pneumonia), an obligate intracellular bacte-
rial pathogen, is the most common chlamydial pathogen that causes community-
acquired respiratory infections. Although the infection is typically mild acute, it
is strongly associated with atherosclerotic coronary heart diseases. C. pneumo-
nia infection may also lead to chronic, persistent infections with several possible
disease outcomes such as chronic inflammatory diseases of presumably noninfec-
tious etiology (Cannon et al., 2005; Wang, 2005; Frikha-Gargouri et al., 2008).
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The complex interaction between chlamydial replication and host response de-
termines the outcome of the infection not by a single all-influencing factor but
rather by a series of accumulated host- and pathogen-associated factors. Also,
human studies indicated a major influence of host genetics on disease severity
following chlamydial infection (Wang et al., 2008).

Since C. pneumonia can lead to severe clinical disease, correct diagnosis and
therapy are important issues. However, conventional assays for the detection of C.
pneumonia have limitations, and there is a need for more accurate, convenient
and rapid diagnostic methods. Nucleic acid amplification techniques (such as
polymerase chain reaction) have such a potential to offer clinical laboratories
a convenient means to detect C. pneumonia and ensure optimal, timely and
appropriate clinical decisions and patient care (Boman et al., 1999). In this study,
the researchers choose 23 different transcript variables measured at a molecular
level based on the modified polymerase chain reaction technique. These transcript
variables are the key markers of the immune and inflammatory response and play
pivotal roles in the regulation of the immune response to chlamydial infection or
play a key role in a protective host response to chlamydia infection (Wang et al.,
2008). Usually, the evaluations of protection from this disease are determined by
survival of mice and lung weight increase, as well as elimination of C. pneumonia
organisms by determination of total chlamydial lung loads. The lung weight
increase is a reliable measure of disease intensity, and high increases reflect severe
disease (Li et al., 2010). Therefore, in our study these two indexes, percent lung
weight increase (based on näıve lung weights of 138.4 mg for adult female A/J
mice) and the logarithm of total C. pneumonia lung loads are treated as the
dependent variables which are the observed results of these 23 transcript variables
being manipulated.

In this study, disease intensity and chlamydial lung loads were determined
early after rechallenge, i.e., on day 3 and later on day 10 at peak disease, and
then mice were sacrificed by CO2 inhalation 3 days or 10 days after inoculation,
and lungs were weighed, snap frozen in liquid nitrogen, and stored at −80 ◦C
until further processing to get the value of the 23 parameters. Therefore, the
whole experiment consisted of 16 different groups of each two time points (day 3
and day 10), comprising a total of 320 female mice, i.e., each group contains 10
female mice. The dependent variables are Y1 lung disease (lung weight increase
%) and Y2 lung C. pneumonia load (i.e., chlamydial lung burden), defined as
average percentage of lung weight increase and the log10 C. pneumonia / lung,
respectively. The independent variables are the 23 different transcript variables,
which were log2 transformed.

Variable selection in multivariate analysis is a very relevant step, because
the removal of non-informative variables will produce better predicting and sim-
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pler models and at the same time maintain almost essentially all the informa-
tion provided by the original set of regressors. The technique can be used to
gain a better understanding of the regression relationship through a simplified
description of it, or to reduce the number of regressors required for effective pred-
ication of the regressand. In either case, further studies involving such regres-
sion relationship will be easier and less expensive to carry out if fewer variables
are involved. Goals in variable selection methods include: accurate predictions,
interpret models−determining which predictors are meaningful, stability−small
changes in the data should not result in large changes in the subset of predic-
tors used, the associated coefficients, or the predictions, and avoiding bias in
hypothesis tests during or after variable selection. Traditional methods, such as
stepwise regression, all-subsets regression, ridge regression, principal component
and partial least squares based methods fall short in one or more of these crite-
ria. Modern procedures such as boosting (Freund and Schapire, 1997) forward
stagewise regression (Hastie et al., 2007), and LASSO, least absolute shrinkage
and selection operator (Tibshirani, 1996), LARS, least angle regression (Efron et
al., 2004) improve stability and predictions.

