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Abstract: We present an analysis of a health survey data by multiple cor-
respondence analysis (MCA) and multiple taxicab correspondence analysis
(MTCA), MTCA being a robust L1 variant of MCA. The survey has one
passive item, gender, and 22 active substantive items representing health
services offered by municipal authorities; each active item has four answer
categories: this service is used, never tried, tried with no access, non re-
sponse. We show that the first principal MTCA factor is perfectly charac-
terized by the sum score of the category this service is used over all service
items. Further, we prove that such a sum score characterization always
exists for any survey data.

Key words: First factor success, multiple correspondence analysis, multiple
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1. Introduction

The data, that will be discussed in this paper, represent a survey of 3530 in-
dividuals residing in downtown eastside Vancouver with high incidence of AIDS/
HIV related diseases. Table 1 displays the marginal distribution of 22 active
or substantive response variables or items filled by the 3530 respondents, where
each item describes a health related service offered by municipal authorities; for
instance, the first question asks whether the service offered on needle exchange,
coded by NXCHG, was used or not. Each item represents a polytomous qualita-
tive variable having four categories: (1) = used this service, (2) = never tried, (3)
= tried with no access, (N) = non response or missing. In Europe, particularly in
France, multiple correspondence analysis (MCA) is a popular method to describe
and visually explore complex relationships among items in such a questionnaire
survey. MCA is the application of correspondence analysis (CA) to the super
indicator 0/1 matrix Z of size 3530× 88. The number of columns 88 comes from
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4 × 22, which represents the total number of categories of the 22 items. To see
how the matrix Z is constructed, refer to Section 3. An advantage of coding
the data as in Z is that the missing values are incorporated in data analysis
naturally without imputation, just like any other category value. Imputation for
missing categorical survey data is discussed quite in detail by Finch (2010). The
aim of this paper is to compare the MCA results with the multiple taxicab corre-
spondence analysis (MTCA) results, MTCA being a robust L1 version of MCA
developed by Choulakian (2006; 2008a; 2008b). Because of its robustness, MTCA
will reveal that there is a clear structure in this data set based on a simple sum
score statistic. Further, we show that such a sum score characterization always
exists for any survey questionnaire data; and this will help the researcher to see if
the active items are broadly similar in objective and point to the same direction.

Table 1: The marginal distribution of frequencies of the categories of 22 health
related service items, with symbols used for their representations

Categories
Used this Never Tried with Missing
service (1) tried (2) no access (3) (N)

Needle exchange(NXCHG) 1832 1592 61 45
Food bank(FB) 1404 2021 58 47
Pharmacy(PH) 790 2647 69 24
Methadone treatment(MET) 2733 666 24 107
HIV medications(HIVM) 3119 268 18 125
A&D counselling(ADC) 2597 815 30 88
Nursing care(NUR) 2353 1055 48 74
Doctor care(DOC) 802 2631 79 18
Mental health unit(MHU) 2890 498 23 119
Mental health worker(MHW) 2888 504 19 119
Outreach worker(OWU) 2653 743 28 106
Detox-residential(DETR) 2931 470 45 84
Day-tox day program(DETD) 3295 95 7 133
Recovery house(RH) 3123 291 8 108
Other drug treatment centre(ODTC) 3182 227 6 115
Ambulance pick-up(APU) 2588 867 26 49
Emergency Department - sph(EDSPH) 2396 1050 25 59
Emergency Department - vgh(EDVGH) 3007 412 12 99
Emergency Department - other(EDO) 3117 292 6 115
Hospital admission - sph(HASPH) 2874 542 18 96
Hospital admission - vgh(HAVGH) 3167 233 11 119
Hospital admission - other(HAO) 3218 184 4 124

First we present the underlying mathematics, then we discuss the case study.
This paper is organized as follows. In Section 2 we present an overview of taxi-
cab correspondence analysis of a contingency table; Section 3 presents the main
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theoretical results; in Sections 4 and 5 we present the analysis of the survey data
by MCA and MTCA, respectively; and we conclude in Section 6.

We suppose that the theory of multiple correspondence analysis (MCA) is
known, which can be found, among others, in Benzecri (1973; 1992), Greenacre
(1993), Gifi (1990), Nishisato (1994), Le Roux and Rouanet (2004). Note that
MCA is also known as homogeneity analysis, reciprocal averaging, dual scaling
or third method of quantification.

2. Taxicab Correspondence Analysis: An Overview

2.1 Introduction

In a series of papers Choulakian (2003; 2005; 2006a; 2006b) developed prin-
ciple component analysis (PCA) based on matrix norms, thus generalizing the
classical PCA, or equivalently generalizing the well known singular value decom-
position (SVD). This led to the development of taxicab principal component
analysis (TPCA) based on the most robust matrix norm named taxicab matrix
norm, and on which taxicab correspondence analysis (TCA) is based.

To see that TPCA is similar to and has the same mathematical framework of
classical PCA, we start with an overview of classical PCA, which can be described
in many ways, see Jolliffe (2002) for a comprehensive account. However, TPCA
is similar to only one of the ways, that we present it in the next subsection to
make the paper self contained and reader friendly.

