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Abstract: Shared frailty models are often used to model heterogeneity in
survival analysis. The most common shared frailty model is a model in
which hazard function is a product of random factor (frailty) and baseline
hazard function which is common to all individuals. There are certain as-
sumptions about the baseline distribution and distribution of frailty. Mostly
assumption of gamma distribution is considered for frailty distribution. To
compare the results with gamma frailty model, we introduce three shared
frailty models with generalized exponential as baseline distribution. The
other three shared frailty models are inverse Gaussian shared frailty model,
compound Poisson shared frailty model and compound negative binomial
shared frailty model. We fit these models to a real life bivariate survival
data set of McGilchrist and Aisbett (1991) related to kidney infection using
Markov Chain Monte Carlo (MCMC) technique. Model comparison is made
using Bayesian model selection criteria and a better model is suggested for
the data.

Key words: Bayesian model comparison, compound negative binomial dis-
tribution, compound Poisson distribution, gamma distribution, generalized
exponential distribution, inverse Gaussian distribution, likelihood ratio test,
MCMC, predictive density, shared frailty.

1. Introduction

Survival models have been extensively used in medical research during last
several years. Especially the Cox proportional hazards model. In fact, Cox pro-
portional hazards model become workhorse of regression analysis for censored
data. In Cox proportional hazards model, we include explanatory variables or
covariates to study the effect of covariates on distribution of survival times. Un-
fortunately, in many of the cases it is not possible to include all the relevant
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covariates related to disease. Sometimes because we do not know the values of
the factor for each individual or sometimes we are not aware that there exists fac-
tors that we ought to include. For example, a genetic factor as we do not know all
possible genes having influence on survival. This unknown or unobservable risk
factor of the hazard function is often termed as the heterogeneity or frailty. To
measure heterogeneity caused by unobserved covariates it is necessary to include
random effect term or frailty into the model. Thus the frailty model is a random
effect model for time to event data which is an extension of the Cox proportional
hazards model.

Frailty models are substantially promoted by its applications to multivariate
survival data in a seminal paper by Clayton (1978) without using the notion
frailty. The term frailty was first coined by Vaupel et al. (1979).

The frailty model is usually modeled as an unobserved random variable act-
ing multiplicatively on the baseline hazard function and it is assumed that frailty
random variable follows one of the parametric distribution such as gamma, log-
normal, positive stable, inverse Gaussian, power variance function etc. Let a
continuous random variable T be life time of an individual and the random vari-
able Z be frailty variable. The conditional hazard function for a given frailty
variable Z = z at time t > 0 is,

h(t | z) = zh0(t)eXβ, (1.1)

where h0(t) is a baseline hazard function at time t > 0. X is a row vector of
covariates and β is a column vector of regression coefficients. The conditional
survival function for given frailty at time t > 0 is,

S(t | z) = e−
∫ t
0 h(x|z)dx = e−zH0(t)eXβ , (1.2)

where H0(t) is cumulative baseline hazard function at time t > 0. Integrating
over the range of frailty variable Z having density f(z), we get marginal survival
function as,

S(t) =

∫ ∞
0

S(t | z)f(z)dz = LZ(H0(t)eXβ), (1.3)

where LZ(·) is a Laplace transformation of the distribution of Z. Once we have
survival function at time t > 0 of life time random variable of an individual one
can obtain probability structure and can base their inference on it.

To model life times, Weibull distribution is mostly used in the literature.
For example, Ibrahim et al. (2001) and references their in, Sahu et al. (1997),
Boneg (2001), Yu (2006) and Santos et al. (2010). All of the above references
considered shared gamma frailty model with baseline as Weibull distribution.
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Hazard rate for Weibull distribution is a monotone function, which increases with
time to infinity when shape parameter α is greater than one and it decreases up
to the the value zero for α < 1. A near zero failure rate implies that almost no
failure will occur which is hardly feasible in real life. Generalized exponential
distribution, suggested by Gupta and Kundu (1999), can be used effectively in
analyzing many life time data sets particularly in place of gamma and Weibull.
For generalized exponential distribution, hazard rate increases from zero to a
finite constant, when shape parameter α increases and hazard rate decreases
from infinity to a finite number when α is less than one. A nearly constant
rate after a certain time period implies that the occurrence of failure is purely
random and is independent of past life; this is a property of the failure rate of an
exponential distribution which has been extensively used in reliability studies. So
we have considered generalized exponential as baseline distribution. The aim of
our study is to compare different shared frailty models with baseline as generalized
exponential distribution.

In this paper, we consider shared frailty model with baseline as generalized
exponential distribution and four frailty distributions, gamma, inverse Gaussian,
compound Poisson and compound negative binomial distribution. We are using
Markov Chain Monte Carlo (MCMC) technique to fit these four models. We apply
our models to bivariate survival data set of McGilchrist and Aisbett (1991) related
to Kidney infection and compare these four models using Bayesian comparison
techniques such as AIC, BIC, DIC, Bayes’ factor, predicted model choice criteria
etc.

The remainder of the paper is organized as follows. In Section 2, we give
introduction of general shared frailty model. In Sections 3, 4, 5 and 6 we in-
troduce four shared frailty models, gamma, inverse Gaussian, compound Poisson
and compound negative binomial shared frailty models. In Section 7, we intro-
duce shared frailty model with generalized exponential as baseline distribution.
In the same Section we propose the four frailty models, gamma, inverse Gaus-
sian, compound Poisson and compound negative binomial shared frailty models
with generalized exponential baseline distribution respectively. Section 8 gives an
outline of model fitting and model comparison using Bayesian approach. Section
9 is devoted to the analysis of kidney infection data. Finally in Section 10, the
paper conclude with discussions.

2. General Shared Frailty Model

The shared frailty model is relevant to event time of related individuals, sim-
ilar organs and repeated measurements for example, if the timing of failure of
paired organs like kidneys, lungs, eyes, ears, dental implants etc. are considered.
In this model individuals from a group share common covariates. For monozy-
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gotic twins, examples are sex and any other genetically based covariates. Both
monozygotic and dizygotic twins share date of birth and common pre birth en-
vironment. Also for human lifetime, natural disasters and accidents lead to the
death of several persons at the same time or in the infectious diseases, two or more
family members might visit an infected person and all of them become infected.

For the shared frailty model it is assumed that survival times are conditionally
independent, for given shared frailty. That means dependence between survival
times is only due to unobservable covariates or frailty. When there is no vari-
ability in the distribution of frailty variable Z that implies Z has a degenerate
distribution and when the distribution of Z is not degenerate the dependence is
positive.

Suppose n individuals are observed for the study and let a bivariate random
variable (T1j , T2j) be represents first and second survival times of jth individual
(j = 1, 2, 3, · · · , n). Also suppose that there are k observed covariates collected
in a vector Xj = (X1j , · · · , Xkj) for jth individual, where Xaj (a = 1, 2, 3, · · · , k)

represents the value of ath observed covariate for jth individual. Here we assume
that the first and second survival times for each individual share the same value
of the covariates. Let Zj be represents shared frailty for jth individual. Assuming
that the frailties are acting multiplicatively on the baseline hazard function and
both the survival times of individuals are conditionally independent for given
frailty, the conditional survival function for jth individual at ith survival time
tij > 0 for given frailty Zj = zj from (1.2) is given by,

S(tij | zj , Xj) = e−zjH0(tij)ηj , (2.1)

where ηj = eXjβ and H0(tij) is cumulative baseline hazard function at time
tij > 0. Under the assumption of independence, bivariate conditional survival
function for given frailty Zj = zj at time t1j > 0 and t2j > 0 is,

S(t1j , t2j | zj , Xj) = S(t1j | zj , Xj)S(t2j | zj , Xj)

= e−zj(H01(t1j)+H02(t2j))ηj . (2.2)

Unconditional bivariate survival function at time t1j > 0 and t2j > 0 can be
obtained by integrating over frailty variable Zj having the probability function
f(zj), for jth individual

S(t1j , t2j | Xj) = LZj [(H01(t1j) +H02(t2j))ηj ]. (2.3)

Here onwards we represent S(t1j , t2j | Xj) as S(t1j , t2j).
Once we have unconditional survival function of bivariate random variable