The objectives of this study are to select the multivariate model candidates
based on a few well-known selection methods and criteria, and to construct a
simple model which can efficiently predict the late disease outcomes with high
accuracy.

Descriptions of the variable selection methods employed in this study are given
in Section 2. Results of the analysis and conclusion are provided in Sections 3
and 4.

2. Variable Selection Methods

2.1 Stepwise Regression Based Variable Selection Methods

One common approach to select a subset of variables from a complex model
is stepwise regression. A stepwise regression is a procedure to examine the im-
pacts of each variable on the outcomes step by step. The variables that do not
contribute much to the variance explained would be removed. There are several
versions of stepwise regression such as forward selection, backward elimination,
and stepwise (Al-Subaihi, 2002).

The stepwise regression has its own limitations. When the number of vari-
ables is large compared to the number of observations in the data set or a multi-
collinearity problem is detected among the variables, the stepwise algorithm may
not function or end up with throwing nearly all the variables into or out from the
model, especially at a low F -to-enter or F -to-remove threshold.
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2.2 PLS Based Variable Selection Method

The standard multiple regression model defined by the equation

y = Xβ + ε, (2.1)

where X is a n×p matrix of explanatory variables (predictors), y is a n×1 vector
of response variable, β is a p× 1 vector of unknown parameters, and ε is a n× 1
vector of error terms whose rows are identically and independently distributed.
The ordinary least squares (OLS) estimator of β, bOLS, in the model given by
(2.1) is the solution of the following optimization problem:

bOLS = arg max
b

corr(Xb, y)2. (2.2)

In many applications of multiple regression, multicollinearity is inevitable as a
result of large number of variables collected by modern technologies of computers,
networks, and sensors. Despite having desirable properties, the OLS estimator
can have an extremely large variance and results in imprecise prediction when
the data are multicollinear. Moreover, solution of (2.2) is not unique when n < p.

Recently, partial least squares (PLS) has become an important statistical tool
for modeling relations between sets of observed variables by means of latent vari-
ables, which have the “best” predictive power, especially for statistical problems
dealing with high dimensional data sets. PLS is a member of nonlinear itera-
tive least squares (NILES) procedures developed by Wold (1966, 1975). In order
to deal with multicollinearity and/or dimensionality problem, we regress the re-
sponse variable y on a subset of the k orthogonal (latent) vectors stored in a score
matrix of size n× k by which important features of X have been retained. Score
matrix is formed by taking linear combinations of columns of X.

PLS regression constructs the columns of score matrix, T = [t1, t2, · · · , tk], by
solving the following optimization problem for h = 1, 2, · · · , k (k ≤ p):

rh = arg max
||r||=1

Cov(Xr, y)2

subject to t′htj = 0 for 1 ≤ j < h.

So, PLSR balances the maximal correlation criteria for OLS given in (2.1) with
the requirement of explaining as much as variability in both X and y -space.

PLS is a distribution free approach to regression and path modeling, robust
against other data structural problems such as skew distributions and omission
of regressors. It is a useful tool to reveal a few underlying predictive factors that
account for most of the variation in the response (Geladi, 2005; Cassel et al.,
1999).
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Usually to explore further which predictors can be eliminated from the analy-
sis, the regression coefficients for the standardized data are evaluated. Predictors
with small absolute coefficients making a small contribution to the response can
be eliminated from the model. Another statistic summarizing the contribution
of a variable to the model is the variable importance for projection (VIP), which
estimates the relative importance of each independent variable X in fitting both
predictors and responses and thus is often used for variable selection (Abudu et
al., 2010).