2.2 Classical Principal Component Analysis

Let T be a centered or standardized data set of dimension I × J , where I
observations are described by the J variables, that is, T ′T /I is the covariance
or the correlation matrix. For a vector u ∈ RJ , we define its Euclidean or L2-

norm to be ||u||2 = (u′u)
1
2 . Let k = rank(T ). The classical principal component

analysis (PCA) consists of successive maximization of the variance or the square of
the L2-norm of the linear combination of the variables of the matrix T subject to
a quadratic constraint; that is, it is based on the following optimization problem

max ||Tu||2 subject to ||u||2 = 1; (1)

or equivalently, PCA can also be described as maximization of the square of the
L2-norm of the linear combination of the observations of the matrix T

max
∣∣∣∣T ′v∣∣∣∣

2
subject to ||v||2 = 1. (2)
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Equation (1) is the dual of (2), and they can be reexpressed as matrix norms

λ1 = max
u∈RJ

||Tu||2
||u||2

= max
v∈RI

||T ′v||2
||v||2

(3)

= max
u∈RJ , v∈RI

v′Tu

||u||2 ||v||2
.

The solution to (3), λ1, is the square root of the greatest eigenvalue of the matrix
T ′T or TT ′. The first principal axes, u1 and v1, are defined as

u1 = arg max
u
||Tu||2 such that ||u1||2 = 1, (4)

where u1 is the eigenvector of the matrix T ′T associated with the greatest eigen-
value λ1; and

v1 = arg max
v

∣∣∣∣T ′v∣∣∣∣
2

such that ||v1||2 = 1. (5)

Let f1 be the vector of the first principal component (pc) scores, and g1 the
vector of the first pc loadings defined as

f1 = Tu1 and g1 = T ′v1; (6)

then
||f1||2 = v′1f1 = ||g1||2 = u′1g1 = λ1. (7)

Equations (6) and (7) are named transitional formulas, because v1 and f1, and,
u1 and g1, are related by

u1 = g1/λ1 and v1 = f1/λ1. (8)

To obtain the second pc scores f2, loadings g2, and axes u2 and v2, we repeat
the above procedure on the residual dataset

T 2 = T 1 − f1g
′
1/λ1, (9)

where T 1 = T . We note that rank(T 2) = rank(T 1)−1, because by (6) and (7)

T 2u1 = 0 and T ′2v1 = 0. (10)

Classical PCA can be described as the sequential repetition of the above pro-
cedure for k = rank(T ) times till the residual matrix becomes 0; thus, using
α = 1, · · · , k as indices, the matrix T can be written as

T =

k∑
α=1

fαg
′
α/λα, (11)
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which, by (8), can be rewritten in a form known as singular value decomposition
(SVD)

T =

k∑
α=1

λαvαu
′
α. (12)

Further, we have

λα = ||fα||2 = ||gα||2 and λα’s are decreasing for α = 1, · · · , k; (13)

and

Tr(T ′T ) = Tr(TT ′) =

k∑
α=1

λ2α (14)

=
k∑

α=1

||fα||
2
2 =

k∑
α=1

||gα||
2
2 ,

which represents, by the Pythagorean theorem, I times the sum of the variances
of the J variables or the sum of the squared Euclidean distances of the I rows
from the origin, because we assumed that T is centered or standardized. Also
the relative cumulative explained variability by the first α axes is

CEV (α) =
α∑
γ=1

λ2γ/
k∑

β=1

λ2β for α = 1, · · · , k. (15)

2.3 Taxicab Principal Component Analysis (TPCA)

The L1 norm of a vector v = (v1, · · · , vm)′ is defined to be ||v||1 =
∑m

i=1 |vi|
and ||v||∞ = maxi |vi| is the L∞ norm. TPCA consists of maximizing the L1

norm of the linear combination of the variables of the matrix subject to L∞ norm
constraint; more precisely, it is based on the following optimization problem

max ||Tu||1 subject to ||u||∞ = 1; (16)

or equivalently, TPCA can also be described as maximization of the L1 norm of
the linear combination of the rows of the matrix T

max
∣∣∣∣T ′v∣∣∣∣

1
subject to ||v||∞ = 1. (17)

Equation (17) is the dual of (16), and they can be reexpressed as matrix norms

λ1 = max
u∈RJ

||Tu||1
||u||∞

= max
v∈RI

||T ′v||1
||v||∞

(18)

= max
u∈RJ , v∈RI

v′Tu

||u||∞ ||v||∞
,
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which is a well known and much discussed matrix norm related to Grothendieck
problem, see for instance, Alon and Naor (2006). The solution to (18), λ1, is a
combinatorial optimization problem given by

max ||Tu||1 subject to u ∈ {−1,+1}J . (19)

Equation (19) characterizes the robustness of the method, in the sense that,
the weights affected to the variables (similarly to the individuals by duality) are
uniform ±1. The first principal axes, u1 and v1, are defined as

u1 = arg max
u
||Tu||1 such that ||u1||∞ = 1, (20)

and

v1 = arg max
v

∣∣∣∣T ′v∣∣∣∣
1

such that ||v1||∞ = 1. (21)

