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Abstract: For many years actuaries and demographers have been doing curve
fitting of age-specific mortality data. We use the eight-parameter Heligman-
Pollard (HP) empirical law to fit the mortality curve. It consists of three
nonlinear curves, child mortality, mid-life mortality and adult mortality. It
is now well-known that the eight unknown parameters in the HP law are
difficult to estimate because numerical algorithms generally do not converge
when model fitting is done. We consider a novel idea to fit the three curves
(nonlinear splines) separately, and then connect them smoothly at the two
knots. To connect the curves smoothly, we express uncertainty about the
knots because these curves do not have turning points. We have important
prior information about the location of the knots, and this helps in the es-
timation convergence problem. Thus, the Bayesian paradigm is particularly
attractive. We show the theory, method and application of our approach.
We discuss estimation of the curve for English and Welsh mortality data.
We also make comparisons with the recent Bayesian method.

Key words: Beta-binomial model, Gibbs sampler, median life, over param-
eterization, splines.

1. Introduction

Smoothing mortality curves (age-specific mortality rates) is useful to actuar-
ies and demographers for many demographic problems. Based on the data, the
observed rates are jagged or irregular along the life span or sometimes sparse in
small populations. In addition, the rates for older individuals are not reliable
due to age misreporting and death sparseness. So using a parametric equation
to smooth the data is significant for estimating the mortality pattern and pre-
dicting the rates. We use the eight-parameter Heligman-Pollard (HP) empirical
law to model mortality data across all ages. The law has been tested as a good
model for fitting the pattern to many mortality data across all ages. But the
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convergence is still a very challenging problem in practice. A smooth mortality
curve is desirable, and larger number of deaths does not help with the estimation
problem.

For more than a century actuaries and demographers have developed several
mathematical models (Gompertz, 1825; Makenham, 1860; Thiele, 1872; Siler,
1979; Heligman and Pollard, 1980; Mode and Jacobson, 1984). Heligman and
Pollard (1980) proposed the most successful parametric model that is applicable
across the entire age range. Heligman and Pollard (1980), Hartmann (1983),
Fofar and Smith (1987), Kostaki (1992; 2000), Mode and Busby (1982), Rogers
(1986) and Congdon (1993) used classical non-linear least squares procedure to
fit the empirical law. However Rogers (1986) and Congdon (1993) noticed that
over parameterization is a concern with the HP law and this leads to numerical
instabilities. They suggested that the problem of over parameterization can be
resolved by fixing the values of one or two parameters to a feasible constant.

Dellaportas, Smith and Stavropoulos (2001) adopted a Bayesian approach to
overcome the problems associated with the method of non-linear least squares.
They reported that with the use of informative priors the issue of over-parameteri-
zation is usually resolved; see also Sharrow and Clark (2010). There are many
benefits of the Bayesian method for fitting the HP law as mentioned by Dellapor-
tas, Smith and Stavropoulos (2001); these benefits include ease in dealing with
over parameterization, non-normality, and computation. Moreover, the estima-
tion of many quantities (useful for actuaries and demographers), such as survival
probability, first to die and median lifetime, is automatic within the Bayesian
approach. But there are difficulties in running their Metropolis-Hastings sampler
as they needed considerable thinning in the selected chain to remove the autocor-
relation. Wei, Nandram and Bhatta (2012) develop a Bayesian analysis for small
areas (race-sex domains by states) to address the issues of over parameterization
and sparse data in mortality curve fitting.

We make a novel adjustment to the Bayesian method. Our procedure fits
the three curves (nonlinear splines) separately, and then connect them smoothly
at the two knots using a switching non-linear regression model. There are two
approaches to spline regression modeling (see Boor, 2001); both approaches use
pieces of polynomials. Either the polynomials lie in their own domains (switching)
or each polynomial starting in a domain remain in the following domains (join
point regression models). Both models are quite popular in many fields such as
health sciences and econometrics. Some interesting papers in join point regression
models are Tiwari, Cronin, Davis, Feuer, Yu and Chib (2005), Kim, Fay, Feuer
and Midthune (2000), and Ghosh, Huang, Yu and Tiwari (2009). For switching
regression models, see Quandt (1958; 1960; 1972) and Chen (2007). A Bayesian
approach was given by Ferreira (1975). Our review of the literature on switching
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regression model has shown nothing in nonlinear regression. There are some
polynomial switching regression models but zero derivatives are used at the knots.
Our splines do not have turning points at the knots.