(T1j , T2j) we can obtain likelihood function and estimate the parameters of the
model.
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3. Gamma Frailty Model

We consider first frailty distribution as gamma distribution because the gamma
distribution fits well to failure data from a computational and analytical point
of view and it is easy to derive the closed form expression of survival and hazard
function. Here the cross ratio function (Clayton, 1978) is constant and is inde-
pendent of the lifetimes. Let a continuous random variable Z follows a gamma
distribution with shape parameter λ and scale parameter α then density function
of Z is,

f(z) =


αλ

Γ(λ)z
λ−1e−αz, z > 0, α > 0, λ > 0,

0, otherwise,
(3.1)

and Laplace transform is, LZ(s) = (1 + s/α)−λ.
In order to solve the problem of non-identifiability, we assume Z has expected

value equal to one which introduces restriction on the parameters α = λ. Un-
der this restriction, density function and Laplace transformation of a gamma
distribution reduces to,

f(z) =


1
σ2

1
σ2

Γ 1
σ2
z

1
σ2
−1e−

z
σ2 , z > 0, σ2 > 0,

0, otherwise,

(3.2)

and LZ(s) = (1 + σ2s)−1/σ2
with variance of Z is σ2 = λ/α2 = 1/α = 1/λ.

Replacing Laplace transformation in (2.3), we get the unconditional bivariate
survival function for jth individual at time t1j > 0 and t2j > 0 as,

S(t1j , t2j) = [1 + σ2((H01(t1j) +H02(t2j))ηj)]
− 1
σ2 , (3.3)

where H01(t1j) and H02(t2j) are cumulative baseline hazard functions of life time
random variables T1j and T2j respectively.

4. Inverse Gaussian Frailty Model

The gamma distribution is most commonly used frailty distribution because
of its mathematical convenience. However, it has drawbacks (see Kheiri et al.,
2007) for example it may weaken the effect of covariates. Alternative to the
gamma distribution Hougaard (1984) introduced inverse Gaussian as a frailty dis-
tribution. The inverse Gaussian distribution have many similarities to standard
Gaussian distribution (see Chikkara and Folks, 1986). Furthermore, it provides
much flexibility in modeling, when early occurrences of failures are dominant in
a life time distribution and its failure rate is expected to be non-monotonic. In
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such situations the inverse Gaussian distribution might provide a suitable choice
for the lifetime model. Also inverse Gaussian is almost an increasing failure rate
distribution when it is slightly skewed and hence is also applicable to describe
lifetime distribution which is not dominated by early failures. Secondly, for the in-
verse Gaussian distribution the surviving population becomes more homogeneous
with respect to time, where as for gamma distribution the relative heterogeneity
is constant. The inverse Gaussian distribution has unimodal density and is the
member of exponential family. While its shape resembles the other skewed density
functions, such as lognormal and gamma. These properties of inverse Gaussian
distribution motivates us to use inverse Gaussian as frailty distribution.

Let a continuous random variable Z follows inverse Gaussian distribution with
parameters µ and α then density function of Z is,

f(z) =

{ [
α
2π

] 1
2 z−

3
2 e
−α(z−µ)

2

2zµ2 , z > 0, α > 0, µ > 0,
0, otherwise,

and Laplace transform is,

LZ(s) = exp[
α

µ
− (

α2

µ2
+ 2αs)

1
2 ].

The mean and variance of frailty variable are E(Z) = µ and V (Z) = µ3/α.

For identifiability, we assume Z has expected value equal to one i.e., µ =
1. Under the restriction density function and Laplace transformation of inverse
Gaussian distribution reduces to,

f(z) =

{ [
1

2πσ2

] 1
2 z−

3
2 e−

(z−1)2

2zσ2 , z > 0, σ2 > 0,
0, otherwise,

(4.1)

and

LZ(s) = exp[
1− (1 + 2σ2s)

1
2

σ2
],

with variance of Z is σ2 = 1/α. Note that there is heterogeneity if σ2 > 0.

Replacing Laplace transformation in (2.3), we get the unconditional bivariate
survival function for jth individual at time t1j > 0 and t2j > 0 as,

S(t1j , t2j) = exp{1− [1 + 2σ2(H01(t1j) +H02(t2j))ηj ]
1
2

σ2
}, (4.2)

where H01(t1j) and H02(t2j) are cumulative baseline hazard functions of life time
random variables T1j and T2j respectively.
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5. Compound Poisson Frailty Model

In shared frailty models, we assume that, each individual from a pair shares
common frailty but sometimes it may be possible that some individuals are im-
mune to a particular event i.e., they are non-susceptible or they have zero sus-
ceptibility. For example, some cancer patients survive their cancer. In medicine,
there are several examples of diseases primarily attacking people with particu-
lar susceptibility, for instance, a genetic kind, other people having virtually zero
susceptibility of getting the disease. Another example is fertility, some couples
are unable to conceive children so that the time to have first child birth for them
have zero susceptibility. In case of marriages, some people never marry, some
marriages are not prone to dissolve so that time to divorce for such couples have
zero susceptibility. In such type of data, compound Poisson distribution is conve-
nient since it has an explicit Laplace transform and it deals with the feature that
some people may have zero susceptibility. This motivates us to use compound
Poisson distribution as third frailty distribution. Aalen (1992), Aalen and Tretli
(1999), Moger and Aalen (2005), Hanagal (2010a,b,c) have considered compound
Poisson frailty models.

The compound Poisson distribution is defined as follows,

Z =

{
X1 +X2 + · · ·+XN , N > 0,
0, N = 0,

where N is Poisson distributed with mean ρ, while X1, X2, · · · , are independent
and gamma distributed with scale parameter ν and shape parameter γ .

The distribution of Z consists of two parts; a discrete part which corresponds
to the probability of zero susceptibility, and a continuous part on the positive real
line. The discrete part is, P (Z = 0) = e−ρ which decreases as ρ increases. The
distribution of the continuous part can be found by conditioning N and using the
fact that the X’s are gamma distributed. It can be written as

f(z; γ, ν, ρ) =

 exp [−(ρ+ νz)]
1

z

∞∑
n=1

ρn(νz)nγ

Γ(nγ)n!
, z > 0, ρ > 0, ν > 0, γ > 0,

0, otherwise.

The parameter set for the compound Poisson distribution is ρ > 0, ν > 0, γ > 0.
The expectation and variance are given by

E(Z) =
ργ

ν
, Var(Z) =

ργ(γ + 1)

ν2
.

Laplace transform of compound Poisson distribution is given by,

LZ(s) = exp{−ρ[1− (
ν

ν + s
)γ ]}. (5.1)
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For identifiability, we assume Z has expected value equal to one i.e., ν = ργ.
Under the restriction Laplace transformation of inverse Gaussian distribution
reduces to,

LZ(s) = exp{−ρ[1− (1 +
s

ργ
)−γ ]},

and frailty variance is given by σ2 = (γ + 1)/ργ.
Replacing Laplace transformation in (2.3), we get the unconditional bivariate

survival function for jth individual at time t1j > 0 and t2j > 0 as,

S(t1j , t2j) = exp{−ρ[1− (1 + (H01(t1j) +H02(t2j))ηjργ)−γ ]}, (5.2)

where H01(t1j) and H02(t2j) are cumulative baseline hazard functions of life time
random variables T1j and T2j respectively.