Let f1 be the the vector of the first principal component (pc) scores, and g1 the
vector of the first pc loadings. These are defined as

f1 = Tu1 and g1 = T ′v1; (22)

then

||f1||1 = v′1f1 = ||g1||1 = u′1g1 = λ1. (23)

Equations (22) and (23) are named transitional formulas, because v1 and f1,
and, u1 and g1, are related by

u1 = sgn(g1) and v1 = sgn(f1), (24)

where sgn(g1) = (sgn(g1(1)), · · · , sgn(g1(J))′, and sgn(g1(j)) = 1 if g1(j) > 0,
sgn(g1(j)) = −1 otherwise. Note that (24) is completely different from (8).

To obtain the second pc scores f2, loadings g2, and axes u2 and v2, we repeat
the above procedure on the residual dataset

T 2 = T 1 − T 1u1v
′
1T 1/λ1

= T 1 − f1g
′
1/λ1, (25)

where T 1 = T . We note that rank(T 2) = rank(T 1) − 1, because by (22), (23)
and (24)

T 2u1 = 0 and T ′2v1 = 0; (26)

which implies that

u′1gα = 0 and v′1fα = 0 for α = 2, · · · , k. (27)



Multiple Taxicab Correspondence Analysis of a Survey 211

TPCA is described as the sequential repetition of the above procedure for k =
rank(T ) times till the residual matrix becomes 0; thus the matrix T can be
written as

T =

k∑
α=1

fαg
′
α/λα. (28)

It is important to note that (28) has the same form as (11), but it can not be
rewritten as (12), because (24) is completely different from (8).

Further, similar to (13), we have

λα = ||fα||1 = ||gα||1 for α = 1, · · · , k. (29)

But the dispersion measures λα’s in (29) will not satisfy (14), because the Pythagorean
theorem is not satisfied in L1. Given that for the classical PCA (14) is used, so
for both methods we define the total variability to be

TotD =

k∑
α=1

λ2α, (30)

and the relative cumulative explained variability by the first α axes to be

CEV (α) =

α∑
γ=1

λ2γ/

k∑
β=1

λ2β for α = 1, · · · , k. (31)

In TPCA, the optimization problem (16), (17) or (18) can be accomplished by
two algorithms. The first one is based on complete enumeration (19); this can be
applied, with the present state of desktop computing power, say, if min(I, J) ' 25.
The second one is based on iterating the transitional formulas (22), (23) and (24),
similar to Wold’s (1966) NIPALS algorithm, also named criss-cross regression by
Gabriel and Zamir (1979). It is easy to show that this is also an ascent algorithm.
The criss-cross algorithm can be summarized in the following way, where g is a
starting value:

Step 1: u = sgn(g), f = Tu and λ(u) = ||Tu||1 ;

Step 2: v = sgn(f), g = T ′v and λ(v) = ||T ′v||1 ;

Step 3: If λ(v)− λ(u) > 0, go to Step 1; otherwise, stop.

This is an ascent algorithm; that is, it increases the value of the objective
function λ at each iteration. The convergence of the algorithm is superlinear
(very fast, at most two iterations); however it could converge to a local maximum;
so we restart the algorithm I times using each row of T as a starting value. The
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iterative algorithm is statistically consistent in the sense that as the sample size
increases there will be some observations in the direction of the principal axes,
so the algorithm will find the optimal solution.

For the survey dataset, the computations are done by the iterating algorithm.

2.4 Taxicab Correspondence Analysis of A Contingency Table

Often correspondence analysis (CA) is identified as categorical PCA; that is, it
is considered an adaptation of PCA to contingency tables. Similarly we consider
TCA an adaptation of TPCA to contingency tables. Here we introduce TCA of a
contingency table N = (nij) of two nominal variables with I rows and J columns.
Let P = N/n be the associated correspondence matrix with elements pij , where

n =
∑J

j=1

∑I
i=1 nij is the sample size. We define pi· =

∑J
j=1 pij , p·j =

∑I
i=1 pij ,

the vector r = (pi·) ∈ RI , the vector c = (p·j) ∈ RJ , and Dr = Diag(r) a diagonal
matrix having diagonal elements pi·, and similarly Dc = Diag(c).

The application of TPCA algorithm to P , described in the previous subsec-
tion, is named TCA of the contingency table N . We put P 0 = P and denote
by P α be the residual correspondence matrix at the α-th iteration. That is, in
the calculations described in the previous subsection, we replace T by P and the
numbering of the iterations α varies from 0 to k, where k = rank(P )− 1.

For α = 0, P 0 = P . Row and column profiles with their masses play an
important role in both CA and TCA. Let R0 = D−1r P 0 = (rij) = (pij/pi·)

designate the row profiles, that is for each i,
∑J

j=1 rij = 1. The cloud of row
profiles with their masses is the set {(r0i, pi·)| for i = 1, · · · , I}, where r0i is
the ith row of R0; and the cloud of column profiles with their masses is the set
{(c0j , p·j)| for j = 1, · · · , J}, where c0j is the jth row of C0 = D−1c P ′0. We shall
interpret the steps of TCA using the row profiles; however, we remind the reader
that similar interpretation can be done using the column profiles.

