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Abstract: Two methods for clustering data and choosing a mixture model
are proposed. First, we derive a new classification algorithm based on the
classification likelihood. Then, the likelihood conditional on these clusters is
written as the product of likelihoods of each cluster, and AIC- respectively
BIC-type approximations are applied. The resulting criteria turn out to be
the sum of the AIC or BIC relative to each cluster plus an entropy term. The
performance of our methods is evaluated by Monte-Carlo methods and on a
real data set, showing in particular that the iterative estimation algorithm
converges quickly in general, and thus the computational load is rather low.
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1. Introduction

Because of their ability to represent relationships in data, finite mixture mod-
els are commonly used for summarizing distributions. In the field of cluster anal-
ysis, they can provide a framework for assessing the partitions of the data, and
for choosing the number of clusters. A finite mixture model is characterized by its
form denoted by m, and the number of components K, which can be interpreted
as the number of species in the population from which the data has been col-
lected. For optimizing a mixture, one often uses a scoring function on which the
comparison between the competing models with different values of K is carried
out. Such scoring functions are, for example, penalized likelihoods computing the
likelihood on a single training set and comprising a penalty for model complexity.
The AIC [1, 2] and the BIC [26] criteria are based on such likelihoods, as well as
the algorithm provided by [11] for estimating a mixture model.

For assessing the number of clusters arising from a Gaussian mixture model,
[5, 6] used a penalized completed likelihood (CL). However, the associated cri-
terion tends to overestimate the correct number of clusters when there is no
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restriction on the mixing proportions. The reason for this shortcoming is that
the CL does not penalize the number of parameters in a mixture model. A pe-
nalization is provided in a Bayesian framework by [4], who proposed a criterion
based on the integrated completed likelihood (ICL). Their method consists in ap-
proximating the integrated completed likelihood by the BIC. This approximation,
however, suffers from a lack of a theoretical justification, although their numerical
simulations show satisfactory performance. Other methods for determining the
clusterings of data and a mixture model can be found, for instance, in [15], [10],
[7], [20], [12], or [17].

In this paper, we propose two alternative approaches, based on the AIC and
BIC criteria applied to the classification likelihood. In a certain sense, these are
close to [12], whose method is rather based on the BIC criterion applied to the
mixture likelihood. Concretely, we first construct a new classification algorithm
allowing to estimate the clusters of the data. On the basis of this classification,
we define two new criteria based on AIC- and BIC-like approximations, which
turn out to be the sum of the AIC or BIC approximations relative to each cluster
plus an entropy term. On the one hand, this method avoids a number of techni-
cal difficulties encountered by ICL. On the other hand, the iterative estimation
algorithm converges quickly in general, and thus the computational load is rather
low.

This paper is organized as follows. In Section 2, we summarize clustering
methods. Section 3 recalls a number of existing methods for choosing a mix-
ture, and we describe our new approaches. Finally, Section 4 contains numerical
examples to evaluate the performance of our methods.

2. Model-Based Clustering

A d-variate finite mixture model assumes that the data x = (x1, · · · ,xn) ∈
Rdn are a sample from a probability distribution with density of the form

f(u|m,K, θ) =
K∑

k=1

pkφk(u|ak), u ∈ Rd, (1)

where K is the number of components of the mixture, the pk’s represent the mix-
ing proportions and the components φk(·|ak)’s are density functions, possibly
of different nature1, each with a known form and depending on the parameter
vector ak. The notation m stands for the joint components, which characterize
the nature of the mixture. Finally, θ := (θ1, θ2) := ((p1, · · · , pK), (a1, · · · ,aK))
represents the full parameter vector of the mixture (m,K) at hand. The most

1For example, a Gaussian and a Student t distribution are of different nature, while two
Gaussian distributions are of the same nature.
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popular mixture is the Gaussian mixture model, where φk(·|·) are Gaussian den-
sities with mean µk and covariance matrix Σk. More precisely, φk(·|ak) = φ(·|ak)
is a d-variate Gaussian density with ak = (µk,Σk) for k = 1, · · · ,K.

It is well known that the mixture model can be seen as an incomplete data
structure model, where the complete data is given by

y = (y1, · · · ,yn) = ((x1, z1), · · · , (xn, zn)),

with z = (z1, · · · , zn) representing the missing data. For more details, we refer
the reader to [29]. Note that zi = (zi1, · · · , ziK) is a K-dimensional vector
such that zik takes the value 1 if xi arises from the component k, and takes
the value 0 if not for i = 1, · · · , n. Obviously, the vector z defines a partition
C = {C1, · · · , CK} of the data x = (x1, · · · ,xn), with Ck = {xi|zik = 1, i =
1, · · · , n}. If z was observed, the clusters would be known and the data in each
class Ck could be assumed to be drawn from a distribution with density φk(·;ak).
Therefore, the likelihood conditional on z would have a form allowing for easy
inference. Unfortunately, z is in general not observed and has to be estimated.