The VIP scores are defined as

p
∑k

i=1 SSiW
2
ij∑k

i=1 SSi
, i = 1, 2, · · · , k, j = 1, 2, · · · , p. (2.3)

It is assumed that there are k latent variables selected from p predictor vari-
ables (Xj). A regression model based on PLS was built using the latent vectors
obtained from X to predict Y . As shown in (2.3), Wij represents the loading
vector between the ith latent variable and the independent variable Xj . SSi
implies the response variance explained by the ith latent variable when a PLS
model is developed. The ratio of the variance explained by Xj to the total vari-
ance implies the relative influence of each predictor variable on the total variance∑k

i=1 SSiW
2
ij/

∑k
i=1 SSi. The VIP score is obtained when the number of the

predictor variables is multiplied by the influence of each predictor variable (Han
and Kim, 2003). Therefore the VIP coefficients reflect the relative importance of
each predictor variable in fitting both predictors and responses. The larger a VIP
score, the greater the contribution of the associated predictor variable provides
to the PLS model (Han and Kim, 2003).

Predictors with relatively small VIP coefficients (in absolute value), less than
1 (one), are considered to have small contribution to the prediction and might
be excluded from the model; predictors with VIP scores close to or greater than
1 (one) can be considered the most relevant for explaining Y . This is called
“greater than one rule”, and is used as the criterion for variable selection (Han
and Kim, 2003; Chong and Jun, 2005).

2.3 The LASSO, Forward Stagewise and LARS Methods

There are two main reasons why the data analyst is not satisfied with the OLS
estimates based variable selection methods: 1. prediction accuracy, the OLS es-
timator often is best linear unbiased but with high variance. Better prediction
performance can be achieved by sacrificing a little bias. Because the small in-
crease in bias can be traded by a larger reduction in variance, resulting in a more
desirable estimator overall. 2. interpretation; analysts often wish to determine
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smaller subset of large number of predictors, which has the strongest effect. Sub-
set selection can be extremely variable, important repressors may drop in any
step, small changes in data produce different models; therefore it destroys the
prediction accuracy. Shrinking and setting some coefficients to zero, help us to
have prediction accuracy or small subset of predictors. Although ridge regression,
principal component and PLS based methods provide more stable models, they
do not set any coefficients to zero, and does not provide us interpretable models.

LASSO proposed by Tibshirani (1996) is a popular technique for model selec-
tion and estimation in linear regression models. It employs an L1-type penalty
on the regression coefficients which tends to produce sparse models, and thus is
often used as a variable selection tool as in Tibshirani (1997) and Osborne et
al. (2000). Knight and Fu (2000) studied the asymptotic properties of LASSO-
type estimators. They showed that under appropriate conditions, the LASSO
estimators are consistent for estimating the regression coefficients. It has been
demonstrated in Tibshirani (1996) that the LASSO is more stable and accurate
than traditional variable selection methods such as best subset selection. Efron
et al. (2004) proposed the LARS, and showed that there is a close connection
between the LARS, the LASSO, and the Forward Stagewise regression. Each
of these procedures involves a tuning parameter that is chosen to minimize the
prediction error.

Consider the common Gaussian linear regression model. LASSO estimate is
the solution to

min
β

(Y −Xβ)T (Y −Xβ), subject to

p∑
j=1

|βj | ≤ t,

where t ≥ 0 is a tuning parameter. An alternative formulation of the LASSO is
to solve the penalized likelihood problem

min
β

1

n
(Y −Xβ)T (Y −Xβ) + λ

p∑
j=1

|βj |.

Both formulations are equivalent in the sense that, for any given λ ∈ [0;∞),
there exists a t ≥ 0 such that the two problems have the same solution, and vice
versa. Tuning parameter can be chosen based on Mallows’ Cp, AIC and BIC. The
LASSO is a constraint version of the OLS estimates. It shrinks some coefficients
and sets rest of them to zero, also continues with the useful properties of both
subset selection and ridge regression.