6. Compound Negative Binomial Frailty Model

In non-susceptible or zero susceptibility type of data a convenient frailty distri-
bution is compound Poisson distribution. As defined in Section 5, the compound
Poisson variate (Z) is defined as,

Z =

{
X1 +X2 + · · ·+XN , N > 0,
0, N = 0,

where N is a Poisson variate and Xi’s are gamma distributed random variables
which represents length of ith failure. If N > 0 then we can interpret Z as
aggregate heterogeneity due to failures before we get first success or in general
rth success. For example, Aalen and Tretli (1999) analyzed testis cancer data and
they represented Xi as size of the damage at ith occasion and N be the number
of damages occurred. A man receives damages during a critical period of their
fetal development which may develop testis cancer after the hormonal process of
puberty has started. The damage may be a result of the mother’s exposure to
environmental factors, for example an excessive estrogen burden, and may also
interact with genetic factors. So Z is now cumulative effect of damages before
testis cancer is observed with a man. Some other examples can be given as,
in case of marriage data, Z may represents heterogeneity due to difficulties in
finding a marriageable partner before individual meet first suitable partner. In
case of fertility, Z may be heterogeneity due to miss-carriages observed or unable
to conceive a child with a couple before they have their first child or second child.
Some mothers would like to deliver babies until she delivers a baby boy or two
baby boys. Politicians go on contesting elections until they win once or twice and
so on. Individuals go on changing the jobs until he/she gets a suitable job. In such
situations negative binomial distribution or geometric distribution is a suitable
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choice of distribution for variate N . In risk model also, another parallel choice
to compound Poisson model is compound negative binomial model or compound
geometric model. In fact, there is a relation between compound negative binomial
distribution and compound Poisson distribution. If Z1 and Z2 are respectively
follows compound Poisson and compound negative binomial distribution with
Z1 = X1 + X2 + · · ·XN1 and Z2 = X1 + X2 + · · ·XN2 , where N1 is Poisson
random variate with intensity λ and N2 is and negative binomial random variate
with parameters, number of successes (r) and probability of success (p) then Z1

and Z2 are identically distributed if λ = −r log p. When the number of successes is
equal to one, the compound negative binomial distribution reduces to compound
geometric distribution. This motivates us to use compound negative binomial
distribution to model zero susceptibility.

The compound negative binomial distribution is defined as follows,

Z =

{
X1 +X2 + · · ·+XN , N > 0,
0, N = 0,

where N is negative binomial variate with parameters r and p; r and p denotes
respectively, the number of successes and the probability of success. The dis-
tribution of Z consists of two parts; a discrete part which corresponds to the
probability of zero susceptibility, and a continuous part on the positive real line.
The discrete part is, P (Z = 0) = pr. The distribution of the continuous part
can be found by conditioning N and using the fact that the X’s are gamma
distributed. It can be written as

f(z) =


pr 1

z e
−νz∑∞

N=1
N+r−1CNq

N (νz)Nγ

Γ(Nγ) , z > 0, ν > 0, γ > 0, 0 < p < 1,

q = 1− p, r = 1, 2, · · · ,
0, otherwise.

The parameter set for the compound negative binomial distribution is 0 < p < 1,
ν > 0 and γ > 0. The Laplace transform, mean and variance of compound
negative binomial distribution are given by,

LZ(s) = { p

1− q[1 + s
ν ]−γ

}r, (6.1)

E(Z) = µ =
rqγ

pν
, (6.2)

V ar(Z) = σ2 =
rqγ(p+ γ)

p2ν2
. (6.3)

For identifiability, we assume Z has expected value equal to one, therefore
from (6.2) we have

ν =
rqγ

p
. (6.4)
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Under the restriction, (6.4), variance is given by, σ2 = (p+γ)/rqγ and Laplace
transformation of compound negative binomial distribution reduces to,

LZ(s) = { p

1− q[1 + ps
rqγ ]−γ

}r.

Replacing Laplace transformation in (2.3), we get the unconditional bivariate
survival function for jth individual at time t1j > 0 and t2j > 0 as,

S(t1j , t2j) = { p

1− q[1 +
p(H01(t1j)+H02(t2j))ηj

rqγ ]−γ
}r, (6.5)

where H01(t1j) and H02(t2j) are cumulative baseline hazard functions of life time
random variables T1j and T2j respectively.

7. Generalized Exponential Baseline Model

A continuous random variable T is said to follow generalized exponential
distribution if its survival function is,

S0(t) =

{
1− (1− e−λt)α, t > 0, α > 0, λ > 0,
1, otherwise,

where λ and α are respectively scale and shape parameters of the distribution.
The hazard function and cumulative hazard function are respectively,

h0(t) =

{
αλe−λt(1−e−λt)α−1

1−(1−e−λt)α , t > 0, α > 0, λ > 0,

0, otherwise,

H0(t) =

{
− ln[1− (1− e−λt)α], t > 0, α > 0, λ > 0,
0, otherwise.

For α = 1 distribution reduces to one parameter exponential distribution and
have constant failure rate λ. When α > 1 the hazard function is increasing
function of time and for α < 1 hazard function is decreasing function of time.

Substituting cumulative hazard function for Weibull distribution in (3.3),
(4.2), (5.2) and (6.5) we get the unconditional bivariate survival functions as,

S(t1j , t2j) = [1− σ2(ln[1−G1(t1j)] + ln[1−G2(t2j)])ηj ]
− 1
σ2 , (7.1)

S(t1j , t2j) = exp{1− [1− 2σ2((ln[1−G1(t1j)] + ln[1−G2(t2j)])ηj)]
1
2

σ2
}, (7.2)

S(t1j , t2j) = exp{−ρ[1− (1− (ln[1−G1(t1j)] + ln[1−G2(t2j)])ηj
ργ

)−γ ]}, (7.3)

S(t1j , t2j) = { p

1− q[1− p(ln[1−G1(t1j)]+ln[1−G2(t2j)])ηj
rqγ ]−γ

}r, (7.4)
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where

G1(t1j) = (1− e−λ1t1j )α1 and G2(t2j) = (1− e−λ2t2j )α2 .

Here onwards we call (7.1), (7.2), (7.3) and (7.4) as model-I, model-II, model-III
and model-IV respectively.

To fit the model, Bayesian approach is now popularly used, because compu-
tation of the Bayesian analysis become feasible due to advances in computing
technology. Several authors have discussed Bayesian approach for the frailty
models. Some of them are, Ibrahim et al. (2001) and references theirin, Santos et
al. (2010). Santos et al. (2010) considered parametric models with baseline dis-
tribution as Weibull and generalized gamma distribution and gamma, log-normal
as frailty distributions. Ibrahim et al. (2001) and references therein considered
Weibull model and piecewise exponential model with gamma frailty. They also
considered positive stable frailty models. Kheiri et al. (2007) considered inverse
Gaussian correlated frailty model.

8. Model Fitting and Comparison Using Bayesian Approach

8.1 Model Fitting

Suppose there are n individuals under study whose first and second observed
failure times are represented by (t1j , t2j). Let c1j and c2j be the observed cen-
soring times for jth individual (j = 1, 2, 3, · · · , n) for first and second recurrence
times respectively. We assume independence between censoring scheme and life
times of individuals. One of the following censoring situations can happen for
each data point (T1j , T2j).

(T1j , T2j) =


(t1j , t2j), t1j < c1j , t2j < c2j ,
(t1j , c2j), t1j < c1j , t2j > c2j ,
(c1j , t2j), t1j > c1j , t2j < c2j ,
(c1j , c2j), t1j > c1j , t2j > c2j .

The contribution of bivariate life time random variable of jth individual in like-
lihood function is given by,

Lj(t1j , t2j) =


f1(t1j , t2j), t1j < c1j , t2j < c2j ,
f2(t1j , c2j), t1j < c1j , t2j > c2j ,
f3(c1j , t2j), t1j > c1j , t2j < c2j ,
f4(c1j , c2j), t1j > c1j , t2j > c2j ,

and likelihood function is,

L(θ, β, τ) =

n1∏
j=1

f1(t1j , t2j)

n2∏
j=1

f2(t1j , c2j)

n3∏
j=1

f3(c1j , t2j)

n4∏
j=1

f4(c1j , c2j), (8.1)
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where θ, β and τ are respectively vector of baseline parameters, vector of re-
gression coefficients and vector of frailty parameters. θ = (α1, λ1, α2, λ2) for all
the four models and τ = σ2 for model-I and model-II, for model-III, τ = (ρ, γ)
and for model-IV, τ = (p, γ). Let n1, n2, n3 and n4 be the number of pairs for
which first and second failure times (t1j , t2j) lies in the ranges t1j < c1j , t2j < c2j ;
t1j < c1j , t2j > c2j ; t1j > c1j , t2j < c2j and t1j > c1j , t2j > c2j respectively and

f1(t1j , t2j) =
∂2S(t1j , t2j)

∂t1j∂t2j
,

f2(t1j , c2j) = −∂S(t1j , c2j)

∂t1j
,

f3(c1j , t2j) = −∂S(c1j , t2j)