There are many ways for estimating z. For instance, [24, 15, 27, 28] treat the
vector z as a parameter, which is estimated jointly with K and θ by maximizing
the likelihood function

f(x, z|m,K, θ) =
n∏

i=1

f(xi, zi|m,K, θ), (2)

where

f(xi, zi|m,K, θ) =
K∏

k=1

pzik
k [φk(xi|ak)]zik , i = 1, · · · , n. (3)

The drawback of this method is that all possible clusters of the data in K groups
have to be considered, which may be computationally costly. Additionally, [16]
points out an inconsistency of the parameter estimates, and, z is formally treated
as a parameter rather than a vector of missing observations. A Bayesian estimator
of z is also defined in [28]. Another, more popular method, is the so-called MAP
(maximum a posteriori) method, described as follows. For i = 1, · · · , n and
k = 1, · · · ,K, let tik(θ) denote the conditional probability that xi arises from the
kth mixture component. Then, one can easily show that

tik(θ) =
pkφk(xi|ak)∑K
`=1 p`φ`(xi|a`)

. (4)

Let θ̂ be the maximum likelihood estimate of θ. Under some regularity conditions,
the so-called EM algorithm [29] allows the computation of this estimator, by
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means of which, zik can be derived by

ẑik =

{
1, if arg max`∈{1,··· ,K} ti`(θ̂) = k,

0, otherwise,
(5)

for i = 1, · · · , n and k = 1, · · · ,K. Additionally, more approaches for estimating
z exist, see, e.g., [18], [12], [19], [20], [13] or [17]. The estimates ẑ provided by
either of these methods serve to determine the clusters of the data. Based on
these clusters, it is possible to express likelihood for further inference. In the
following section, we propose a new clustering algorithm based on the so-called
classification likelihood.

3. Choosing a Mixture Model

3.1 Existing Methods

Several methods exist for choosing a mixture model among a given number
of models. One of these, consisting in maximizing the likelihood function (2),
has already been recalled and commented in the previous section (see [28] for
details). However, the most popular approaches are based on the AIC and BIC
criteria as well as their extensions, or other criteria such as that presented by
[11]. In a Bayesian framework, one selects the model having the largest pos-
terior probability. This is tantamount to choosing the model with the largest
integrated completed likelihood (ICL), provided that all the models have equal
prior probabilities [4]. This corresponds to the model (m̂, K̂) such that

(m̂, K̂) = arg max
m,K

f(x, z|m,K),

where

f(x, z|m,K) =

∫

Θm,K

f(x, z|m,K, θ)π(θ|m,K)dθ, (6)

with Θm,K the parameter space, π(θ|m,K) a non-informative or weakly informa-
tive prior distribution on θ ∈ Θm,K for the same model, and f(x, z|m,K, θ) the
likelihood function (2). For a BIC-like approximation of the right-hand side of
(6), [4] proposed to select the model which maximizes

log f(x, z|m,K, θ̂∗)− dm,K
2

log(n), (7)

where dm,K stands for the dimension of the space Θm,K , and θ̂∗ = arg maxθ
f(x, z|m,K, θ). Since z is not observed, it is substituted by ẑ given in (5), and
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θ̂ is utilized instead of θ̂∗ in the above formula. Thus, their ICL criterion selects
the (m̂, K̂) maximizing

ICL(m,K) = log f(x, ẑ|m,K, θ̂)− dm,K
2

log(n). (8)

It is important to note that the approximation (7) is not valid in general for
mixture models. Moreover, even if this approximation was valid, the accuracy of
(8) obtained by substituting z for ẑ and θ̂ for θ̂∗ may be hard to quantify.

3.2 Some New Approaches

In the following, we adopt different techniques for finding the mixture model
leading to the greatest evidence of the clustering of given data x. Our approaches
consist in first estimating the clusters, and secondly applying AIC-/BIC-like cri-
teria to the likelihood derived from these clusters. More precisely, we consider the
likelihood defined by (2), given that the vector z and thus θ1 = (p1, · · · , pK) are
assumed to be known. Indeed, with this assumption it is easy to derive that the
resulting conditional likelihood can be expressed as a product of the likelihoods
of each component of the mixture model to which AIC or BIC approximations
can be applied.

Assuming z = (z1, · · · , zn) given, the data are partitioned into K classes
C1, C2, · · · , CK . Moreover, let nk =

∑n
i=1 zik = |Ck| for all k = 1, · · · ,K, where

zik is the kth component of zi, i = 1, · · · , n. Then, the pk can be consistently
estimated by the natural estimators p̂k = nk/n, which are also asymptotically
normal. Thus, a consistent and asymptotically normal estimator of θ1 is given by
θ̂1 = (p̂1, · · · , p̂K). Then, the likelihood and log-likelihood functions of θ2 given
(x1, · · · ,xn) can be approximated by

`(m,K, θ2|θ̂1, z) =
K∏

k=1

∏

xj∈Ck

p̂kφk(xj |ak), (9)

L(m,K, θ2|θ̂1, z) =

K∑

k=1


 ∑

xj∈Ck

log[φk(xj |ak)] + nk log p̂k


 . (10)

What remains is the estimation of θ2 = (a1, · · · ,aK). This can be achieved by
maximizing either of the expressions (9) and (10). Note that the estimator of ak
depends only on the nk observations within the kth group Ck for k = 1, · · · ,K.
Henceforth, we denote `(m,K, θ2|θ1, z) by `(m,K, θ2) and L(m,K, θ2|θ1, z) by
L(m,K, θ2).