The basic eight-parameter empirical law of Heligman and Pollard (1980),
known as HP first law, is given by

πx
1− πx

= a(b+x)
c

+ d exp {−e(log
x

f
)2}+ ghx, (1)

where πx is the probability that an individual, who has reached age x, will die
before reaching age x+1. The law expresses an odds of dying as a function of age
x using three terms, representing distinct components of mortality. The first term
in (1) is a rapidly declining exponential function that describes the child mortality
(high in the first year of life and then decline until 10-13). The middle term,
similar to a log normal function, represents the mid-life mortality. It describes
the accident mortality for both males and females and maternal mortality as
well. This additional mortality forms an “accident hump” on the natural curve.
The third term is a geometrically increasing Gompertz exponential function that
describes adult mortality. It generally represents the ageing or deterioration of
the body (i.e., senescent mortality). It is typically assumed that the first term
has no effect on the other two terms. These three terms correspond to the three
curves under study. The first curve almost dies out as it enters the domains
of second and third curves, thereby providing negligible contribution on these
curves. This holds also for the second and third curves.

The eight parameters 0 < a, b, c, d, g < 1, e, h > 0 and f0 ≤ f ≤ f1 (f0 and
f1 are to be specified) have their own demographic interpretations. Here, a is
approximately equal to π1 (age 1 mortality); b is the location index of π0 (age
0 mortality) in the interval (π1, 0.5); c measures the rate of mortality decline in
childhood; d reflects the intensity of the hump, f indicates its location and e
measures its spread; and lastly, g and h denote respectively the initial level and
rate of increase of old-age mortality.

Heligman and Pollard (1980) also suggested the following eight-parameter
empirical law known as HP second law

πx = a(b+x)
c

+ d exp {−e(log
x

f
)2}+

ghx

1 + ghx
, (2)

which we develop further here. Note that on the left-hand side of (1) we have
πx/(1−πx) but on the left-hand side of (2) we have πx. For the third term of (1)
we have ghx and the corresponding term in (2) we have ghx/(1 + ghx). Thus, it
is easy to show that each of the three terms in (2) is in (0, 1). However, the sum
of these three terms may not be in (0, 1) but this is very unlikely.
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It is worth noting that larger death counts, and therefore larger population
sizes, do not help with the difficulty in estimation (i.e., nonidentifiability). We
need information about the eight parameters in the HP law. Our method re-
places two parameters in the HP law with two new parameters for which we have
some information. These parameters are the knots where the three curves are
connected; a priori we have information about the location of these knots. This
motivates our Bayesian approach using the switching nonlinear regression model.

This paper develops a Bayesian methodology for fitting of the HP mortality
curve. In Section 2, we present the general theory on switching regression. In
Section 3, we discuss the Bayesian methodology and computation needed for
estimation of the parameters. In Section 4, we apply the methodology to English
and Welsh data, and we also show how to obtain median lifetimes of individuals
at different ages. We also compare our model with an existing Bayesian model.
Finally, Section 5 has concluding remarks.

2. Theory for Switching Regression

We want to model the three parts of HP law separately and connect them
smoothly. Thus, for the switching non-linear regression model, we modify (2) as

πx = a(b+x)
c
I(x ≤ κ1) + d exp {−e(log

x

f
)2}I(κ1 < x ≤ κ2)

+
ghx

1 + ghx
I(x > κ2), (3)

where κ1 ≤ f ≤ κ2 and I(·) denotes the indicator function, for example, I(x ≤ κ1)
= 1 if x = 0, · · · , κ1. In (3) πx is between zero and one because each component of
the function is between zero and one with distinct domain (a feature of switching
regression). In case of (2), as we discussed earlier, each part is extended to the
entire age range, and by adding these together, πx may assume values greater
than unity. The switching regression model in (3) corrects this problem.