The forward stagewise regression is an iterative procedure, where successive
estimates are built via a series of small steps. Letting η0 = Xβ, and beginning
with η̂0 = 0 is the current estimate, the next step is taken in the direction of the
greatest correlation between covariate Xj and the current residual.
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The LARS is a new model selection algorithm which is a useful and less
greedy version of traditional forward selection or forward stepwise regression. It
uses mathematical formula to speed up the computations. The number of the
covariates is as the same as the number of steps that are required for the full set of
solutions. The LARS algorithm starts with all coefficients equal to zero, then finds
the predictor that has the largest correlation with the response variable, say Xj1

and increases the coefficient in the direction of the sign of its correlation with the
response. Next it finds residuals, stops when any other predictor, say Xj2 has as
much correlation with the residual computed for the first coefficient as does Xj1.
The LARS proceeds in a direction equiangular between these coefficients Xj1 and
Xj2 until the third variable Xj3, has the most correlation with the residual. Then
LARS proceeds equiangular between these three coefficients, which is the “least
angle direction” until the fourth variable enters the model. LARS procedure
continues until all variables are in the model. Efron et al. (2004) showed that
there is a close relationship among these procedures in that they give almost
identical solution paths.

3. Analysis of Results

As we mentioned earlier, there is a need for more efficient and timely methods
to diagnose such disease. Therefore it would be beneficial to take an action at
early stage of the disease if model could be constructed to predict the late disease
outcomes on day 10 (i.e., lung weight increase and C. pneumonia load) by using
transcript variables from the average measurements in 16 groups in day 3.

There are two groups in day 3 and day 10 and two responses of different disease
outcomes, lung weight increase % (Y1) and lung C. pneumonia load (i.e., chlamy-
dial lung burden) (Y2) defined as average percentage of lung weight increase (Y1)
and the log10 C. pneumonia / lung (Y2), respectively. It is worth noting that
these two responses measured on day 10 have no significant correlation to each
other (p-value = 0.8238).

According to the result of the Hotelling’s T -square test to test if there was a
difference between the mean vector of two responses in day 3 and day 10 (Wilk’s
Λ = 0.83280946, p-value = 0.0705), the late disease outcomes can be predicted
from the early transcript variables, which means a model can be constructed by
using day 3 transcript variables to predict the late disease outcomes on day 10.
Therefore, in our study, the 23 independent variables are chosen from day 3 and
both dependent variables stand for the values on day 10. As a result of this,
we are interested in determining which early transcript variables on day 3 would
be contributing to the prediction of the average late disease outcomes (i.e., the
means of lung weight increase on Day 10 and lung C. pneumonia load on Day
10, respectively). We used PROC GLMSELECT in SAS 9.2 for the results of
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stepwise, LASSO and LARS methods.

3.1 Variable Selection Results Based on Stepwise Regression Methods

The stepwise regression was attempted in this study, transcript variables X4,
X5 and X13 were selected to construct a model to predict Y1 on day 10 and
variables X5, X8, X14 were selected to build model to predict Y2 on day 10
(Table 1a and 1b).

In a forward selection, with specified the number of candidate effect that was
entered in the model sequentially, specific subset was determined. For example,
if the number of selection steps was set at 7 or 8, variables X1, X2, X3, X4, X5,
X13 and X21 were selected to construct model to predict Y1 on day 10. Similarly,
variables X2, X5, X8, X14, X17 and X19 were selected to build model to predict
Y2 on day 10. More variable selection combinations are shown in Table 1a and
1b. However, if the number was not explicitly specified, a “best” subset model
will be determined by the Schwarz Bayesian Information Criterion (SBC). Add
effects that give the lowest value of the SBC statistic at each step and stop at
the step where adding any effect would increase the SBC statistic. Therefore,
variables X4, X5 and X13 were selected to construct model to predict Y1 on day
10 and variables X5, X8, X14 were selected to build model to predict Y2 on day
10.