Let dak
denote the length of the vector ak, and Θ

(k)
m,K ⊂ Rdak for all k =
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1, · · · ,K. In what follows, we suppose that θ2 ∈ Θ∗m,K = Θ
(1)
m,K × · · ·×Θ

(K)
m,K and

π(θ2|m,K) = π1(a1|m,K)× · · · × πK(aK |m,K). (11)

We also suppose that the φk(·|ak) are identifiable and differentiable up to order
2. Then, the integrated likelihood is defined by

`(m,K) =

∫

Θ∗
m,K

`(m,K, θ2)π(θ2|m,K)dθ2

=
K∏

k=1

p̂k

∫

Θ
(k)
m,K

∏

xj∈Ck

φk(xj |ak)πk(ak|m,K)dak, (12)

which follows from the likelihood function (9).

Theorem 1. Assume that z is known, and that the nk’s are large enough
for k = 1, 2, · · · ,K. Then, the following approximation for the log-likelihood
function holds:

L(m,K, θ2) ≈
K∑

k=1


 ∑

xj∈Ck

log φk(xj |âk)− dak


+

K∑

k=1

nk log p̂k. (13)

Proof. Given z, the deviance of the model can be approximated by

L(m,K, θ2)−
K∑

k=1


 ∑

xj∈Ck

log φk(xj |âk) + nk log p̂k




=

K∑

k=1

∑

xj∈Ck

[
log φk(xj |ak)− log φk(xj |âk)

]
,

which is the sum of the deviances relative to the components of the mixture. As
nk is large, ∑

xj∈Ck

[
log φk(xj |ak)− log φk(xj |âk)

]
≈ −dak

,

follows for each k = 1, · · · ,K (see, e.g., [2]). 2

Theorem 2. Assume that z is known, that the nk are large enough for k =
1, 2, · · · ,K, and that the prior on θ2 has the form (11) with noninformative
πk(ak|m,K)’s. Then, the logarithm of the integrated likelihood can be approxi-
mated by

log `(m,K) ≈
K∑

k=1


 ∑

xj∈Ck

log φk(xj |âk)−
1

2
dak

log(nk)


+

K∑

k=1

nk log p̂k. (14)
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Proof. See the Appendix.

The first term on the right-hand sides of (13) and (14) resemble sums of AIC
and BIC, respectively, and depend on z and θ1. Therefore, we denote these
quantities by SAIC(m,K|θ1, z) and SBIC(m,K|θ1, z), which stands for “Sum of
AIC/BIC”. They can be represented as

SAIC(m,K|θ̂1, z) =
K∑

k=1


 ∑

xj∈Ck

log φk(xj |âk) + nk log p̂k − dak


 , (15)

SBIC(m,K|θ̂1, z) =
K∑

k=1


 ∑

xj∈Ck

log φk(xj |âk) + nk log p̂k −
dak

2
log(nk)


 . (16)

We would like to remark that penalty terms related to those utilized for SAIC
and SBIC can be found, for instance, in [21] and [23].

Before describing a technique for model selection based on (15) and (16),
respectively, we provide an algorithm for parameter estimation given the number
of clusters, denoted by K. Let zK denote the corresponding missing data, and
θ1K the corresponding parameter vector θ1. Given the mixture components φk,
k = 1, · · · ,K, the algorithm is described as follows:

• Initialize z (for example, by the k-means algorithm)

• Repeat

– for k = 1, · · · ,K, compute nk =
∑n

i=1 zik and pk = nk/n, thus θ1K =
(p1, · · · , pK)

– maximize the log-likelihood given in (10) with respect to θ2 = (a1, · · · ,
aK) and denote by θ2K the vector for which the likelihood reaches the
maximum.

– for i = 1, · · · , n and k = 1, · · · ,K, compute

zik =

{
1, if arg max`∈{1,··· ,K} ti`(θK) = k,

0, otherwise,

where θK = (θ1K , θ2K) and tik is defined by (4)

Until the log-likelihood remains constant

• Return zK and θ1K .
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For choosing the relevant model, and thus determining its form, its parame-
ters, and the number of clusters, we propose to proceed as follows.

• Set the maximum number of components Kmax

• For K = 2, · · · ,Kmax

– Compute θ1K and zK (with the above algorithm)

– Compute SAIC(m,K|θ1K , zK) or SBIC(m,K|θ1K , zK)

• Select (m̂, K̂) and zK̂ by

(m̂, K̂) = arg max
m,K

SAIC(m,K|θ1K , zK),

or

(m̂, K̂) = arg max
m,K

SBIC(m,K|θ1K , zK).

The first step of the procedure above consists in defining a value for Kmax.
However, for practical purposes another possibility might be to start with a
“small” Kmax and monitor the evolution of the SAIC/SBIC values. If SAIC/SBIC
attains its highest value for Kmax, the user may step-wise increase this quantity,
as the previous estimation results remain unaffected.