There are continuity constraints that must be incorporated to connect the
three curves smoothly. At the two knots, κ1 and κ2, we have

a(b+κ1)
c

= d exp {−e(ln κ1
f

)2}, (4)

and
d exp {−e(ln k2

f
)2} =

ghk2

1 + ghk2
, (5)

with 1 ≤ κ1 ≤ f ≤ κ2, e > 0, h > 1. (Note that κ1 and κ2 are positive.) It is
worth noting that we have enforced an important condition, h > 1, otherwise the
adult mortality curve in (3) will not be an increasing function. It appears that
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this restriction is not necessary in the original HP law. Simplifying (4) and (5),
we get

e =
ln d− (b+ κ1)

c ln a

(lnκ1 − ln f)2
and h =

 d exp{−e(ln κ2
f )2}

g
(

1− d exp{−e(ln κ2
f )2}

)
1/κ2

. (6)

In (3) we also incorporate the constraint,

d exp {−e(log
κ1
f

)2} ≤ d exp {−e(log
κ2
f

)2}. (7)

It is sensible to ensure that the mortality at κ1 is at most the mortality at κ2.
The mortality inequality (7) is an important biological condition we use in our
model.

One would equate the derivative at the knots for smoothing the curve. How-
ever, in our case, there are no turning points at the knots, and, therefore, differ-
entiation is not appropriate. We propose an interesting idea to smoothly connect
the three curves at the knots by expressing uncertainty about the knots at κ1
and κ2. A priori we have some information about the locations of the knots.
A priori ranges of values of these parameters, the continuity constraints (4) and
(5) and the constraint in (7) provide a new parameter space. For example, the
constraint κ1 ≤ f ≤ κ2 is updated (see Theorem 1 below). Let S denote the
set of constraints on a, b, c, d, f, g, κ1 and κ2. In Theorem 1, important in our
method, we construct S.

Theorem 1 The set of constraints, S, is given by

S = {(a, b, c, d, κ1, κ2, g) : 0 < a, b, c, d, g < 1, d > max(a(b+κ1)
c
,

g

1 + g
),

max((κ
√
A

1 κ2)
1

1+
√
A ,
√
κ1κ2) < f < κ2; A =

ln( g
d(1+g))

ln(a
(b+κ1)

c

d )
> 0}.

Proof of Theorem 1: From (6) we have

e =
ln d− (b+ κ1)

c ln a

(lnκ1 − ln f)2
and h = (

d exp{−e(ln κ2
f )2}

g(1− d exp{−e(ln κ2
f )2})

)1/κ2 .

Simplifying and noting that e > 0 and h > 1, we have

d > a(b+κ1)
c

and d exp{−e(ln κ2
f

)2} > g

(1 + g)
. (8)
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Substituting e from (6) into (8) and simplifying we get

(ln
κ2
f

)2 < (ln
κ1
f

)2 A =>

∣∣∣∣∣ ln(κ1f )

ln(κ2f )

∣∣∣∣∣ > 1√
A
, (9)

where A = ln(g/d(1 + g))/ ln(a(b+κ1)
c
/d) > 0. The inequality (9) gives two cases,

ln(κ1f )

ln(κ2f )
< − 1√

A
or

ln(κ1f )

ln(κ2f )
>

1√
A
.

The second inequality cannot be true because A > 0. Thus, using the first
inequality we get

ln f >

√
A lnκ1 + lnκ2

1 +
√
A

=> f > (κ
√
A

1 κ2)
1

1+
√
A . (10)

Now, because d exp(−e{ln(κ1/f)}2) ≤ d exp(−e{ln(κ2/f)}2) in (7), we get
| ln(κ1/f)|/ ln(κ2/f) < 1. This latter inequality gives two cases,

ln(κ1f )

ln(κ2f )
< −1 or

ln(κ1f )

ln(κ2f )
> 1.

Again, the second inequality is false because κ1 < κ2. The first inequality gives

ln f > ln
√
κ1κ2 => f >

√
κ1κ2. (11)

Because f ≤ κ2, using (10) and (11), we get

max(

√
A lnκ1 + lnκ2

1 +
√
A

, ln
√
κ1κ2) < ln f < lnκ2.