Table 1a: Summary of variable selection from multiple statistical methods in
model Y1

(Y1) X1 X2 X3 X4 X5 X6 X7 X8

Stepwise X* X*
Forward *# *# # X*# X*#
LASSO & LARS *# # *# *# X*#
PLS S S

(Y1) X9 X10 X11 X12 X13 X14 X15 X16

Stepwise X*#
Forward X*#
LASSO & LARS X*# #
PLS S S S

(Y1) X17 X18 X19 X20 X21 X22 X23

Stepwise
Forward #
LASSO & LARS *#
PLS

Symbols: X: Include all and find the best, *: The best model with 5 or 6 variables,
#: The best model with 7 or 8 variables, S: PLS.
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Table 1b: Summary of variable selection from multiple statistical methods in
model Y2

(Y2) X1 X2 X3 X4 X5 X6 X7 X8

Stepwise X X*# X*#
Forward X*# X*# # X*#
LASSO & LARS # *# *# #
PLS S S S

(Y2) X9 X10 X11 X12 X13 X14 X15 X16

Stepwise X*#
Forward X*#
LASSO & LARS *# *# X*# *#
PLS S S S

(Y2) X17 X18 X19 X20 X21 X22 X23

Stepwise
Forward # *#
LASSO & LARS
PLS S S

Symbols: X: Include all and find the best, *: The best model with 5 or 6 variables,
#: The best model with 7 or 8 variables, S: PLS.

3.2 Variable Selection Results Based on PLS Method

According to “greater than 1 rule”, the variables X1-X6, X9 and X12-X23

with small VIP scores in the PLS model 1 are excluded and the variables X7,
X8, X10, X11, and X13 are selected to build model 1 to predict Y1 (Figure 1(a)).
According to the VIP scores plot (Figure 1(b)), variables X1-X3, X6, X8, X10,
X11, X13, X15-X18 and X20-X22 have small VIP values in the PLS model 2 and
variables X4, X5, X7, X9, X12, X14, X19 and X23 are selected to construct model
2 to predict Y2.

3.3 Variable Selection Results Based on LASSO Method

Since we obtained identical models for the forward stagewise and LARS, we
will provide the results from the LASSO method. If the number of selection steps
was set at 7 or 8, variables X1, X3, X4, X6, X8, X13, X16 and X20 were selected
to construct model to predict Y1 on day 10. Similarly, variables X2, X5, X7, X8,
X9, X12, X14 and X16 were selected to build a model to predict Y2 on day 10.
Without the specified the number of selection steps, X8 and X13 were chosen in
model Y1 and X14 was selected in model Y2. More variable selection combinations
are shown in Table 1a and 1b.
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Figure 1: VIP scores plot of PLS model for Y1 (a) and Y2 (b) 
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3.4 Summary Results of the Variable Selection Methods

Utilizing statistical methods like stepwise regression, LASSO and PLS-VIP,
several variables have been selected with specified different selection and stopping
criteria. Table 1a and 1b summarizes different combination of variables selected
from stepwise regression, PLS method in both model 1 and model 2 with specified
number of candidate effects or selection steps. The four variables X4, X5, X8,
X13 are the “most” selected variables from these methods to construct model Y1,
and the four variables X2, X5, X8, X14 are the “most” selected variables from
these methods to construct model Y2. We have also detected one outlier (7th
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observation) with moderately high residual (studentized residual = 2.985) based
on the fitted model of Y1 vs. X4, X5, X8, X13. However this observation did not
affect the results of the statistical analysis, therefore we included this observation
in our data.

The value of various all-possible-regression selection criteria are shown in the
Table 2 with these variables and the “Criterion Panel” in Figure 2 provides a
graphical view of the evolution of these fit criteria as the “most” selected vari-
ables entered in the model sequentially. Good linear models are achieved with
small values of AIC (Akaike’s criterion, Akaike, 1969, Darlington, 1968), SBC
(Schwarz’s Bayesian criterion, Schwarz, 1978), BIC (Sawa Bayesian information
criterion, Sawa, 1978), AICC (a small sample bias corrected version of AIC,
Hurvich and Tsai, 1989) and Cp (Mallows, 1973) and a high adjusted R2 value
(Darlington, 1968) close to 1.