4. Numerical Examples

In this section, we primarily study the performance of the SAIC and SBIC
criteria in comparison to the BIC resulting from a second model-based clustering
algorithm by [13]. Four different settings are considered: an application to data
from the Old Faithful Geyser (Yellowstone National Park, USA) and three Monte
Carlo experiments. Moreover, we present brief results on the robustness of our
algorithm towards its initialization, the speed of convergence, and the classifica-
tion performance. The analysis was carried out with R 2.10.1 [22], using version
3.3.1 of package Mclust. All code is available from the authors upon request.

4.1 Old Faithful Geyser

The data analyzed are waiting times between eruptions and the durations of
the eruption for the Old Faithful Geyser in Yellowstone National Park, Wyoming,
USA. This data set with 272 observations is included in the datasets package of
R. In order to initialize our clustering algorithm, called mb1 in the following,
we follow two approaches. On the one hand, we use the k-means algorithm
(function kmeans in R) to estimate an initial trajectory of z, where the k-means
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itself is started by 100 different random sets, and estimate models with two,
three, and four components. On the other hand, we generate 1000 random paths
for z (identical sampling probability for each component). The initialization by
random paths requires higher computational effort, however, also attains higher
likelihoods. Therefore, this method is preferred for this example with relatively
small sample size, and we do not further comment results from the k-means
initialization. Fitting the 2-component model, the algorithm estimates clusters
containing less than 5% of the sample for only 5% of the initial paths. However,
this figure rises to ∼30% for the models with three/four components. These
models have been removed, as they do not really utilize three respectively four
components. Table 1 presents the results, showing an almost constant SAIC.
Thus, according to this criterion, the parsimonious 3-component model should
be selected. The SBIC attains the highest value for two components, therefore
the model with two components is chosen. Here, we set Kmax = 4 because both
SBIC and SAIC do not increase anymore when increasing the number of states
from three to four.

Table 1: Model selection by SAIC/SBIC

no. comp. 2 3 4

logL −1131 −1125 −1120
SAIC −1141 −1140 −1140
SBIC −1155 −1157 −1158

This table displays log-likelihood, SAIC, and SBIC of the estimated models with 2,
3, and 4 components, initialized by k-means or random paths.

For comparison with a standard algorithm for model-based clustering, we also
fitted models using the R package mclust [13]. This algorithm, called mb2 in the
following, is initialized by hierarchical clustering and selects an appropriate model
using the BIC. The result of the mb2 is a model with 3 components, which might
be attributed to “model deviation to normality in the two obvious groups rather
than a relevant additional group” [4]. Note that the number of components
preferred by the SAIC/SBIC corresponds to that of the ICL criterion of the
before mentioned authors. Figure 1 displays the data, the estimated densities
of the two components and the mapping of the observations to the components.
The estimated parameters are

µ1 =

(
2.04
54.5

)
, µ2 =

(
4.29
80.0

)
,

Σ1 =

(
0.0712 0.452
0.452 34.1

)
, Σ2 =

(
0.169 0.918
0.918 35.9

)
.
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Figure 1: Clustering of Old Faithful Geyser data
The figure shows bivariate data from the Old Faithful Geyser, clustered by mb1. The
preferred model has two components, the centers of which are marked by filled circles.
Contours result from the two estimated Gaussian densities.
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The figure shows bivariate data from the Old Faithful Geyser, clustered by mb1. The
preferred model has two components, the centers of which are marked by filled circles.
Contours result from the two estimated Gaussian densities.

The estimated values of z indicate that 35.7% and 64.3% of the observations
belong to the respective components.2

Finally, the speed of convergence of the algorithm and its stability towards
the initialization is of interest. The number of iterations required by the algo-
rithm is rather manageable in the majority of cases. Considering the random
initializations, the third quartile of the number of iterations lies at 14, 16, and 15
for models with 2, 3, and 4 components, respectively. The corresponding figures
for the k-means initialization are 3, 9, and 13, confirming a low computational
load. Concerning the stability of the algorithm towards initialization, it should
be noted that mb1 failed to converge in 12% of the cases in the 2-component case.
This may be attributed to a very poor initialization of the components. Conver-
gence problems mainly occur because less than three observations belong to one
of the components, such that the variance-covariance matrix cannot be estimated

2For the model with three components, the estimated means and covariances are µ1 =(
1.86
53.2