For α = 0, the optimization problem (16) is

max ||P 0u||1 = max ||DrR0u||1 subject to ||u||∞ = 1; (32)

= max
I∑
i=1

pi· |r0iu| subject to ||u||∞ = 1.

The objective function in (32) is the weighted L1 dispersion of the projection
of the row profiles r0i on the axis u. The 0-th principal axes are, see (20) and
(21),

u0 = arg max
u∈{−1,+1}J

||P 0u||1 and v0 = arg max
v∈{−1,+1}I

∣∣∣∣P 0
′v
∣∣∣∣
1
, (33)
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which can be seen to be trivially u0 = 1J , the J component vector with coordi-
nates of 1’s, and v0 = 1I . The 0-th principal factor scores are

f0 = D−1r P 0u0 = R0u0 and g0 = D−1c P ′0v0 = C0v0, (34)

which can be seen to be trivially f0 = 1I and g0 = 1J ; these are related to the
corresponding principal axes by (24); that is,

u0 = sgn(g0) = 1J and v0 = sgn(f0) = 1I . (35)

And, the 0-th taxicab dispersion measure can be represented in many different
ways as

λ0 =
∣∣∣∣P ′0v0

∣∣∣∣
1

= ||pc||1 = ||Dcg0||1 = u′0Dcg0

= ||P 0u0||1 = ||pr||1 = ||Drf0||1 = v′0Drf0

= 1. (36)

The first residual correspondence matrix is, by (25),

P 1 = P 0 − P 0u0v
′
0P 0/λ0

= P 0 −Drf0g
′
0Dc/λ0

= P − prp
′
c. (37)

Note that prp
′
c represents the correspondence matrix under the assumption that

the row and column variables are independent. This solution is considered trivial
both in CA and in TCA.

For α = 1, we define the residual row and column profiles to be: R1 = D−1r P 1

and C1 = D−1c P 1. The cloud of the residual row profiles with their masses is the
set {(r1i, pi·)| for i = 1, · · · , I}, where r1i is the ith row of R1; and the cloud of
residual column profiles with their masses is the set {(c1j , p·j)| for j = 1, · · · , J},
where c1j is the jth row of C1 = D−1c P ′1. We repeat steps (20) through (25),
or (32) through (37), where P 0 is replaced by P 1. Note that the maximization
problem is NP hard and not trivial. So in general, the α-th taxicab dispersion
measure can be represented in many different ways

λα = ||P αuα||1 = ||Drfα||1 = v′αDrfα

=
∣∣∣∣P ′αvα∣∣∣∣1 = ||Dcgα||1 = u′αDcgα. (38)

And the (α+ 1)-th residual correspondence matrix is

P α+1 = P α −Drfαg
′
αDc/λα (39)

= P 0 −
α∑
β=1

Drfβg
′
βDc/λβ.
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From which one gets the data reconstitution formula both in TCA and CA

pij = pi.p.j [1 +
k∑

α=1

fα(i)gα(j)/λα]. (40)

Similar to the classical CA, the total dispersion is defined to be
∑k

α=1 λ
2
α, and

the proportion of the explained variation by the α-th principal axis is λ2α/
∑k

β=1 λ
2
β,

and the cumulative explained variation is

CEV (α) =
α∑
γ=1

λ2γ/
k∑

β=1

λ2β for α = 1, · · · , k. (41)

The visual maps are obtained by plotting the points (fα(i), fβ(i)) for i =
1, · · · , I or (gα(j), gβ(j)) for j = 1, · · · , J, for α 6= β.

An important property of TCA and CA is that columns (or rows) with iden-
tical profiles (conditional probabilities) receive identical factor scores. One im-
portant advantage of TCA over CA is that it stays as close as possible to the
original data: It directly acts on the correspondence matrix P without calculat-
ing a dissimilarity (or similarity) measure between the rows or columns. TCA
does not admit a distance interpretation between profiles; there is no chi-square
like distance in TCA. Fichet (2009) described it as a scoring method.

More technical details about TCA and a deeper comparison between TCA and
CA is done in Choulakian (2006a). Further results can be found in Choulakian
et al. (2006), Choulakian (2008a), and Choulakian and de Tibeiro (2012).

3. Main Theoretical Results

3.1 Multiple Taxicab Correspondence Analysis

Let n individuals fill out a questionnaire survey consisting of Q items, and
each item has Jq number of answer categories. Let jq be the value of the jth
category in the qth item for q = 1, · · · , Q and jq = 0, · · · , Jq − 1. Let Z be the

super indicator 0/1 matrix of order n×
∑Q

q=1 Jq. An example of a matrix Y and
its 0/1 indicator matrix Z are shown below with n = 4, Q = 3 and J1 = 3,
J2 = 3 and J3 = 2.