∂t2j
,

f4(c1j , c2j) = S(c1j , c2j),

differentiating survival function for each of the model given in (7.1) to (7.4) we get,

(for model-I)

f1(t1j , t2j) = (1 + σ2)
α1λ1e

−λ1t1jF1(t1j)

R1(t1j)

α2λ2e
−λ2t2jF2(t2j)

R2(t2j)
S(t1j , t2j)

1+2σ2
η2
j ,

f2(t1j , c2j) =
α1λ1e

−λ1t1jF1(t1j)

R1(t1j)
S(t1j , c2j)

1+σ2
ηj ,

f3(c1j , t2j) =
α2λ2e

−λ2t2jF2(t2j)

R2(t2j)
S(c1j , t2j)

1+σ2
ηj ,

f4(c1j , c2j) = S(c1j , c2j), (8.2)

where S(aj , bj) is given by (7.1);

(for model-II)

f1(t1j , t2j) =
α1λ1e

−λ1t1jF1(t1j)

R1(t1j)

α2λ2e
−λ2t2jF2(t2j)

R2(t2j)

S(t1j , t2j)φ1(t1j , t2j)

[φ2(t1j , t2j)]
3
2

η2
j ,

f2(t1j , c2j) =
α1λ1e

−λ1t1jF1(t1j)

R1(t1j)

S(t1j , c2j)

[φ2(t1j , c2j)]
1
2

ηj ,

f3(c1j , t2j) =
α2λ2e

−λ2t2jF2(t2j)

R2(t2j)

S(c1j , t2j)

[φ2(c1j , t2j)]
1
2

ηj ,

f4(c1j , c2j) = S(c1j , c2j), (8.3)
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where

φ1(t1j , t2j) = 1 + σ2(1− lnS(t1j , t2j)),

φ2(t1j , t2j) = 1− 2σ2(lnR1(t1j) + lnR2(t2j))ηj ,

and S(aj , bj) is given by (7.2);

(for model-III)

f1(t1j , t2j) =
α1λ1e

−λ1t1jF1(t1j)

R1(t1j)

α2λ2e
−λ2t2jF2(t2j)

R2(t2j)

S(t1j , t2j)φ1(t1j , t2j)

[φ(t1j , t2j)]
γ+2 η2

j ,

f2(t1j , c2j) =
α1λ1e

−λ1t1jF1(t1j)

R1(t1j)

S(t1j , c2j)

[φ(t1j , c2j)]
γ+1 ηj ,

f3(c1j , t2j) =
α2λ2e

−λ2t2jF2(t2j)

R2(t2j)

S(c1j , t2j)

[φ(c1j , t2j)]
γ+1 ηj ,

f4(c1j , c2j) = S(c1j , c2j), (8.4)

where

φ1(aj , bj) =
γ + 1

ργ
+ φ(aj , bj)

−γ , φ(aj , bj) = 1− [(lnR1(aj) + lnR2(bj))ηj ]

ργ
,

and S(aj , bj) is given by (7.3);

(for model-IV)

f1(t1j , t2j) =
p2η2

rqγ

Φ1(t1j , t2j)S(t1j , t2j)

Φ(t1j , t2j)2(γ+1) [1− qΦ(t1j , t2j)−γ ]2
α1λ1e

−λ1t1jF1(t1j)

R1(t1j)

· α2λ2e
−λ2t2jF2(t2j)

R2(t2j)
,

f2(t1j , c2j) = pη
S(t1j , c2j)

Φ(t1j , c2j)γ+1 [1− qΦ(t1j , c2j)−γ ]

α1λ1e
−λ1t1jF1(t1j)

R1(t1j)
,

f3(c1j , t2j) = pη
S(c1j , t2j)

Φ(c1j , t2j)γ+1 [1− qΦ(c1j , t2j)−γ ]

α2λ2e
−λ2t2jF2(t2j)

R2(t2j)
,

f4(c1j , c2j) = S(c1j , c2j), (8.5)

where

Φ(t1j , t2j) = [1− p(ln[1− (1− e−λ1t1j )α1 ] + ln[1− (1− e−λ2t2j )α2 ])η

rqγ
],

Φ1(t1j , t2j) = qγ(r + 1) + (γ + 1)Φ(t1j , t2j)
γ [1− qΦ(t1j , t2j)

−γ ],
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and

F1(t1j) = (1− e−λ1t1j )α1−1, F2(t2j) = (1− e−λ2t2j )α2−1,

R1(t1j) = 1− (1− e−λ1t1j )α1 , R2(t2j) = 1− (1− e−λ2t2j )α2 ,

and S(aj , bj) is given by (7.4).
The joint posterior density function of a parameters for given failure times is

given by,

π(α1, λ1, α2, λ2, τ , β) ∝ L(α1, λ1, α2, λ2, τ , β) · g1(α1)g2(λ1)g3(α2)g4(λ2)

·
k∏
i=1

εi(τ i)

5∏
i=1

pi(βi), (8.6)

where gi(·) (i = 1, 2, · · · , 4) indicates the prior density function with known hyper
parameters of corresponding argument for baseline parameters. εi(·) and pi(·)
are prior density functions for frailty parameters τi, i = 1, 2, · · · , l and regression
coefficient βi, i = 1, 2, · · · , 5. The likelihood function L(·) is given by (8.1). Here
we assume that all the parameters are independently distributed.

A widely used prior for frailty parameter is the gamma distribution with mean
one and large variance, G(φ, φ), say with a small choice of φ and the prior for
regression coefficient is the normal with mean zero and large variance say ε2.
Similar types of prior distributions are used in Ibrahim et al. (2001), Sahu et al.
(1997) and Santos et al. (2010). So in our study also we use same noninforma-
tive prior for frailty parameters and regression coefficients. Since we do not have
any prior information about baseline parameters, α1, λ1, α2 and λ2, prior distri-
butions are assumed to be flat. We consider two different noninformative prior
distributions for baseline parameters, one isG(a1, a2) and another is U(b1, b2). All
the hyper-parameters φ, ε2, a1, a2, b1 and b2 are known. Here G(a1, a2) is gamma
distribution with shape parameter a1 and scale parameter a2 and U(b1, b2) rep-
resents uniform distribution over the interval b1 to b2. We set hyper-parameters
φ = 0.0001, ε2 = 1000, a1 = 1, a2 = 0.0001, b1 = 0 and b2 = 100.

The Bayesian model with the above prior density functions and likelihood
function (8.1) can be fitted and the posterior distributions of the parameters of
interest can be computed using the MCMC methods such as, Metropolis-Hastings
algorithm. We generate two parallel Markov chains for all the models using two
sets of prior distributions with different starting points using single component
Metropolis-Hastings algorithm based on normal transition kernel. We iterate
both the chains for N times. Convergence of chains to stationary distribution
is monitored by Gelman-Rubin scale reduction factor and Geweke test. Burn in
period is decided by using coupling from the past plot and sample autocorrelation
function plots are used to decide autocorrelation lag of the chain. If burn in period
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is B and autocorrelation lag is k then every kth value of chain after burn in period
is taken as sample value. Thus a sample of size n is formed and posterior summary
is obtained.

8.2 Model Comparison

In order to compare proposed models we use several Bayesian model selection
criteria, which we outline the concepts in this section.

Information criteria, Akaike Information Criteria (AIC), Bayesian Informa-
tion Criteria (BIC) and Deviance Information Criteria (DIC) are respectively
defined as,

AIC = D(θ̂) + 2p, (8.7)

BIC = D(θ̂) + p · log(n), (8.8)

DIC = D(θ̂) + 2 · pD, (8.9)

where p represents number of parameters of the model and n represents number
of data points. D(θ̂) represents an estimate of the deviance evaluated at the
posterior mean θ̂ = E(θ | data). The deviance is defined by, D(θ) = −2 · logL(θ),
where θ is a vector of unknown parameters of the model and L(θ) is the likelihood
function of the model. pD is the difference between the posterior mean of the
deviance and the deviance of the posterior mean of parameters of interest, that
is, pD = D −D(θ̂), where D = E(D(θ) | data).