)
, µ2 =

(
2.31
56.6

)
, µ3 =

(
4.29
80.0

)
, Σ1 =

(
0.00971 −0.00502
−0.00502 25.6

)
, Σ2 =

(
0.0464 0.235
0.235 41.5

)
,

Σ3 =

(
0.169 0.918
0.918 35.9

)
. For four components, the respective estimates equal µ1 =

(
2.09
61.3

)
,

µ2 =

(
1.87
54.4

)
, µ3 =

(
4.29
80.0

)
, µ4 =

(
2.07
49.7

)
, Σ1 =

(
0.0851 0.414
0.414 9.74

)
, Σ2 =

(
0.0150 0.157
0.157 2.15

)
,

Σ3 =

(
0.169 0.918
0.918 35.9

)
. Σ4 =

(
0.0733 0.505
0.505 10.2

)
.
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anymore. This phenomenon is mostly present at the initialization stage, but also
happens rarely during the iteration steps. Moreover, the algorithm converged
to the maximum likelihood of −1131 in 69.6% of the cases, which corresponds
to the maximum attained by the k-means initialization. For 3 respectively 4
components, the results are less satisfactory: First, almost all estimated models
are (slightly) different to each other. Moreover, in 48%/76% of the samples the
algorithm does not converge properly, determines components with very few ob-
servation (< 10), or estimates two or more components with (almost) identical
parameters. Keeping in mind “Garbage in, garbage out”, this behaviour may
however be viewed as the initialization paths are purely random and may also
underline the preference for the model with two components. Summarizing, ran-
dom path initialization does not seem to provide better results than the k-means
initialization, but rather entails convergence problems. Therefore, if not stated
differently, our algorithm is always initialized by the k-means in the following.

4.2 Monte Carlo Experiment 0

In order to examine the performance of SAIC/SBIC in situations with smaller
sample size and overlapping clusters, we carry out Monte Carlo experiments in
the style of Situation 1 and 2 described by [3, Section 4.1.1]. More precisely, in
each case we simulate 500 samples from a Gaussian mixture with three compo-
nents having equal volume and shape, but different orientation. The common
parameters of both situations are

µ1 =

(
0
0

)
, µ2 =

(
0
0

)
, µ3 =

(
8
0

)
,

Σ1 = Σ3 =

(
0.11 0

0 9

)
.

The two situations differ in Σ2. In Situation 1, the covariance matrix equals

Σ2 =

(
2.33 3.85
3.85 6.78

)
,

resulting in an angle of 30◦ between the first eigenvectors of Σ1 and Σ2. In
Situation 2 the respective angle equals 18◦ leading to

Σ2 =

(
0.96 2.61
2.61 8.15

)
.

The number of observations per cluster are n1 = n2 = 100 and n3 = 200, Figure
2 shows two of the simulated data sets.
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Figure 2: Examples for Situation 1 and 2
The figure shows examples for Situation 1 (left panel) and 2 (right panel) for the Monte
Carlo experiment inspired by [3]. The contours result from the two underlying true Gaus-
sian densities.
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Table 2: Number of components selected by BIC/SAIC/SBIC

This table displays the proportion with which 2, 3, and 4 components were selected by
BIC, SAIC, and SBIC in Situation 1 (left) and 2 (right). Here, n1 = n2 = 100 and
n3 = 200. Additionally, it shows the number of samples excluded due to non-convergence.

Situation 1 Situation 2

excl. 2 3 4 excl. 2 3 4

BIC 2 52.0% 8.8% 39.2% 2 52.4% 15.5% 32.1%

SAIC 1 92.6% 5.8% 1.6% 1 94.2% 5.4% 0.4%

SBIC 1 92.6% 5.8% 1.6% 1 94.2% 5.4% 0.4%

algorithm did not converge for either 2, 3, or 4 components, this sample was

excluded from the analysis. The second and sixth column, respectively, of
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Figure 2: Examples for Situation 1 and 2

The figure shows examples for Situation 1 (left panel) and 2 (right panel) for the
Monte Carlo experiment inspired by [4]. The contours result from the two underlying
true Gaussian densities.

For each simulated sample, we executed our algorithm mb1. In order to
initialize mb1, we use the k-means algorithm as stated in the previous section.
Additionally, the algorithm mb2 by [13] is fitted as presented above, selecting
the preferred model by the BIC. In order to estimate similar models by the two
algorithms, mb2 is constrained to treat the ellipsoidal and unconstrained case
(argument modelNames = “VVV”).

Table 2 shows the results for the three criteria and the two algorithms. If
an algorithm did not converge for either 2, 3, or 4 components, this sample was
excluded from the analysis. The second and sixth column, respectively, of the
table contain the number of excluded samples. The remaining columns present
the proportions with which 2, 3, and 4 components were selected by BIC, SAIC,
and SBIC in the two situations. These values result from evaluating only those
samples without convergence difficulties.

Table 2: Number of components selected by BIC/SAIC/SBIC

Situation 1 Situation 2

excl. 2 3 4 excl. 2 3 4

BIC 2 52.0% 8.8% 39.2% 2 52.4% 15.5% 32.1%
SAIC 1 92.6% 5.8% 1.6% 1 94.2% 5.4% 0.4%
SBIC 1 92.6% 5.8% 1.6% 1 94.2% 5.4% 0.4%

This table displays the proportion with which 2, 3, and 4 components were selected
by BIC, SAIC, and SBIC in Situation 1 (left) and 2 (right). Here, n1 = n2 = 100
and n3 = 200. Additionally, it shows the number of samples excluded due to non-
convergence.
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In Situation 1, both SAIC and SBIC show a strong preference for a model with
two components. This model is also the preferred model by the BIC, however,
it selects the models with more components more often than SAIC/SBIC do. In
Situation 2, similar tendencies occur. The preferred model by all criteria has
two components, but SAIC/SBIC exhibits a much stronger tendency towards
parsimonious 2-component-models than BIC. Furthermore, BIC selects the model
K = 4 less often than in the previous situation. In view of the results of [3], one
may confirm that “BIC selects the number of mixture components needed to
provide a good approximation to the density, rather than the number of clusters
as such”. On the contrary, SAIC/SBIC seem to be more suitable to identify the
number of clusters in the two situations. Finally, it may be noted that the results
differ slightly from those of the BIC reported by [4]. These authors demonstrate
the selection of K = 3 in the majority of cases for Situation 1 (92% for BIC and
88% for ICL), whereas in Situation 2 BIC mostly choses K = 3 (92%) and ICL
mainly prefers K = 3 (88%). Still, both their estimation algorithms and samples
are different to ours.