Y =


1 0 0
2 1 0
0 1 1
2 2 0

 =⇒ Z =


0 1 0 1 0 0 1 0
0 0 1 0 1 0 1 0
1 0 0 0 1 0 0 1
0 0 1 0 0 1 1 0

 .

CA of Z is named MCA of Y and TCA of Z is named MTCA of Y .
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Theorem 1. (Choulakian, 2008b): Along the first principal axis, the projected
response patterns in MTCA of Y will be clustered and the number of cluster
points is less than or equal to 1 +Q.

This theorem shows that MTCA automatically clusters the response patterns,
that is the individuals, into at most 1 +Q clusters. This is an important feature
of the method, and an important help to the researcher. Note that some clusters
can be empty.

3.2 Characterization of the First MTCA Principal Factor as Sum Score
Statistic

The next theorem, which is new, characterizes completely the 1 +Q clusters
as a sum score statistic, more precisely as total number of “first factor successes”
over all the items. So the crucial point is how to define first factor success of an
item, and and its complement “first factor failure”. It is important to note that
the sum score statistic of items makes sense only when the nature of the items
are similar, which in Section 5 we will see is the case for the data set considered
in this paper.

First we consider the case of dichotomous items, when Jq = 2 for q = 1, · · · , Q;
then generalize the result to polytomous items.

Theorem 2. (The first MTCA factor property for dichotomous items):
Let Y ∈Rn×Q, where Yij = 0 if the response of the ith individual on the jth
dichotomous item is a failure, and Yij = 1 if the response of the ith individual
on the jth dichotomous item is a success, and consider MTCA of Y . Then the
first principal factor scores f1(i) and subject sum scores Yi., for i = 1, · · · , n,
are linearly related (i.e., corr(f1(i), Yi·)= ±1) if and only if the first principal
factor item weights is u1 = (u′11 | u′12)′ = (1′Q | − 1′Q)′ and, when it is the case,
f1(i) = 2(Yi· − Y··/n)/Q.

Proof: Let Y ∈ Rn×Q, where Yij = 0 or 1, Z = (Y | 1n1
′
Q − Y ) of size

n× 2Q is the 0/1 indicator matrix of Y , and P = Z/(nQ) is the correspondence
matrix of size n× 2Q. Then pi· =

∑2Q
j=1 pij = 1/n, p·j =

∑n
i=1 pij = Y·j/(nQ) if

j = 1, · · · , Q and p·j =
∑n

i=1 pij = (n−Y·j)/(nQ) if j = Q+1, · · · , 2Q. Equation
(37), the first residual correspondence matrix is

P 1 =
((Yij − Y·j/n) | − (Yij − Y·j/n))

nQ
. (42)

The second matrix block in P 1 (−(Yij−Y·j/n)) is the negative of the first matrix
block (Yij − Y·j/n), so u1 = (u′11 | u′12)′ = (u′11 | − u′11)

′ that maximizes λ1 in
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(38). By (34), we get

f1(i) =
2

Q

Q∑
j=1

u11j(Yij − Y·j/n) for i = 1, · · · , n. (43)

It is evident that (43) equals

f1(i) =
2

Q
(Yi· − Y··/n), (44)

if and only if u11j = 1, which is the required result. 2

Since the orientation of f1 is arbitrary, if the condition of Theorem 2 holds,
we will choose f1 so that corr(f1(i), Yi.) = 1. In this case, the points (f1(i), Yi.)
will lie on a straight line by (44).

To see what happens if some u11j = −1, we consider the case when only one,
say, u11Q = −1. Then by (43), we have

f1(i) =
2

Q

Q−1∑
j=1

(Yij − Y·j/n)− (YiQ − Y.Q/n)


=

2

Q

 Q∑
j=1

(Yij − Y·j/n)− 2(YiQ − Y.Q/n)


=

2

Q
[(Yi· − Y··/n+ 2Y.Q/n)] if YiQ = 0 (45)

=
2

Q
[(Yi· − Y··/n− 2(1− Y·Q/n)] if YiQ = 1. (46)

Equations (45) and (46) show that the points (f1(i), Yi.) will locate on two parallel
lines defined by success or failure of the ith respondent on item Q.

Definition: a) For a dichotomous item q for q = 1, · · · , Q, we define the first
factor success of the item q to be the category of the item q with first MTCA
factor score g1(jq) > 0 for jq = 0, 1.

b) For a polytomous item q for q = 1, · · · , Q, we define the first factor success
of the item q to be the category set {jq|g1(jq) > 0 for jq = 0, · · · , Jq − 1}.

Now, we can interpret Theorem 2 in the following way:

a) All the success (coded as 1 in Y ) categories of the Q items, u11 = 1Q,
oppose all the failure categories (coded as 0 in Y ) of the Q items, u12 = −1Q;
that is, the first principal axis is u1 = (u′11 | u′12)′ = (1′Q | − 1′Q)′.
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b) A success of item q is identical to the first factor success of item q; that is,
for each item success and first factor success coincide. If for an item, success and
first factor success are different then, depending on the subject matter, either we
delete this item from analysis or swap success by first factor success (failure).