The Bayes factor Buv for a model Mu against Mv for given data D = (t1j , t2j),
j = 1, 2, · · · , n is

Buv =
P (D |Mu)

P (D |Mv)
, (8.10)

where

P (D |Mk) =

∫
S
P (D | θk,Mk) · π(θk |Mk)dθk, k = 1, 2, · · · ,m.

θk is the vector of unknown parameters of model Mk, π(θk |Mk) is prior density
and S is the support of the parameter θk. Here m represents number of models.
The Kass and Raftery (1995) given the categories for the decision against the vth

model.
To compute Bayes factor we need to obtain Ik = P (D |Mk) which is not easy

to calculate analytically in our case. So to compute Bayes factor, we consider
one of the approach given in Kass and Raftery (1995), a MCMC estimate of Ik
given by,

Îk = {
∑N

i=1 P (D | θi)−1

N
}−1,



124 A Comparative Study of Shared Frailty Models

which is harmonic mean of the likelihood values. Here N represents the posterior
sample size.

Bayesian model examination for adequacy and model comparison can be pro-
ceeds by predictive distribution π(y | yobs). By marginalizing π(y | yobs), we
obtain the posterior predictive density of a single observation yr, r = 1, 2, · · · , n
as follows,

π(yr | yobs) =

∫
π(yr | θ)π(θ | yobs)dθ. (8.11)

A simple checking for assessment of model is predictive interval. Suppose
we generate a sample yr1, yr2, · · · , yrB from the predictive density (8.11) for rth

observation and create the 100(1−α)% equal tailed credible interval also known
as predictive interval, then the model under consideration would be an adequate
model for the data if 100(1− α)% of the yr,obs to fall in their respective interval.
To draw a random sample from predictive density (8.11), suppose we have θ∗j
(j = 1, 2, · · · , B), B samples from posterior density π(θ | Y ) possibly using one
of the MCMC methods. Then a random sample yjr drawn from π(yr | θ∗j ) is a
sample from the predictive density (8.11).

Another approach for model selection is based on cross-validation predictive
density. The cross-validation predictive densities are the set {f(yr | Y(r)); r =
1, 2, · · · , n} where Y(r) denotes all elements of data set Y except observation yr
and

f(yr | Y(r)) =

∫
f(yr | θ, Y(r))f(θ | Y (r))dθ, (8.12)

f(yr,obs | Y(r),obs) is popularly known as conditional predictive ordinate (CPO).
We prefer a model for which CPO values are higher than others. If we plot
difference of CPO values for the models A and B, i.e., CPOA − CPOB then
negative differences favour model B where as positive differences favour model
A. Larger the positive or negative difference better the model A or B. Sometimes
CPO values are quite close to each other so that difference may be clustered at
zero and plot can not be distinguishable. To overcome this situation one can use
log of CPO values to plot.

Monte Carlo estimate of CPO, is given by,

B∑B
j=1

1

f(yr,obs | θ∗j )

, (8.13)

which is harmonic mean of the conditional density function of yr evaluated at the
posterior sample values. See Gelfand (1996) for more details.
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Recently Gelfand and Ghosh (1998) have proposed a model choice criterion

D
′
ω =

n∑
r=1

σ2
r +

ω

ω + 1

n∑
r=1

(µr − yr,obs)2, (8.14)

where µr and σ2
r are Monte Carlo estimates of the posterior predictive mean and

variance of yr under the density (8.11) based on the sample yjr , j = 1, 2, · · · , B,
and ω > 0 is constant. The first term is a penalty term which penalizes both
under-fitted and over-fitted models, since the predictive variances in such cases
will tend to be larger. The second term without the factor involving ω is a
goodness-of-fit measure. Model selection using D

′
ω is usually not sensitive to ω.

For censored data the criterion must be modified because yr,obs is not available
for censored cases. The modified criterion is,

Dω =

n∑
r=1

σ2
r +

ω

ω + 1

n∑
r=1

(µr − υr)2, (8.15)

where υr = yr,obs if the rth observation is a failure time and υr = max(µr, cr)
if the rth observation is censored at cr. A model with minimum value of Dω is
selected as the best model among all the models considered.

9. Analysis of Kidney Infection Data

The kidney infection data of McGilchrist and Aisbett (1991) is related to
recurrence times to infection at point of insertion of the catheter for 38 kidney
patients using portable dialysis equipment. For each patient, first and second
recurrence times (in days) of infection from the time of insertion of the catheter
until it has to be removed owing to infection is recorded. The catheter may
have to be removed for reasons other than kidney infection and this regard as
censoring. So survival time for a patient given may be first or second infection
time or censoring time (0 for censoring and 1 for occurrence of infection). After
the occurrence or censoring of the first infection sufficient (ten weeks interval)
time was allowed for the infection to be cured before the second time the catheter
was inserted. So the first and second recurrence times are taken to be independent
apart from the common frailty component. The data consist of three risk variables
age, sex and disease type GN, AN and PKD where GN, AN and PKD are short
forms of Glomerulo Neptiritis, Acute Neptiritis and Polycyatic Kidney Disease.
The infection times from each patient share the same value of the covariates.
Let T1 and T2 be represents first and second recurrence time to infection. Five
covariates age, sex and presence or absence of disease type GN, AN and PKD
are represented by X1, X2, X3, X4, and X5. First we check goodness of fit of
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the data for generalized exponential baseline distributions and then apply the
Bayesian estimation procedure.

To analyze kidney data set, various models have been applied by different re-
searchers. Some of them are, McGilchrist and Aisbett (1991), McGilchrist (1993),
Sahu et al. (1997), Boneg (2001), Yu (2006) and Santos et al. (2010). McGilchrist
and Aisbett (1991) considered semi-parametric Cox proportional hazards model
with log-normal frailty distribution and applied Newton-Raphson iterative pro-
cedure to estimate the parameters of the model. McGilchrist (1993) and Yu
(2006) both considered the same model as in McGilchrist and Aisbett (1991)
but McGilchrist (1993) estimated the parameters of the model using BLUP, ML
and REML methods and Yu (2006) proposed modified EM algorithm and penal-
ized partial likelihood method. Sahu et al. (1997) considered four parametric
models first two are piecewise exponential model with constant baseline haz-
ard say λk within each interval having gamma prior for λk for model-I and for
model-II normal prior to log λk. Both the models have frailty distribution as
gamma. Other two models are with Weibull baseline distribution and multiplica-
tive gamma frailty for model-III and additive frailty for model-IV. Santos et al.
(2010) used MCMC method to estimate the parameters of parametric regression
model with Weibull and generalized gamma distribution as baseline and gamma
and log-normal as frailty distributions. Boneg (2001) considered Cox propor-
tional hazards model and also parametric frailty models. In parametric frailty
models he considered Weibull distribution as the baseline and log-normal, Weibull
as frailty distributions. He applied MHL and RMHL methods to estimate the
parameters of the models.

To check goodness of fit of kidney data set, firstly we consider graphical
procedure to check appropriateness of the model. To assess model graphically
we linearize survival function F (t). This means that some transform of F (t) (say
Ψ1(F (t))) is a linear function of t or of some function of t (say Ψ2(t)), that is,
Ψ1(F (t)) = β0 + β1Ψ2(t) for some functions Ψ1(·) and Ψ2(·). The idea is then
to plot Ψ1(F (t)) versus Ψ2(t), if the resulted plot is roughly a straight line then
we can say that underline parametric model is appropriate. This procedure is
useful only when F (t) can be expressed as linear function of time and Ψ1(F (t))
is independent of unknown parameters. For generalized exponential distribution,
Ψ1(F (t)) = − ln[1 − (1 − F (t))1/α], β0 = 0, β1 = λ, Ψ2(t) = t. In this case
Ψ1(F (t)) depends on the unknown parameter α, so we substitute estimate of α
in Ψ1(F (t)) and plot against Ψ2(t). The maximum likelihood estimates of α1

and α2 are α̂1 = 0.6176655 and α̂2 = 0.9214646 respectively. Figure 1 represents
goodness of fit plots for generalized exponential for first and second recurrence
times respectively. From the figure we can observe that many of the points are
nearly on the straight line.
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Figure 1: Graph for goodness of fit for kidney infection data for generalized
exponential distribution (a) recurrence time 1; (b) recurrence time 2