To further investigate this setting, we repeated the previous experiment with
reduced sample size. More precisely, n1 = n2 = 50 and n3 = 100, and tendencies
similar to those in the previous situation occur. SAIC/SBIC prefer the more
parsimonious model with K = 2 more often than BIC. However, BIC selects
K = 2 more often in Situation 2 than in Situation 1.

Table 3: Number of components selected by BIC/SAIC/SBIC

Situation 1 Situation 2

excl. 2 3 4 excl. 2 3 4

BIC 12 52.1% 15.8% 32.2% 17 77.4% 12.8% 9.7%
SAIC 8 89.0% 8.1% 2.9% 0 94.8% 4.6% 0.6%
SBIC 8 89.0% 8.1% 2.9% 0 96.4% 3.0% 0.6%

This table displays the proportion with which 2, 3, and 4 components were selected
by BIC, SAIC, and SBIC in Situation 1 (left) and 2 (right). Here, n1 = n2 = 50
and n3 = 100. Additionally, it shows the number of samples excluded due to non-
convergence.

4.3 Monte Carlo Experiment 1

For the first three settings of this experiment we simulate in each case 500
samples from a two-component Gaussian mixture with the following common
parameters:

µ1 =

(
0
0

)
, µ2 =

(
3
0

)
,
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Σ1 =

(
0.5 0
0 1

)
, Σ2 =

(
3 −0.8
−0.8 1

)
.

The three settings differ with respect to the number of observations per compo-
nent. Setting 1a is subject to equal proportions with n1 = n2 = 250. In the
other two settings the proportions differ: Setting 1b deals with a bigger sample,
i.e. n1 = 750, n2 = 250, and Setting 1c with a smaller sample, i.e. n1 = 100,
n2 = 200. Figure 3 displays examples for the two settings.

Figure 3: Examples for Settings 1a and 1b
The figure shows examples for the first Monte Carlo experiment. The upper left panel
shows Setting 1a, the upper right panel Setting 1b, and the lower panel Setting 1c. The
contours result from the two underlying true Gaussian densities.
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Figure 3: Examples for Settings 1a and 1b

The figure shows examples for the first Monte Carlo experiment. The upper left panel
shows Setting 1a, the upper right panel Setting 1b, and the lower panel Setting 1c.
The contours result from the two underlying true Gaussian densities.
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For each simulated sample, we executed the algorithms mb1 and mb2 for
models with 2 and 3 components, where mb1 was initialized by the k-means
algorithm. Then, we calculated the frequencies for selecting each model, which
Table 4 summarizes. None of the algorithms failed to converge for any sample.
The results indicate that both SAIC and SBIC exhibit a strong tendency to select
the correct model, and do not differ much from the BIC resulting from mb2, which
selects K = 2 components in 100% of the cases in all three settings. It may be
noted that the performance of SAIC and SBIC are equivalent in Setting 1a and
1c, selecting the model with two components in 99.4% and 99.6%, respectively,
of all cases. Besides, further analysis of those cases in which the model with
three components is chosen by SAIC or SBIC reveals that the third (erroneous)
component always contains only a small number of mostly outlying observations,
which means that we do not observe a proper third component. It may be subject
to further investigation whether this results from the fact that the algorithm has
been initialized by only one path z, and different initializations may improve the
results. However, for the sake of readability we do not follow this path here as
the selection shows a clear preference for the correct model.

Table 4: Number of components selected by BIC/SAIC/SBIC

Setting 1a Setting 1b Setting 1c

2 3 2 3 2 3

BIC 100.0% 0.0% 100.0% 0.0% 100.0% 0.0%

SAIC 99.4% 0.6% 95.8% 4.2% 99.6% 0.4%

SBIC 99.4% 0.6% 95.6% 4.4% 99.6% 0.4%

This table displays the proportions for selecting 2 and 3 components by BIC, SAIC,
and SBIC in Setting 1a (left), 1b (middle) and 1c (right).

Last, we address the number of iterations required for the algorithm mb1
to converge. Table 5 displays the average number of iterations for all settings
and number of components. Note that the number of iterations is rather low,
in particular when considering the slow convergence in the neighbourhood of a
maximum of the commonly used EM-algorithm [9, 25].