If the condition of Theorem 2 holds, then the above two points imply that the
Q items are broadly similar in objective and point to the same direction towards
one general latent variable; further, principal dimensions of order higher than one
will reveal specific local factors conditioned by the first general latent variable
sum score, as will be seen in the analysis of the health survey data set.

The case of polytomous data follows easily from Theorem 2, if we define suc-
cess of a polytomous item to be identical to the first factor success as given in
the above definition; thus by Theorem 2 each cluster will be perfectly character-
ized by the raw sum score of the first factor successes in the response patterns
belonging to that cluster.

For some theoretical and empirical comparisons of the sum score statistic for
binary data that point to one underlying latent variable with parametric and non
parametric models, see in particular Cox and Wermuth (2002).

4. Multiple Correspondence Analysis of the Health Survey Data

The second column in Table 2 displays the first five dispersion measures, the
standard deviations, of the first five important factors resulting from CA of Z;
in CA terminiology λ2α represents the inertia (variance) of the αth factor. We
see that the first three values are clearly singled out: λ1 = 0.8974 being close
to 1, implies that the dataset Z has quasi 2 blocks structure; and, λ2 ≈ λ3
implies that the principal plane 2-3 should be looked at. We did not present the
percentage of the variance explained by each principal factor, because they are
misleading; further many adjusted values have been proposed in the litterature,
see for instance Greenacre (1993).

Table 2: The first five dispersion measures

CA of Z TCA of Z

α λα λα

1 0.8974 0.3014

2 0.4290 0.1910

3 0.4218 0.1759

4 0.3003 0.1703

5 0.2925 0.1647
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Figures 1 and 2 show the MCA maps of the principal planes 1-2 and 2-3,
respectively. In Figure 1, we clearly see that the missing (N) and tried with no
access (3) categories dominate the map by forming two different clusters far away
from the center; and the remaining column points representing used this service
(1) and never used (2) category values are clustered around the origin; further,
the second dimension separates the missing (N) categories from the tried with no
access (3) categories. Figure 2 shows the complete separation of the four category
values (1), (2), (3) and (N). Table 1 shows that the two categories, (N) and (3),
for each of the 22 items have small weights; and it is a well known fact that
often rare elements disturb the graphical displays in CA or MCA. Another way
of interpreting Figure 1 is that, the categories (3) and (N) can be considered as
outliers, and their harmful influence should be eliminated. Different approaches
have been proposed to handle missing or outlier categories by Michailidis and de
Leeuw (1998), Le Roux and Rouanet (2004, Chapter 5), Greenacre (2006) and
Greenacre (2009). Figures 3 and 4, which display the projection of the individuals
on the principal planes 1-2 and 2-3 have the same form as Figures 1 and 2, and
they admit the same interpretation.

Figure 1: MCA map of the 88 categories
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Figure 2: MCA map of the 88 categories

Figure 3: MCA map of the 3530 respondents
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Figure 4: MCA map of the 3530 respondents

5. Multiple Taxicab Correspondence Analysis of the Health Survey

5.1 The 22 Substantive Items

The third column in Table 2 displays the first five dispersion measures, the
mean deviations, of the first five factors resulting from TCA of Z. We see that
the first dimension is very important, λ1 = 0.3014, and probably the second,
λ2 = 0.1910. The remaining dimensions were not interpretable.

Figure 5 shows the MTCA map of the principal plane 1-2, where we see the
four groups of categories are clearly separated, and the image that they form looks
like a curved horseshoe or a parabola; which implies that there is one underlying
latent variable. For recent interesting discussions of horseshoes in multivariate
analysis, see Diaconis, Goel and Holmes (2008) and De Leeuw (2007). Also we
note that, the first principal axis clearly separates the categories used this service
(1) from the rest, (2), (3) and (N). By comparing Figure 5 with Figure 1, we see
that in Figure 5 there is no evidence to characterize the categories (3) and (N)
of all the questions as outliers: In fact all the 22 (N) categories are clustered in
one point at the extreme corner of the third quadrant in Figure 5, and the 22
tried with no access (3) categories are clustered at the corner of the 3rd quad-
rant in Figure 5. Looking at the categories used this service (1), we see that
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the second principal axis opposes medical services [DOC1 (doctor care), NUR1
(nursing care), PH1 (pharmacy), NXCH1 (needle exchange), MET1 (methadone
treatment), EDSPH1 (emergency department St. Paul Hospital)] to mental ser-
vices [(MHU1 mental health unit), MHW1 (mental health worker), DETR (detox
residential), DETD1 (day-tox day program), OWU1 (outreach worker)].