Now we consider likelihood ratio statistic proposed by Turnbull and Weiss
(1978) and discussed in Lawless (2003) to check goodness of fit of kidney data set.
Test procedure is developed for testing goodness of fit with grouped data which
are subject to random right censoring. Procedure is discussed in the Appendix.
Here we assume that survival times of individuals are conditionally independent
so we apply likelihood ratio statistic to the survival times of both the individuals
separately. We classify the survival times into five groups for first and second
recurrence times. Table 1 gives the classification for first and second recurrence
times respectively. To illustrate how censoring times across the interval are ob-
tained, consider class interval [4, 26) of second recurrence time. In the interval
[4, 26) censoring times are 4, 5, 8, 8, 13, 16, 24 and 25. Out of which 4 is exactly
and 5 is nearly at the beginning of the interval. So assuming that individuals are
censored at the beginning of the interval, 24 and 25 are more or less at the end
of the interval. So assuming that individuals are survived for complete interval
and 8, 8, 13, and 16 are more or less at half the interval. So number of censor-
ing times across the interval are wj = 4. The p-values of likelihood ratio test
for generalized exponential distribution for first and second recurrence times are
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respectively, 0.2564597 and 0.2194112. Thus from goodness of fit graph (Figure
1) and p-value of likelihood ratio test we can say there is no statistical evidence
to reject the hypothesis that first and second recurrence times follows generalized
exponential distribution.

Table 1: Classification of survival times for first and second recurrence times
of kidney data set

censoring

death riskclass at the beginning across
interval or at the end the interval

first recurrence time
[2, 13) 0 2 5 38

[13, 23) 1 0 5 31

[23, 54) 0 0 7 25

[54, 149) 1 1 6 17

[149, 537) 1 0 9 9

second recurrence time
[4, 26) 4 4 5 36

[26, 38) 0 0 5 25

[38, 108) 0 2 6 20

[108, 201) 1 1 5 11

[201, 563) 0 0 5 5

The proportional hazard model for jth individual at ith survival time with
frailty term for all the four models we have considered in our study is,

h(t1j , t2j | zj , Xj) = zj
α1λ1e

−λ1t1j (1− e−λ1t1j )α1−1

1− (1− e−λ1t1j )α1

α2λ2e
−λ2t2j (1− e−λ2t2j )α2−1

1− (1− e−λ2t2j )α2

· eXjβ,

where eXjβ = eβ1X1j+β2X2j+β3X3j+β4X4j+β5X5j , βa is ath regression coefficient.
Covariates X1j and X2j represents respectively age and sex of jth patient. X2j

takes the value 1 if jth patient is female and zero otherwise. X3j , X4j , X5j are
indicator variables taking the values 1 or 0 if disease type GN, AN and PKD are
present or absent for jth individual.

For model fitting, we run two parallel chains for all four models using two sets
of prior distributions with the different starting points using Metropolis-Hastings
algorithm and Gibbs sampler based on normal transition kernels. We iterate
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both the chains for 99000 times. We got nearly same estimates of parameters
for both the set of priors, so estimates are not dependent on the different prior
distributions. Convergence rate of Gibbs sampler for both the prior sets is also
not greatly different. Also both the chains shows somewhat similar results, so we
present here the analysis for only one chain with G(a1, a2) as prior for baseline
parameters, for all the four models.

Trace plots, coupling from past plots and sample autocorrelation plots for
baseline parameter β1 and frailty parameters σ2 for model-I are presented in
Figure 2 and Figure 3 respectively. These plots are presented only for β1 and σ2

because sample autocorrelation plot for β1 is larger amongst all other parameters
for the model-I and σ2 is main interest. For all other parameters graphs have
similar pattern so due to lack of space we are not presenting graphs for other
parameters. Trace plots for all the parameter shows zigzag pattern which indicate
the parameters move more freely and appropriate.

Figure 2: (a) Trace plot; (b) Coupling with past plot and (c) sample auto-
correlation function plot for the parameter β1 of model with gamma as frailty
distribution



130 A Comparative Study of Shared Frailty Models

Figure 3: (a) Trace plot; (b) Coupling with past plot and (c) sample auto-
correlation function plot for the parameter σ2 of model with gamma as frailty
distribution

Tables 2, 3, 4 and 5 present posterior summary for models I, II, III and
IV respectively. Gelman-Rubin convergence statistic values are nearly equal to
one and Geweke test statistic values are quite small and corresponding p-values
are large enough to say the chains attains stationary distribution as posterior
distribution. Simulated values of parameters have autocorrelation of lag k so
every kth iteration is selected as sample. Autocorrelation lag is different for
different parameters, to have single value we have taken maximum of all the
lag value as k. From the posterior summary, we can observe that regression
coefficients for all the four models are more or less same also these estimates of
regression coefficients in our models are qualitatively similar to those found by
McGilchrist and Aisbett (1991). Also for all these four models, the value zero is
not a credible value for the only credible interval of the regression coefficient X2,
so X2 that is sex variable seems only significant. Negative value of β2 indicates
that the female patients have a lower risk for infection as compared to male
patients. The estimate of variance frailty σ2 from different models (model-I =
0.4601; model-II = 0.9428; model-III = 0.4047 and model-IV = 1.2158) shows
that there is a strong evidence of high degree of heterogeneity in the population
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of patients. Some patients are expected to be vary prone to infection compared
to others with same covariate value. This is not surprising, as seen in the data
set there is a male patient with infection time 8 and 16, and there is also male
patient with infection time 152 and 562.

Table 2: Posterior summary for the model-I fitted to kidney infection data set

sample size = 457; burn in period = 12000; autocorrelation lag = 190

parameter
Gelman-Rubin

Geweke test
estimates

standard
Credible limits

factor test value p-value error lower upper

α1 1.0001 -0.0087 0.4965 1.6271 0.4666 0.8315 2.7253

λ1 1.0001 -0.0087 0.4965 0.0485 0.0120 0.0252 0.0668

α2 1.0001 -0.0007 0.4997 2.0834 0.4963 1.1888 2.9466

λ2 1.0002 -0.0021 0.4992 0.0404 0.0112 0.0199 0.0615

σ2 1.0008 0.0019 0.5008 0.0523 0.2710 0.0904 1.1396

β1 1.0020 0.0021 0.5008 0.0052 0.0128 -0.0198 0.0310

β2 1.0003 0.0023 0.5009 -2.0162 0.4456 -2.9035 -1.1826

β3 1.0025 0.0009 0.5004 0.1683 0.5765 -0.9550 1.3242

β4 1.0006 -0.0004 0.4998 0.5370 0.5596 -0.5467 1.6324

β5 1.0005 -0.0006 0.4998 -0.8764 0.9642 -2.6354 0.9944

Table 3: Posterior summary for the model-II fitted to kidney infection data set

sample size = 289; burn in period = 11000; autocorrelation lag = 290

parameter
Gelman-Rubin

Geweke test
estimates

standard
Credible limits

factor test value p-value error lower upper

α1 1.0007 0.0039 0.5016 1.6085 0.4872 0.7805 2.6558

λ1 1.0009 0.0060 0.5024 0.0429 0.0096 0.0222 0.0572

α2 1.0034 0.0018 0.5007 2.1389 0.5464 1.1784 3.1392

λ2 1.0008 -0.0023 0.4991 0.0367 0.0094 0.0167 0.0548

σ2 1.0009 0.0004 0.5001 0.9428 0.6003 0.1051 2.3756

β1 1.0000 -0.0102 0.4959 0.0094 0.0133 -0.0137 0.0404

β2 1.0000 0.0044 0.5017 -1.9056 0.4826 -2.9078 -1.0237

β3 1.0006 0.0144 0.5057 0.0680 0.6247 -1.2991 1.3727

β4 1.0002 0.0160 0.5064 0.4759 0.5854 -0.6686 1.6687

β5 1.0004 0.0149 0.5060 -1.1654 0.8767 -2.7474 0.4783
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Table 4: Posterior summary for the model-III fitted to kidney infection data
set