It follows that
max

(
(κ
√
A

1 κ2)
1

1+
√
A ,
√
κ1κ2

)
< f < κ2. (12)

Because A = ln(g/d(1 + g))/ ln(a(b+κ1)
c
/d) > 0 and ln(a(b+κ1)

c
/d) < 0,

ln(g/d(1 + g)) < 0. Thus, we have

d > max(a(b+κ1)
c
,

g

1 + g
). (13)

Therefore, by (12) and (13)

S = {(a, b, c, d, κ1, κ2, g) : 0 < a, b, c, d, g < 1, d > max(a(b+κ1)
c
,

g

1 + g
),

max((κ
√
A

1 κ2)
1

1+
√
A ,
√
κ1κ2) < f < κ2; A =

ln( g
d(1+g))

ln(a
(b+κ1)

c

d )
> 0}.
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Our model will lead to a likelihood function, a function of a, b, c, d, f, g, κ1 and
κ2 which are in S; e and h have simple formulas involving a, b, c, d, f, g, κ1, κ2. Of
course, we still have eight parameters to estimate. However, we know that κ1 and
κ2 are specified in fixed intervals of finite lengths, thereby adding an important
piece of information into the model. We do not need to estimate e and h directly
because they are functions of the other parameters.

Finally, we note the behavior of A in determining boundaries for f . For this
purpose we use (12).

(i) If A → 0, (
√
A lnκ1 + lnκ2)/(1 +

√
A) → lnκ2. Thus, lnκ2 ≤ ln f ≤ lnκ2

which implies ln f = lnκ2 (i.e. f = κ2).

(ii) If A = 1, (
√
A lnκ1 + lnκ2)/(1 +

√
A) = ln

√
κ1κ2. Thus, ln

√
κ1κ2 ≤ ln f ≤

lnκ2. It follows that
√
κ1κ2 ≤ f ≤ κ2.

(iii) As A → ∞, (
√
A lnκ1 + lnκ2)(1 +

√
A) → lnκ1. Then, ln

√
κ1κ2 ≤ ln f ≤

lnκ2. Thus, as A→∞,
√
κ1κ2 ≤ f ≤ κ2, the same as (ii).

3. Bayesian Model and Computation

In Section 3.1 we describe the model and in Section 3.2 we discuss the com-
putation.

3.1 Bayesian Model

We study our proposed switching non-linear regression (SNR) model here and
we compare it later with one existing model, the model of Dellaportas, Smith and
Stavropoulos (DSS, 2001).

Let nx be the population at risk having age in the interval [x, x + 1) and yx
be the number of individuals who have reached age x and died before reaching
age x+ 1. The death counts follow binomial distribution,

yx|πx
ind∼ Binomial(nx, πx), x = 0, · · · , t,

where πx is given in (3). Let y
˜

be the vector with elements yx, x = 0, · · · , t, n
˜

be
the vector with nx, x = 0, · · · , t and θ

˜
= (a, b, c, d, f, g). Throughout we assume

that nx, x = 0, · · · , t, are fixed known constants, and therefore conditioning on
n
˜

is not required a posteriori.
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Then, the probability mass function of y
˜

is

P (y
˜
| θ
˜
, κ1, κ2) = {

t∏
x=0

(
nx
yx

)
} × {

κ1∏
x=0

(a(b+x)
c
)yx(1− a(b+x)c)nx−yx}

×{
κ2∏

x=κ1+1

(d exp{−e(ln x
f

)2})yx(1− d exp{−e(ln x
f

)2})nx−yx}

×{
t∏

x=κ2+1

(
ghx

1 + ghx
)yx(1− ghx

1 + ghx
)nx−yx},

(θ
˜
, κ1, κ2) ∈ S, yx = 0, · · · , nx, x = 0, · · · , t, (14)

where

e =
− ln(a

(b+κ1)
c

d )

(ln κ1
f )2

and h = (
d exp{−e(ln κ2

f )2}
g(1− d exp{−e(ln κ2

f )2})
)1/κ2 .

A priori we assume the following distributions on the parameters and the
knots

a, b, c, d, g
iid∼ U(0, 1), f |κ1, κ2 ∼ U(κ1, κ2), κ1 ∼ U(a1, b1), κ2 ∼ U(a2, b2),

where (a1, b1) and (a2, b2) are to be specified. These specifications will vary with
the applications. Here a, b, c, d, g and f are continuous and κ1 and κ2 are discrete.
Note again that prior specifications are not needed for e and h because these are
functions of other parameters as shown in (6). Thus, the joint prior density is

π(θ
˜
, κ1, κ2) = π(a, b, c, d, g)π(f |κ1, κ2)π(κ1, κ2),

which clearly is proper. A priori the ranges of the parameters will change when
the prior is incorporated in the likelihood; see Theorem 1.