Figure 5: MTCA map of the 88 categories

Figure 6, which should be compared with Figures 3 and 4, shows the projec-
tion of the respondents on the first principal plane. We see a very clear pattern:
the 3530 individuals are clustered, and on the first axis there are 22 clusters. The-
orem 1 in Section 4 states that the maximum number of clusters of respondents
on the first principal axis is 23 = (22 + 1) = (Q + 1), where Q is the number of
questions. What is the interpretation of the 22 clusters? Theorem 2 of Section
3 states that the 22 clusters of respondents can be completely characterized by a
discrete variable S, the simple sum score statistic of used this service (1) over all
items, because the 22 categories used this service (1) have positive first principal
factor scores. We name the category used this service (1) to be first factor success
category for each item. The complement of “first factor success” will be “first
factor failure”={(2), (3),N}. Table 3 provides some summary statistics of the
clusters that we describe in steps:



222 Vartan Choulakian, Jacques Allard and Biagio Simonetti

Figure 6: MTCA map of the 3530 respondents

a) The first column provides the first principal factor scores of the respondents,
where we see 16 clusters of respondents with negative first principal factor scores
and 7 clusters of respondents with positive first principal factor scores. The
distance between two consecutive clusters on the first principal factor is constant
and equals 0.09091 except for the first two clusters which is equal to | − 1.4669 +
1.2851| = 0.18159 ≈ 2× 0.09091.

b) The third column provides the frequency of each cluster of respondents; for
example, there are 143 individuals in the first cluster whose first principal factor
score is −1.4669, and 3 individuals in the second cluster whose first principal
factor score is −1.2851.

c) We introduce some notation to formulate mathematically the calculations
done in columns 4 to 7. Let Q = 22 be the number of items or questions,
C = 22 be the number of clusters; nc be the frequency of individuals in cluster
c, for example n1 = 143. We can express the 0/1 matrix Z as a three-way array,
ziqv for i = 1, · · · , 3530, q = 1, · · · , Q and v = 1, 2, 3, N . Consider the matrix

W = (wiv) of size 3530 × 4, where wiv =
∑Q

q=1 ziqv, and which represents the
number of times that the respondent i chose the category value v across all items.
Let W c, of size nc × 4 be the subset of the matrix W whose individuals belong
to the cluster c; for instance, W 4 is of size 7 × 4, whose elements are given in
Table 4. In Table 4 the row identified by min = (4 17 0 0) provides the min-
imum values in the four columns of the matrix W 4; and the row identified by
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Table 3: The 22 clusters of individuals on the first principal axis

1st principal Sum score
frequency

Categories (min,max)

factor score of (1)’s
Used this Never Tried with Missing
service (1) tried (2) no access (3) (N)

−1.467 0 143 (0,0) (0,14) (0,14) (0,22)

−1.285 2 3 (2,2) (20,20) (0,0) (0,0)

−1.194 3 3 (3,3) (19,19) (0,0) (0,0)

−1.103 4 7 (4,4) (17,18) (0,1) (0,0)

−1.012 5 7 (5,5) (15,17) (0,2) (0,0)

−0.921 6 12 (6,6) (14,16) (0,2) (0,0)

−0.840 7 20 (7,7) (13,15) (0,2) (0,0)

−0.740 8 18 (8,8) (14,14) (0,0) (0,0)

−0.649 9 29 (9,9) (10,13) (0,3) (0,0)

−0.558 10 51 (10,10) (10,12) (0,2) (0,0)

−0.467 11 82 (11,11) (10,11) (0,1) (0,0)

−0.376 12 11 (12,12) (8,10) (0,2) (0,0)

−0.285 13 18 (13,13) (4,9) (0,5) (0,0)

−0.194 14 228 (14,14) (5,8) (0,3) (0,1)

−0.103 15 282 (15,15) (6,7) (0,1) (0,0)

−0.012 16 327 (16,16) (5,6) (0,1) (0,0)

0.079 17 358 (17,17) (3,5) (0,2) (0,0)

0.169 18 440 (18,18) (2,4) (0,2) (0,0)

0.260 19 461 (19,19) (2,3) (0,1) (0,0)

0.351 20 416 (20,20) (1,2) (0,1) (0,0)

0.442 21 224 (21,21) (0,1) (0,1) (0,0)

0.533 22 120 (22,22) (0,0) (0,0) (0,0)

max = (4 18 1 0) provides the maximum values in the four columns of the
matrix W 4. So we see that the variable sum score of (1)’s is constant and equals
S = 4 in cluster 4. Finally, the last row in Table 4 represented by (min,max) is
reproduced in the fourth row of Table 3 in the columns 4 to 7.

d) In Table 3 the discrete variable S = sum score of (1)’s completely charac-
terizes the 22 clusters of respondents. Note that there is no individual who has
used exactly 1 service among the 22 services, that is why the cluster with S = 1
is missing in Table 3.
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Table 4: The W4 matrix, where the seven respondents have first principal factor
score of −1.1032

respondents
Categories

in cluster 4
Used this Never Tried with Missing
service (1) tried (2) no access (3) (N)

1 4 17 1 0

2 4 18 0 0

3 4 18 0 0

4 4 18 0 0

5 4 18 0 0

6 4 18 0 0

7 4 18 0 0

min 4 17 0 0

max 4 18 1 0

(min, max) (4,4) (17,18) (0,1) (0,0)

So we see that the first principal factor of MTCA revealed that the data set
has a very clear structure based on the simple sum score statistic of first factor
success categories over all items. Further, the 22 health items are broadly similar
in objective and point to the same direction.