sample size = 366; burn in period = 7500; autocorrelation lag = 250

parameter
Gelman-Rubin

Geweke test
estimates

standard
Credible limits

factor test value p-value error lower upper

α1 1.0016 0.0001 0.5000 1.5137 0.4181 0.8017 2.4265

λ1 1.0017 0.0040 0.5016 0.0424 0.0094 0.0232 0.0569

α2 1.0042 -0.0061 0.4976 2.0856 0.5564 1.1131 3.2762

λ2 1.0003 0.0020 0.5008 0.0372 0.0089 0.0215 0.0554

ρ 1.0003 0.0022 0.5009 3.5844 0.7400 2.1020 4.9108

γ 1.0040 -0.0099 0.4960 2.2192 1.2392 0.4339 5.1329

β1 1.0070 -0.0089 0.4964 0.0012 0.0133 -0.0240 0.0284

β2 1.0154 0.0038 0.5015 -1.9800 0.5095 -2.9818 -1.0048

β3 1.0030 0.0122 0.5049 0.3353 0.5876 -0.7619 1.5083

β4 1.0096 0.0079 0.5032 0.7007 0.5888 -0.5476 1.8307

β5 1.0006 0.0011 0.5044 0.3476 2.0948 -3.8703 4.0066

Table 5: Posterior summary for the model-IV fitted to kidney infection data
set

sample size = 94; burn in period = 13000; autocorrelation lag = 910

parameter
Gelman-Rubin

Geweke test
estimates

standard
Credible limits

factor test value p-value error lower upper

α1 1.0000 0.0030 0.5012 1.8241 0.4986 0.9591 2.8201

λ1 1.0006 -0.0051 0.4980 0.0406 0.0097 0.0226 0.0570

α2 1.0014 -0.0014 0.4994 2.3908 0.5127 1.4216 3.5155

λ2 1.0001 -0.0078 0.4969 0.0361 0.0105 0.0170 0.0558

p 1.0000 0.0028 0.5011 0.0674 0.0226 0.0405 0.1186

γ 1.0014 0.0002 0.5001 0.5037 0.0514 0.4054 0.5981

β1 1.0058 0.0109 0.5044 0.0199 0.0157 -0.0141 0.0467

β2 1.0004 -0.0047 0.4981 -2.2746 0.5687 -3.2459 -1.1672

β3 1.0036 -0.0077 0.4969 0.1034 0.6406 -1.2087 1.4417

β4 1.0050 -0.0050 0.4980 0.4040 0.7624 -1.0926 1.9591

β5 1.0066 -0.0132 0.4948 -1.1188 1.2073 -3.3837 1.5444
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To check the adequacy of the models firstly we have constructed 99%, 95%,
90%, 75% and 50% equal tailed predictive intervals of generated random sample
from predictive distribution and counted the total number of intervals in which
rth observation falls in their respective intervals. For 99% predictive intervals
almost all intervals contains rth observation. Under the model-I, 73, 72, 64 and
52 out of 76 observations were contained in the 95%, 90%, 75% and 50% predictive
intervals where as under model-II, model-III and model-IV the respective number
of observations were 73, 71, 61 and 53; 74, 73, 66 and 51; 74, 71, 63 and 56. For
each of the observation at least 100(1 − α)% predictive interval contains their
respective observation. This shows that all four models are adequate for the
kidney infection data.

To compare four models we firstly use AIC, BIC and DIC values which are
given in Table 6. The AIC, BIC and DIC values for model-I and model-II are
comparatively lesser than for model-III and model-IV, so model-III and model-
IV are not the better models than model-I and model-II. The difference between
AIC, BIC and DIC values for model-I and model-II is very small, so AIC, BIC
and DIC values are not worthy to take decision between the model-I and model-
II. Note that log likelihood (see Table 6) is larger for model-I and model-II than
other two models also log likelihood for model-I and model-II are more or less
equal. To take decision about better model between model-I and model-II, we
now use Bayes factor and pseudo-Bayes factor which are provided in Tables 7
and 8 respectively.

Table 6: AIC, BIC and DIC values for all the four models fitted to kidney data
set

model-I model-II model-III model-IV

AIC 677.0561 677.4435 682.2805 690.0620
BIC 693.4320 693.8193 700.2940 708.0755
DIC 675.4083 675.2130 692.3332 687.7289

log likelihood -328.5280 -328.7220 -330.1400 -334.0310

Table 7: Duv = 2 logBuv values under Bayes factor for models fitted to kidney
data set

numerator
denominator model

model inverse Gaussian compound Poisson compound negative binomial

gamma DI,II = -0.4107 DI,III = 43.0520 DI,IV = 13.7281

inverse Gaussian - DII,III = 43.4627 DII,IV = 14.1388

compound Poisson - - DIII,IV = -29.3240



134 A Comparative Study of Shared Frailty Models

Table 8: Duv = 2 logBuv values under pseudo-Bayes factor for models fitted
to kidney data set

numerator
denominator model

model inverse Gaussian compound Poisson compound negative binomial

gamma DI,II = -1.7617 DI,III = 29.3788 DI,IV = 8.8751

inverse Gaussian - DII,III = 31.1405 DII,IV = 10.6368

compound Poisson - - DIII,IV = -20.5038

From the Table 7, we can observe that, except DI,II all other Duv values are
greater than two. DI,III , DI,IV , DII,III and DII,IV are positive which shows
the positive evidence against denominator models where as DIII,IV is negative
indicating numerator model is better. Thus compound Poisson model is better
than compound negative binomial model but both these models are worst than
gamma and inverse Gaussian models. Same conclusion is found with pseudo-
Bayes factor.

Another diagnostic we now use is CPO plot. We have plotted difference of log
of CPO values for pair of models. Figure 4 represents these plots. In figure part
(a), (b) and (c) considers pair of model-I with models II, III and IV, respectively.
Part (d), (e) and (f) considers pair of model-II with models III, IV and model-III
with model-IV. From the part (a) we can observe that larger the points are in
negative side indicating model-II is better than model-I. In the parts (c) and (e)
hardly some points are tending to negative side so we can say model-III is worst
model than model-I and model-II. In the parts (b), (d) and (f) almost all points
get clustered at zero, only some points are to the positive side in part (b), (d)
and to the negative side in part (f) so we can say according to CPO model-III is
somewhat similar to model-I and model-II also model-III is similar to model-IV.

Finally, the values relating to the model choice criteria Dω (8.15) for all for
models are shown in Table 9. First and second column of the Table 9 gives penalty
and goodness-of-fit term, next four columns gives Dω values for different values
of ω = 1, 5, 10 and ∞. Penalty term and goodness-of-fit term are minimum for
model-I, also for all the values of ω, Dω is minimum for model-I, so this criteria
also suggest model-I is better model. Thus model-I that is gamma frailty model
with baseline as generalized exponential distribution is better model amongst all
other model for modeling kidney infection data. One thing is to be noted that,
model-III comes out to be better model than model-II in this situation.

10. Discussion

In the present paper, Bayesian shared frailty model is adopted to analyze
kidney infection data. A generalized exponential distribution is considered as
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Figure 4: Plot of log CPO values for models fitted to kidney infection data

Table 9: Model selection criteria (8.15)∗10−5 for all the models fitted to kidney
data set

frailty Penalty Goodness-of
D1 D5 D10 D∞distribution term -fit term

gamma 24.7503 17.1280 33.3143 39.0236 40.3211 47.8783

inverse Gaussian 27.2831 19.0657 36.8160 43.1712 44.6155 46.3488

compound poisson 27.2543 17.8312 36.1699 42.1136 43.4644 45.0854

compound negative binomial 38.7892 20.9833 49.2802 56.2752 57.8649 59.7725



136 A Comparative Study of Shared Frailty Models

baseline distribution, because for generalized exponential distribution, hazard
rate increases from zero to a finite constant, when shape parameter α increases
and hazard rate decreases from infinity to a finite number when α is less than one.
A nearly constant rate after a certain time period implies that the occurrence of
failure is purely random and is independent of past life; this is a property of
the failure rate of an exponential distribution which has been extensively used
in reliability studies. Also Gupta and Kundu (1999) suggested that, generalized
exponential distribution can be used effectively in analyzing many life time data
sets particularly in place of Weibull which is mostly used in the literature for
modeling life times.