Using Bayes’ Theorem and Theorem 1, we get the joint posterior distribution,

π(θ
˜
, κ1, κ2|y

˜
) ∝ P (y

˜
|θ
˜
, κ1, κ2)π(θ

˜
, κ1, κ2)

∝ {
κ1∏
x=0

(a(b+x)
c
)yx(1− a(b+x)c)nx−yx}

× {
κ2∏

x=(κ1+1)

(d exp{−e(ln x
f

)2})yx(1− d exp{−e(ln x
f

)2})nx−yx}

× {
t∏

x=(κ2+1)

(ghx)yx

(1 + ghx)nx
} 1

(κ2 − κ1)
; θ

˜
, κ1, κ2 ∈ S. (15)
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It is worth noting that because π(θ
˜
, κ1, κ2) is proper, π(θ

˜
, κ1, κ2|y

˜
) is also proper.

The joint posterior distribution here is complex and so it is difficult to sample
from it directly. We apply the Gibbs sampler (Gelfand and Smith, 1990) which
needs the conditional distribution of each parameter given the others and y

˜
. Note

that the terms in the density are not independent, rather they are linked to each
other because e and h are functions of θ

˜
, κ1 and κ2; see (6).

3.2 Computation

As discussed above, we need to keep all terms each time we evaluate the
function to sample the parameter from its conditional posterior density.

Letting θ
˜
(i) denote the vector of θ

˜
excluding the ith one (e.g., θ

˜
(1) = (b, c, d, f, g)

and θ1 = a), the conditional posterior density of the ith parameter is

π(θi|θ
˜
(i), κ1, κ2, y

˜
) ∝ {

κ1∏
x=0

(a(b+x)
c
)yx(1− a(b+x)c)nx−yx}

× {
κ2∏

x=(κ1+1)

(d exp{−e(ln x
f

)2})yx(1− d exp{−e(ln x
f

)2})nx−yx}

× {
t∏

x=(κ2+1)

(ghx)yx

(1 + ghx)nx
}, (16)

where the θi must be restricted according to S. The marginal conditional poste-
rior distribution of the parameters are constrained to take values in the following
intervals (i) 0 < a < d1/(b+κ1)

c
; (ii) max{0, (ln d/ ln a)1/c − κ1} < b < 1; (iii)

max{0, ln(ln d/ ln a)/ ln(b + κ1)} < c < 1; (iv) max{a(b+κ1)c , g/(1 + g)} < d < 1;

(v) max{(κ
√
A

1 κ2)
1/1+

√
A,
√
κ1κ2} < f < κ2; and (vi) 0 < g < d/(1 − d). We

discuss how to obtain these intervals in Appendix A. The conditional posterior
densities cannot be written in standard forms, so we use the griddy Gibbs sam-
pler (Ritter and Tanner, 1992) for θ

˜
. The idea of the griddy Gibbs sampler is to

approximate a conditional posterior density by a discrete distribution and draw
samples from the discrete distribution instead.

For sampling κ1 and κ2, the joint conditional posterior distribution is

π(κ1, κ2|θ
˜
, y
˜
) ∝ {

κ1∏
x=0

(a(b+x)
c
)yx(1− a(b+x)c)nx−yx}

× {
κ2∏

x=κ1

(d exp{−e(ln x
f

)2)yx(1− d exp{−e(ln x
f

)2})nx−yx}

× {
t∏

x=κ2

(ghx)yx

(1 + ghx)nx
} 1

(κ2 − κ1)
, (κ1, κ2) ∈ R, (17)
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where

R = {(κ1, κ2) : a1 ≤ κ1 ≤ b1, a2 ≤ κ2 ≤ b2, d > max{a(b+κ1)c , g

1 + g
},

max{(κ
√
A

1 κ2)
1

1+
√
A ,
√
κ1κ2} < f < κ2}.

We have implemented the griddy Gibbs sampler in (16). However, the chain
got stuck at (κ1, κ2). This is a common problem in Bayesian computation. One
may think that the reversible jump sampler (Green, 1995) might be appropri-
ate. This is not true because we have a single model with parameter θ

˜
. We do

not have different parameters for different (κ1, κ2). Thus, we obtain the joint
posterior probability mass function of (κ1, κ2) using an independent procedure.
Accordingly we draw sample from joint posterior distribution as

π(θ
˜
, κ1, κ2|y

˜
) = π(θ

˜
|κ1, κ2, y

˜
)π(κ1, κ2|y

˜
).