Table 5: Number of iterations required by mb1

Setting 1a Setting 1b Setting 1c

2 3 2 3 2 3

number iter. 7.7 13.5 5.6 27.8 8.3 9.5
s.d. 2.7 6.7 1.7 15.9 2.8 5.8

This table displays number of iterations required by the algorithm mb1 to converge
in Setting 1a (left), 1b (middle) and 1c (right), respectively.
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4.4 Monte Carlo Experiment 2

This experiment treats two settings with three Gaussian components. As
for the first experiment, we simulate two times 500 samples having the common
parameters:

µ1 =

(
0
0

)
, µ2 =

(
2
3

)
, µ3 =

(
3
−2

)
,

Σ1 =

(
1 0
0 1

)
, Σ2 =

(
2 −1.5
−1.5 2

)
, Σ3 =

(
2 1.9

1.9 2

)
.

The two settings differ with respect to the number of observations per component:
in Setting 2a, the numbers of observations per component are n1 = 250, n2 = 500,
and n3 = 1000, whereas in Setting 2b the sample sizes are doubled, i.e., n1 = 500,
n2 = 1000, and n3 = 2000. Figure 4 displays an example for each of the settings.

Figure 4: Examples for Settings 2a and 2b
The figure shows examples for the second Monte Carlo experiment. The left panel (Setting
2a) displays the case n = 1750, and in the right panel (Setting 2b) n = 3500. The contours
result from the three underlying true Gaussian densities.
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Figure 4: Examples for Settings 2a and 2b

The figure shows examples for the second Monte Carlo experiment. The left panel
(Setting 2a) displays the case n = 1750, and in the right panel (Setting 2b) n = 3500.
The contours result from the three underlying true Gaussian densities.

The estimation procedure is carried out just as in the previous experiment.
The number of iterations required by the algorithm to converge is still low, with
14.8 (7.53) and 14.6 (7.14) iterations for Setting 2a and 2b, respectively, in the
3-component case. For two components, the corresponding figure roughly halves,
and for four components it doubles. Moreover, the algorithm sometimes fails to
converge in these settings (see Table 6). It may be noted that the large majority
of convergence problems can be attributed to the (wrong) models with K = 4.
We excluded these cases from further analysis to avoid any bias.
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Table 6: Number of components selected by BIC/SAIC/SBIC

Setting 2a Setting 2b

excl. 2 3 4 excl. 2 3 4

BIC 0 0.0% 91.0% 9.0% 0 0.0% 90.4% 9.6%
SAIC 39 0.0% 79.2% 20.8% 8 0.0% 72.4% 27.6%
SBIC 39 0.0% 78.5% 21.5% 8 0.2% 71.5% 28.3%

This table displays the proportions with which 2, 3, and 4 components were selected
by BIC, SAIC, and SBIC in Setting 2a (left) and 2b (right). Here, n1 = n2 = 100
and n3 = 200. Additionally, it shows the number of samples excluded due to non-
convergence.

Table 6 also summarizes the model selection results. The performance of SAIC
and SBIC is almost identical, selecting the 3-component-model in approximately
79% and 72% of all samples in Setting 2a and 2b, respectively. The performance
of mb2 is slightly better, selects K = 3 in approximately 91% of all cases in
both settings. As before, further analysis of those cases in which mb1 selects four
components reveals that the number of observations in the fourth component is
rather small. In 75% of these cases, the number of observations is less than 26
and 15 in Setting 2a and 2b, respectively. Thus, the same comments as in the
previous section w.r.t. the initialization of the algorithm apply.

4.5 Classification Performance

The aim of this section is to present the classification performance of our algo-
rithm and a comparison to the previously introduced mb2 by [13]. In what follows,
we define the classification performance as the fraction of correctly classified ob-
servations, which naturally only makes sense in a sample where the memberships
to a component are known. The two main questions addressed are: Firstly, is the
classification performance of mb1 satisfactory? Secondly, how is the classification
performance of mb1 compared to mb2?

In this section, we consider the settings described in the previous Sections 4.3
and 4.4, each comprising 500 simulated samples. For each setting, we analyzed
those fitted models with the correct number of components, that is K = 2 and
K = 3 for the Settings 1a/1b/1c and 2a/2b, respectively. The algorithm mb1 is
initialized in two different ways: a) by the k-means and b) by the path estimated
by mb2. Then again, mb2 uses the default setting, i.e., a hierarchical clustering.
The first three columns of Table 7 report the average classification errors of mb1
- initialized by k-means and the mb2-path - and mb2. All figures are rather
small and, at first glance, the classification error of mb1 initialized by k-means
seems to be a little higher than that of mb2. However, as the first entries of the
last columns indicate, the difference is significant at 5%-level only in the Settings
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1b/1c. As to the classification error of mb2 and mb1 initialized by the mb2-
path, the second entry of the last columns shows no significant difference in any
setting. Thus, the classification error of mb1 may be considered satisfactory, and
not necessarily inferior or superior to mb2.

Table 7: Classification error

scenario mb1 (k-means) mb1 (mb2) mb2 p-values

1a 2.75 2.62 2.63 0.117/0.972
1b 2.34 2.29 2.25 0.019/0.342
1c 2.84 2.51 2.52 0.046/0.741
2a 1.94 1.93 1.91 0.305/0.425
2b 1.88 1.88 1.87 0.576/0.758

This table displays the classification error by Monte-Carlo simulation scenario. The
columns display, from left to right: Average classification error of mb1 (initialized
by the k-means and mb2), average classification error of mb2, p-values of Wilcoxon’s
signed rank test.