Table 2: Fit summary statistics of the selected model

Model Variables Adj-R2 R2 AIC AICC BIC SBC Cp

Y1 X4, X5, X8, X13 0.8008 0.8539 96.776 106.11 84.909 82.639 5

Y2 X2, X5, X8, X14 0.8407 0.8831 −10.16 −0.824 −22.02 −24.29 5

4. Conclusions

In this article, various variable selection methods such as stepwise regression,
forward selection, PLS and LASSO were employed to fulfill the preselection step.
At this step, for example, 23 descriptors were reduced to 3 by stepwise regression
and forward selection, 2 by LASSO without specified number of variable effects,
and 5 by PLS-VIP in model 1. These preselected variables served as a starting
pool for the comparison of variable selection methods. After the step of preselec-
tion, the “most” variables are selected from these methods to construct models
and good linear models are achieved with small AIC, SBC, BIC, AICC and Cp
and a high adjusted R2 value close to 1.

Although stepwise regression methods are often used for variable selection due
to their simplicity, it cannot overcome the over-fitting in our case because of the
variables outnumbering the observations and high correlation among the predictor
variables. Besides, forward regression method yielded unsatisfactory results due
to rank deficiency problem. To overcome the multicollinearity problem, a possible
solution is to use only a subset of the predictor variables, where the subset is
chosen so that it does not contain multicollinearity problem. Numerous subset
selection methods are available. In this paper, PLS-VIP method, LASSO and
LARS were employed to circumvent such problem.
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Figure 2: Criterion Panel for model Y1 (upper) and Y2 (lower)
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Utilizing the statistical methods like stepwise regression, PLS-VIP, several
variables were preselected and served as a starting pool. Simple model candi-
dates were generated based on the preselected variable pool by employing several
well-known model selection criteria in multiple regressions. The researchers of this
study are concerned about the primary role of cellular markers and inflamma-
tory regulators in C. pneumonia disease regulation. Transcript variables Tim3,
GATA3, Lacf, Arg2 (X4, X5, X8 and X13) are the main variables of interest to
study the C. pneumonia disease (lung weight increase) or C. pneumonia lung
load outcomes. These excessive CD4+ T helper cells immunity (Tim3, GATA3),
macrophage activation (Arg2) and an exaggerated contribution of innate immu-
nity of the early response of C. pneumonia (Lacf) are the key determinants in
precipitation of late disease. IL-6 (X14) as a critical regulator for amplifying in-
flammation had an enhancing effect on chlamydial growth in vitro. Studies also
showed that blockade of IL-6 trans-signaling corrects hyperinflammation and in-
creases chlamydial load in Dusp1−/− mice (Rodriguez et al., 2005, 2010). As a
hallmark of B-cells, CD19 (X2) promotes the proliferation and survival of mature
B cells. The studies show that B cells play an important role in the initiation of
T cell responses to Chlamydia trachomatis (Mouse Pneumonitis) lung infection
and pulmonary chlamydial infection and related to impaired cytokine production
(Ramsey et al., 1988; Yang et al., 1998). Mutations in CD19 are associated with
severe immunodeficiency syndromes characterized by diminished antibody pro-
duction. CD19 has been used to diagnose cancers that arise from this type of
cell notably B-cell lymphomas and also been implicated in autoimmune diseases
and may be a useful treatment target (van Zelm et al., 2006, 1995; Fujimoto et
al., 2007). However, there is no direct evidence shown that CD19 has a strong
impact on chlamydial infection. The role of CD19 in the chlamydial growth is
less well understood.

Models including these key variables may provide possible answers to the
problem of molecular mechanisms of chlamydial pathogenesis. It is worth noting
that variable GATA3 (X5), which is necessary and sufficient for Th2 cytokine gene
expression in CD4 T cells, is the most frequent variable selected from multiple
statistical methods, suggested a primary role in immune responses to regulate
the C. pneumonia disease. This result is consistent with the studies that Th2
immunity is a required component to control inflammation elicited by the Th1
component of the anti-chlamydial immune response (Wang, 2005).

Therefore, a better understanding of the regression relationship can be reached
through a reduction of the number of regressors required for effective predication
of the regressand. Since fewer variables are involved, further studies involving
such regression relationship may be easier and less expensive to perform and
researches can better focus on the variables of interest.
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