Note that

π(κ1, κ2|y
˜
) ∝

∫
θ
˜
∈Sκ1,κ2

π(θ
˜
, κ1, κ2|y

˜
) dθ

˜
, (18)

where

Sκ1,κ2 = {(a, b, c, d, κ1, κ2, g) : 0 < a, b, c, d, g < 1, d > max(a(b+κ1)
c
,

g

1 + g
),

max((κ
√
A

1 κ2)
1

1+
√
A ,
√
κ1κ2) < f < κ2; A =

ln( g
d(1+g))

ln(a
(b+κ1)

c

d )
> 0}.

The analytic integration in (18) is not feasible which makes it difficult to find the
joint density of κ1 and κ2. In this situation, we approximate the definite integral
by using Monte Carlo integration. This requires randomly chosen points at which
the integrand is evaluated.

To sample these random points, we need an importance function. For this,
we consider a simpler and less constrained set,

S∗κ1,κ2 = {θ
˜

: 0 < a, b, c, d, g < 1,
√
κ1κ2 < f < κ2} .

It is important to note that Sκ1,κ2 is a subset of S∗κ1,κ2 . First, note that if
any of the inequality constraints in Sκ1,κ2 is dropped, a larger set is obtained.

Second, consider (18). If max((κ
√
A

1 κ2)
1/1+

√
A,
√
κ1κ2) = (κ

√
A

1 κ2)
1/1+

√
A, S∗κ1,κ2

is a bigger set. Also, if max((κ
√
A

1 κ2)
1/1+

√
A,
√
κ1κ2) =

√
κ1κ2, there is no issue.

Then, the importance function is

P ∗(θ
˜
|κ1, κ2, y

˜
) =

1

κ2 −
√
κ1κ2

, θ
˜
∈ S∗κ1,κ2 .



Dilli Bhatta and Balgobin Nandram 95

Note that this is a uniform distribution on S∗κ1,κ2 . Now∫
θ
˜
∈Sκ1,κ2

P (θ
˜
, κ1, κ2|y

˜
) dθ

˜
=

∫
θ
˜
∈S∗κ1,κ2

I(θ
˜
∈ Sκ1,κ2)P (θ

˜
, κ1, κ2|y

˜
) dθ

˜

=
1

P ∗(θ
˜
|κ1, κ2, y

˜
)

∫
θ
˜
∈S∗κ1,κ2

I(θ
˜
∈ Sκ1,κ2)P (θ

˜
, κ1, κ2|y

˜
)P ∗(θ

˜
|κ1, κ2, y

˜
) dθ

˜
.

≈ (κ2 −
√
κ1κ2)[

1

M

M∑
h=1

I(θ
˜
∈ Sκ1,κ2)P (θ

˜
, κ1, κ2|y

˜
)(h))]

= P̂ (κ1, κ2|y
˜
),

where M is large (e.g., M ≈ 1000). Then, the integral π(κ1, κ2|y
˜
) in (18) is

approximately

π̂(κ1, κ2|y
˜
) ≈ P̂ (κ1, κ2|y

˜
)∑

(κ1,κ2)
P̂ (κ1, κ2|y

˜
)
, a1 ≤ κ1 ≤ b1, a2 ≤ κ2 ≤ b2.

Thus, we have obtained an estimate of joint posterior probability mass function
of κ1 and κ2.

So, our procedure is implemented by first drawing samples from π(κ1, κ2|y
˜
).

Then, with each (κ1, κ2) we run a griddy Gibbs sampler to get θ
˜
. This latter task

is similar to what is described already. We repeat this procedure a large number
of times.

We compare our method with an existing model, the beta-binomial model
with extra variation (Dellaportas, Smith and Stavropoulos, 2001) which we de-
note by DSS. The death counts follow the binomial distribution,

yx|πx
ind∼ Binomial(nx, πx), x = 0, · · · , t.

Dellaportas, Smith and Stavropoulos (2001) assume that the first HP law deter-
mines age-dependent quantities mx, with

mx

1−mx
= a(x+b)

c
+ d exp{−e(log

x

f
)2}+ ghx,

and the probabilities of death follow a beta distribution,

πx ∼ Beta{ζmx, ζ(1−mx)}.