In the literature, gamma distribution is mostly used as frailty distribution
because of its simplicity. So our aim of this study is to compare different shared
frailty models to analyze kidney infection data with generalized exponential as
baseline distribution. As discussed in the Section 4, Hougaard (1984) introduced
inverse Gaussian distribution as a better frailty distribution. So we selected
inverse Gaussian distribution as one of the frailty distribution. To consider
non-susceptibility or zero susceptibility we considered two other frailty distri-
butions, compound Poisson and compound negative binomial distribution. We
used Metropolis-Hastings algorithm and Gibbs sampler to fit all the four models
and a comparison is made between the models using Bayesian model comparison
criteria such as, AIC, BIC, DIC, Bayes factor, CPO plot, prediction model choice
criteria. We used R statistical software to perform programs to analyze kidney
infection data.

From the graphical plot and likelihood ratio test we can say that, recurrence
times are well fitted by the generalized exponential distribution. The posterior
summaries for all the regression coefficients for all the four models are more or less
same also these estimates of regression coefficients in our models are qualitatively
similar to those found by McGilchrist and Aisbett (1991). For all the four models,
the value zero is not a credible value for the only credible interval of the regression
coefficient X2, so X2 that is sex variable seems only significant. Negative value of
β2 indicates that the female patients have a lower risk for infection as compared
to male patients. Also the estimates of frailty variance for all the models say
that there is strong evidence of high degree of heterogeneity in the population of
patients.

The AIC, BIC, DIC values, Bayes factor, pseudo-Bayes factor and log likeli-
hood all these criteria suggest that model-I and model-II are better than model-III
and model-IV and model-I and model-II are similar to fit kidney infection data.
Only loss function criteria (8.15) suggest that model-I is better than all other
models whereas CPO plot suggest model-II is better than model-I. Thus, by re-
ferring all the above analysis, now we are in a position to conclude that, gamma
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and inverse Gaussian shared frailty models with generalized exponential as base-
line distribution are equivalent models and are better fit for modeling of kidney
infection data than other models considered in this study. One thing is to be
noted here that, there is no any physical reason for choosing frailty distribution
it is just based on mathematical convenience.

Appendix: Likelihood Ratio Test

Suppose we have n subjects. Let Ti and ci be respectively represents actual
life time and random censoring time for ith subject. We observe event time t∗i
and censoring indicator δi where, t∗i = minimum(Ti, ci) and

δi =

{
1, Ti < ci,
0, Ti > ci.

We wish to test the hypothesis that, life time of a subject Ti follows a distri-
bution having survival function F 0(t, θ), where F 0(t, θ) is some specified function
except for vector of unknown parameters say θ. Mathematically we can write
hypothesis as,

H0 : F (t, θ) = F 0(t, θ), ∀t ∈ <, against,

H1 : F (t, θ) 6= F 0(t, θ), for at least one t ∈ <.

Suppose the observations t∗1, t
∗
2, · · · , t∗n are grouped and the life times recorded

belongs to one and only one of the k interval Ij = [aj−1, aj) with a0 = 0 and
ak = T as an upper limit of observations. We assume that any right censored ob-
servation at Ti occur immediately after any observed deaths. Suppose an interval
Ij has nj subjects at risk at the beginning of an interval, dj number of deaths
and wj number of censored subjects. If censoring occurs at the beginning or at
the end of the interval then there is no requirement to add censoring in the like-
lihood function because it get adjusted in the risk factor but if censoring occurs
anywhere across the interval then some adjustment is required for example, an
ad-hoc procedure discussed in Lawless (2003). In ad-hoc procedure we suppose
that a censored individual is at risk for half the interval and we define an effective
number of individuals at risk for the interval Ij as n′j = nj − wj/2. This adjust-
ment is somewhat arbitrary but sensible in many situations when the intervals
are not too long and censoring is not too heavy. Of course its appropriateness
depends on the failure and censoring process.

Probability of surviving beyond an interval Ij(j = 1, 2, · · · , k−1) i.e., beyond
time aj is, F j = P (T > aj) = F (aj) and for kth interval P (T > ak) = 0.
Probability of surviving beyond any interval Ij given that subject is alive at the
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beginning of an interval is,

sj = P (T > aj | T > aj−1) =
F j

F j−1

, j = 1, 2, · · · , k − 1.

Probability that subject dies in interval Ij but alive at the beginning of the
interval is,

qj = P (T < aj | T ≥ aj−1) = 1− sj .

Thus for jth interval Ij (j = 1, 2, · · · , k − 1) there are dj deaths with proba-
bility (1 − sj) and (n′j − dj) number of survivors with probability sj , therefore

contribution of jth interval in likelihood function is,

(1− sj)dj · s
(n′j−dj)
j ,

and for kth interval there are dk deaths with probability (1 − sk) and no one
survives beyond the interval therefore contribution of kth interval in likelihood
function is, (1− sk)dk therefore likelihood function is,

L(s1, s2, · · · , sk) =

k−1∏
j=1

(1− sj)dj · s
(n′j−dj)
j · (1− sk)dk ,

where

n′j = nj −
wj
2

= n−
j−1∑
i=1

(di + wi)−
wj
2
,

is the effective number of individuals at risk for jth interval. In terms of sj the
null hypothesis H0 can also be rewritten as,

H0 : sj = sj0, j = 1, 2, · · · , k, against,

H1 : sj 6= sj0, for at least one j = 1, 2, · · · , k.

From generalized likelihood ratio test,

Λ =
maxs∈Ω0L(s)

maxs∈ΩL(s)
,

where Ω = {si; 0 ≤ si ≤ 1 and
∑k

i=1 si = 1} is general parameter space and Ω0 is
some sub-space of Ω under H0. Under H0, −2 log Λ is asymptotically distributed
as χ2

k−p, where p represents number of estimated parameters under H0 and k
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number of intervals. Hence test criteria is, reject H0 against H1 if −2 log Λ
exceeds the (1-α)% quantile of the χ2

k−p.
Likelihood function under general parameter space Ω can be maximized using

Kaplan-Meier estimator of survival function. So MLE of sj is given by ŝj =
(n′j − dj)/n′j . Therefore under general parameter space maximum log likelihood
is,

logL(ŝ1, ŝ2, · · · , ŝk) =
k∑
j=1

dj log dj +
k−1∑
j=1

(n′j − dj) log(n′j − dj)

−
k−1∑
j=1

n′j log n′j − dk log nk.

Let θ̃ be denote MLE of θ under H0 and therefore, s̃j = F̃ j(θ̃)/F̃ j−1(θ̃) will
maximize likelihood function under H0. Therefore,

log max
s∈Ω0

L(s) = logL(s̃1, s̃2, · · · , s̃k)

=
k∑
j=1

dj log[F̃ j−1 − F̃ j ] +
k−1∑
j=1

(n′j − dj) log F̃ j−
k−1∑
j=1

n′j log F̃ j−1 − dk log F̃ k−1.

Here we use Newton-Raphson iterative procedure to estimate the parameters
under H0 because first order partial derivatives of the log likelihood are not easy
to solve. Suppose λ̃ and α̃ are estimators of the parameters λ and α respectively
then logL(s̃1, s̃2, · · · , s̃k) is given by,

k∑
j=1

dj log[e−λ̃a
α̃
j−1 − e−λ̃a

α̃
j ]− λ̃

k−1∑
j=1

(n′j − dj)aα̃j + λ̃
k−1∑
j=1

n′ja
α̃
j−1 + λ̃dka

α̃
k−1,

for Weibull distribution,

k∑
j=1

dj log[(1− e− ˜λaj )α̃ − (1− e−λ̃aj−1)α̃] +
k−1∑
j=1

(n′j − dj) log[1− (1− e−λ̃aj )α̃]

−
k−1∑
j=1

n′j log[1− (1− e−λ̃aj−1)α̃]− dk log[1− (1− e−λ̃ak−1)α̃],

for generalized exponential distribution and for exponential power distribution,

k∑
j=1

dj log{e[1−eλ̃a
α̃
j−1 ] − e[1−eλ̃a

α̃
j ]}+

k−1∑
j=1

(n′j − dj)[1− e
λ̃aα̃j ]

−
k−1∑
j=1

n′j [1− e
λ̃aα̃j−1 ]− dk[1− eλ̃a

α̃
k−1 ].
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