Summarizing, for the classification performance of mb1 initialized by the k-
means seems satisfactory given the examples treated in this section. In particular,
cases where the separation of the mixing distributions is not too obvious, i.e.,
small sample sizes and/or close centers may be subject to further studies.

5. Discussion and Concluding Remarks

In this section, we discuss the similitudes and differences between our proce-
dure and existing relevant ones, and we conclude our work.

1. Our classification procedure is a CEM algorithm (see [8]) based on the classifi-
cation likelihood, which can be initialized with an arbitrary z. For its derivation,
we have used the idea of [12] who propose a procedure based on the mixture
likelihood. One of the main advantages of such algorithms is that good estima-
tors of z, such as those given by hierarchical classification or k-means methods,
are available, and can therefore be used as starting point. The classical CEM
algorithm is initialized with an arbitrary value of the parameter. A preliminary
estimator of this value, which could be used as the starting point, is not easy to
obtain in general.

2. At each step of our CEM algorithm, the parameters of the kth component of
the mixture are estimated based on the observations from the kth class, while the
mixing proportions are estimated empirically. These features are quite different to
those of the classical MAP method used in [4] and the CEM algorithm described
in [12].

3. The ICL procedure uses the maximum likelihood (ML) estimator of the pa-
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rameters from the incomplete likelihood instead of the ML estimator from the
complete likelihood without any theoretical justification. Such problems are not
encountered with the SBIC and SAIC, respectively, because z is estimated iter-
atively from our CEM-like algorithm.

4. The SBIC procedure is constructed under the assumption that the prior dis-
tribution of the parameter vector is the product of the priors of each of its com-
ponents. This gives rise to a penalization term that is different to those of BIC
and ICL.

5. With respect to the procedure for selecting the number of components, our
method has some similarities with that of [12]. However, their approach utilizes
the mixture likelihood and ML estimator, whereas we use the classification like-
lihood and empirical estimators of the mixing proportions combined with ML
estimators of the parameters of the mixture components.

6. The numerical examples show that SAIC and SBIC show a satisfactory selec-
tion performance. In particular, in the context of small samples and overlapping
components, parsimonious models are selected. Additionally, an appealing prop-
erty of the mb1 algorithm is the low number of iterations required to converge.

Appendix: Proof of Theorem 2

Let k ∈ {1, · · · ,K}, and denote

Λ(k)(m,K) =

∫

Θ
(k)
m,K

∏

xj∈Ck

φk(xj |ak)πk(ak|m,K)dak,

and
g(ak) =

∑

xj∈Ck

log φk(xj |ak) + log πk(ak|m,K).

Moreover, define the vector a∗k and the matrix Aa∗
k

as follows:

a∗k = arg max
ak∈Θ

(k)
m,K

(
1

nk
g(ak)

)
,

and

Aa∗
k

= − 1

nk

(
∂2g(a∗k)

∂a
(i)
k ∂a

(j)
k

: 1 ≤ i, j ≤ dak

)
.

Then we obtain



176 On Choosing a Mixture Model for Clustering

Λ(k)(m,K) =

∫

Θ
(k)
m,K

exp{g(ak)}dak

= exp{g(a∗k)}
(

2π

nk

)dak
/2

|Aa∗
k
|−1/2 +O(n

−1/2
k ),

by the Laplace transformation [see, e.g., 14]. Since exp{g(ak)}, the likelihood
of the class Ck behaves like the product

∏
xj∈Ck

φk(xj |ak) for all k = 1, · · · ,K,

which increases with nk whilst πk(ak|m,K) is constant, one can substitute the
vector a∗k by âk = arg max{(1/nk)

∏
xj∈Ck

φk(xj |ak)} and the matrix Aa∗
k

by the
Fisher information matrix Iâk

defined by

Iâk
= −


 ∑

xj∈Ck

E

[
∂2 log φk(xj |âk)
∂a

(i)
k ∂a

(j)
k

]
: 1 ≤ i, j ≤ dak




= −
(
nkE

[
∂2 log φk(xj |âk)
∂a

(i)
k ∂a

(j)
k

]
: 1 ≤ i, j ≤ dak

)
.

Then follows:

log Λ(k)(m,K) =
∑

xj∈Ck

log φk(xj |âk) + log πk(âk|m,K)− dak

2
log(nk)

+
dak

2
log(2π)− 1

2
log(|Iâk

|) +O(n
−1/2
k ).

Neglecting the O(n
−1/2
k ) and O(1) terms, the approximation

log Λ(k)(m,K) ≈
∑

xj∈Ck

log φk(xj |âk)−
dak

2
log(nk)

follows. Thus, from this approximation and (12) follows

log `(m,K) ≈
K∑

k=1


 ∑

xj∈Ck

log φk(xj |âk) + nk log p̂k −
dak

2
log(nk)


 .
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Université de Lorraine and EHESP de Rennes
B.P. 70239 54506 Vandoeuvre-lès-Nancy Cedex, France
joseph.ngatchou-wandji@univ-lorraine.fr

Jan Bulla
LMNO
Université de Caen
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