Here, E(πx|ζ,mx) = mx, V (πx|ζ,mx) = mx(1−mx)/(1 + ζ) and ζ is an un-
known positive quantity determining the variance of beta distribution. If ζ →∞,
πx will be given by (1). We also assume a priori that

P (ζ) =
1

(1 + ζ)2
, ζ ≥ 0,
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a shrinkage prior distribution for ζ. Finally, we have taken a, b, c, d, e, f, g, h to
be independent with

a, b, c, d, (f − f0)/(f1 − f0), g
iid∼ U(0, 1), p(e) =

1

(1 + e)2
, e > 0

and p(h) =
1

(1 + h)2
, h > 0,

where f0 = 10 and f1 = 115 as in DSS.
Denoting θ

˜

∗ = (a, b, c, d, e, f, g, h), the resulting posterior distribution is

p(θ
˜

∗, π
˜
, ζ|y

˜
) ∝ {

t∏
x=0

(
nx
yx

)
πyxx (1− πx)nx−yx × πζmx−1x (1− πx)ζ(1−mx)−1

B(ζmx, ζ(1−mx))
}

× 1

(1 + ζ)2
1

(1 + e)2
1

(1 + h)2
,

where B(ζmx, ζ(1−mx)) is the beta function and π
˜

= (π0, π1, · · · , πt).
Again we perform the computations using the griddy Gibbs sampler. A dis-

cussion of the computation is given in Appendix B. The computation for our
method takes more time than DSS method.

4. A Numerical Example

To illustrate the methodology we use English and Welsh mortality data for
females (1988-1992). The data are presented in Table 1. To give a better illus-
tration of the benefit of our method, we use a second example on US mortality
data, 1999-2001, obtained from National Center for Health Statistics (NCHS).
For confidentiality reasons we are prohibited from presenting the data. In Sec-
tion 4.1 we discuss the results of fitting both SNR and DSS model and in Section
4.2 we provide median lifetimes for individuals at different ages.

4.1 Mortality Curve

For SNR model, we obtained the joint posterior probability mass function of
(κ1, κ2) using the procedure as described in Section 3. We have specified κ1 and
κ2 to be 8 ≤ κ1 ≤ 13 and 20 ≤ κ2 ≤ 26. The empirical posterior distribution of
(κ1, κ2) are presented in Table 2. The data do have some influence over κ1 and
κ2 because the joint posterior probability mass function is not uniform.

We draw a sample values of (κ1, κ2) from the joint posterior distribution.
Then, we run the griddy Gibbs sampler to draw a sample of a, b, c, d, f and g
from their corresponding conditional posterior distributions 101 times and pick
the last one. We repeat this process 1000 times and finally, we have the 1000
sample values for each of the parameters. We found convergence by using the
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Table 1: English and Welsh mortality data for females (1988-1992)

Age nx yx Age nx yx Age nx yx

0 1682000 11543 25 2078400 689 50 1375500 4130

1 1666400 940 26 2084300 698 51 1365400 4564

2 1644700 538 27 2067000 712 52 1373500 5017

3 1634400 420 28 2021400 799 53 1361300 5417

4 1610000 332 29 1963000 795 54 1335900 5786

5 1581800 250 30 1903800 787 55 1313900 6567

6 1564500 254 31 1844600 935 56 1306200 7173

7 1554700 228 32 1788000 978 57 1306200 8068

8 1549800 208 33 1745500 977 58 1314600 8809

9 1544600 215 34 1714800 1131 59 1325400 10148

10 1514300 182 35 1690300 1219 60 1330600 11390

11 1482500 200 36 1671400 1270 61 1332100 12789

12 1453900 215 37 1668000 1435 62 1328200 13999

13 1436700 204 38 1684600 1516 63 1322300 15528

14 1443000 294 39 1707600 1693 64 1323000 17368

15 1496400 339 40 1755900 1905 65 1329000 19277

16 1576800 412 41 1844500 2207 66 1344200 20991

17 1670500 535 42 1837500 2517 67 1370100 23665

18 1744500 561 43 1812200 2565 68 1408200 26365

19 1822800 592 44 1777100 2918 69 1337400 27664

20 1883200 591 45 1699800 3077 70 1249500 28397

21 1930400 640 46 1563200 3119 71 1174200 29178

22 1964400 623 47 1499200 3369 72 1098800 30437

23 2015600 653 48 1453200 3677 73 1029500 32146

24 2051700 668 49 1408400 3740 74 1052400 35728

Note: The data are obtained from Dellaportas, Smith and Stavropoulos (2001).

trace plots. Also non-significant auto-correlation coefficient among iterates was
found. Similarly, for DSS we execute the griddy Gibbs sampler by drawing θ

˜

∗

from (B.1) and ζ from (B.2). We have transformed e, h, f and ζ to (0, 1) to
perform the griddy Gibbs sampler. This shows good performance (i.e., after a
small “burn in” there was negligible autocorrelation even at lag one).