The second principal factor has a simple interpretation: For a fixed sum score
S = sum score of (1)’s, it will show the intravariability of the response patterns
for that sum score. Which clusters have the most variability and what is the
nature of the variability? Going to Table 3, we check the (min,max) values for
each cluster: it is evident that the first cluster characterized by S = 0 is the most
heterogenous, followed by clusters S = 13 and S = 14.

The cluster (S = 0) has (min,max) = (0, 14) for the categories never tried (2)
and tried with no access (3), and (min,max) = (0, 22) for the category missing
(N). We also note that all the missing non response values, save one, are found in
this cluster. Further, Figure 6 confirms this fact, where we see 8 points aligned
vertically in the third quadrant. We also note that the relative frequency of this
group is very small, 143/3530 = 0.04051. In fact, we recall that the units in this
group were designated as outliers in MCA.

The cluster (S = 13) has (min,max) = (4, 9) for the categories never tried
(2) and (min,max) = (0, 5) for the categories tried with no access (3), and
(min,max) = (0, 0) for the category missing (N). This is natural variability,
because the sum score statistic being a sum of successes has the most variability
around its centeral values. Similar interpretation is given to the cluster (S = 14),
which has relative frequency of 228/3530 = 0.0646.
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In Figure 5, we saw that the categories of the variables have a parabolic curved
shape. Is there a parabola in Figure 6? The answer is yes: By suppressing the
circled respondents which make less than 6% of the data, we see an inverted
V shaped band of points, which represents a taxicab parabola with a lot of
dispersion, see for instance Krause (1986).

We conclude our analysis by the following remark: The 22 health items are
broadly similar in objective and point to the same direction towards one general
latent variable (because of the parabolic shape of the projected categories in
Figure 5). Further, it is completely described by the simple sum score statistic
of used this service (1) over all items.

5.2 Gender as a Passive Variable

Usually in a survey, in addition to substantive response questions, concomi-
tant personal information data about the respondents are gathered. These vari-
ables are named passive or exogenous. In this analysis we include one such
qualitative variable, gender having three categories male (m), female (f) and
transgendered (t). Now we describe the clusters by computing the log-odds ratio
of males to females for each cluster with respect to the marginal distribution. For
example

LOR(S = 0) = ln(
94/49

2406/1097
) = −0.13391,

and

LOR(S = 22) = ln(
103 ∗ 1097

17 ∗ 2406
) = 1.0161.

The interpretation of LOR (S = s) is:
a) LOR(S = s) = 0, then the proportion of males in cluster s equals the

proportion of females in the sample.
b) LOR(S = s) > 0, then the proportion of males in cluster s is greater

than the proportion of females in the sample. That is, the cluster s is positively
associated with males, and negatively associated with females.

c) LOR(S = s) < 0, then the proportion of females in cluster s is larger
than the proportion of males in the sample. That is, the cluster s is positively
associated with females, and negatively associated with males.

We did not compute the standard errors of the LOR’s, because our sample
almost exhausts the population, which is a closed well located community. Look-
ing at Table 5, we discern three groups of clusters: clusters with (S ≥ 21) are
positively associated with males (the LOR values are positive); no association of
the clusters (14 ≤ S ≤ 20) with gender (the LOR values are around 0); and finally
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the clusters (S ≤ 13) are positively associated with females (the LOR values are
negative).

Table 5: The distribution of gender in each cluster

Sumscore
frequency

gender
100× LOR

of (1)’s male female transgender

0 143 94 49 0 −13.4
2 3 2 1 0 −9.2
3 3 1 2 0 −147.9
4 7 2 5 0 −170.2
5 7 3 4 0 −147.9
6 12 7 5 0 −44.9
7 20 7 12 1 −132.4
8 18 10 8 0 −56.2
9 29 14 14 1 −78.5
10 51 27 23 1 −62.5
11 82 51 30 1 −25.5
12 118 78 39 1 −9.2
13 181 113 66 2 −24.8
14 228 153 71 4 −1.8
15 282 194 87 1 1.7
16 327 218 107 2 −7.3
17 358 252 105 1 9.0
18 440 301 136 3 0.9
19 461 319 136 6 6.7
20 416 275 139 2 −10.3
21 224 182 41 1 70.5
22 120 103 17 0 101.6

Total 3530 2406 1097 27

6. Conclusion

MCA is a popular well established method since 1970 to analyze questionnaire
surveys of qualitative variables; but it is sensitive to the presence of outliers, which
usually form a small fraction of the data. MTCA is a robust L1 variant of MCA.

MCA and MTCA can produce different results, because the geometry un-
derlying these two methods are different. We suggest the analysis of a data set
by both methods: each method sees the data from its point of view, and some-
times the views are similar and other times not similar. So MCA and MTCA
complement and enrich each other.

Cox (2006) titled his talk “In praise of simple sum score”. We showed that
the first MTCA factor scores can always be interpreted as simple sum score of
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the first factor successes over all items.
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Université de Moncton
New Brunswick, E1A 3E9, Canada
vartan.choulakian@umoncton.ca

Jacques Allard
Department of Mathematics and Statistics
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