In Table 3 we summarize the posterior distributions of a, b, c, d, e, f, g and
h using posterior means (PM), posterior standard deviations (PSD) and 95%
credible intervals (CI) for both models. There are some differences between the
two methods (e.g., the PM for e in DSS is 10.77 versus 3.998 in SNR). The 95%
credible interval for e is very narrow under DSS.
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Table 2: Estimate of the joint posterior probability mass function of the knots
(κ1, κ2) under the SNR model

κ1\κ2 20 21 22 23

8 2.086× 10−03 9.950× 10−03 4.177× 10−03 4.303× 10−03

9 8.720× 10−03 1.139× 10−02 8.906× 10−03 1.133× 10−02

10 2.396× 10−02 1.814× 10−02 3.631× 10−01 4.073× 10−02

11 2.289× 10−02 2.567× 10−02 3.980× 10−02 3.530× 10−02

12 7.886× 10−03 2.689× 10−02 2.015× 10−02 1.382× 10−02

13 1.605× 10−02 2.069× 10−02 1.863× 10−02 3.077× 10−02

κ1\κ2 24 25 26

8 7.505× 10−06 4.648× 10−03 7.134× 10−03

9 2.301× 10−02 1.947× 10−02 4.005× 10−02

10 2.837× 10−02 3.389× 10−02 5.253× 10−02

11 2.092× 10−02 6.159× 10−02 4.574× 10−02

12 3.676× 10−02 2.983× 10−02 3.978× 10−02

13 3.213× 10−02 2.281× 10−02 4.080× 10−02

Table 3: Summaries of the posterior densities of the HP parameters for the
DSS and SNR models

Parameter Model PM PSD 95% CI

a DSS 7.062× 10−04 7.475× 10−05 (5.312× 10−04, 7.831× 10−04)

SNR 6.793× 10−04 1.221× 10−04 (5.27× 10−04, 9.824× 10−04)

b DSS 1.895× 10−02 4.844× 10−03 (1.078× 10−02, 2.682× 10−02)

SNR 1.377× 10−02 7.450× 10−03 (0.2534× 10−02, 2.711× 10−02)

c DSS 10.49× 10−02 0.6397× 10−02 (9.871× 10−02, 1.215× 10−01)

SNR 8.771× 10−02 1.169× 10−02 (6.492× 10−02, 0.110)

d DSS 1.723× 10−04 1.280× 10−05 (1.484× 10−04, 1.894× 10−04)

SNR 3.411× 10−04 7.008× 10−05 (2.089× 10−04, 4.908× 10−04)

e DSS 10.707 0.117 (10.514, 10.904)

SNR 3.998 2.398 (0.894, 9.583)

f DSS 20.0 1.28 (18.1, 21.9)

SNR 19.853 2.073 (15.488, 23.688)

g DSS 1.919× 10−05 0.5697× 10−06 (1.807× 10−05, 1.998× 10−05)

SNR 2.679× 10−05 4.698× 10−06 (1.892× 10−05, 3.687× 10−05)

h DSS 1.107 0.6186× 10−03 (1.106, 1.108)

SNR 1.102 3.478× 10−03 (1.095, 1.108)

Note: The measures are posterior mean (PM), posterior standard deviation (PSD)
and 95% credible interval (CI).
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We get the HP curve using M = 1000 iterates of the parameters for both DSS
and SNR models. Figure 1 shows the result of fitting the HP law. The plots show
curves of observed, estimated and 95% credible bands for the logarithm of the
probabilities of death across ages. The observed mortalities at different ages are
within the 95% credible bands. It is clear that under both models the estimated
curve provides a good fit to the observed data but the DSS model underestimates
the variability, and they specify f0 ≤ f ≤ f1, where f0 and f1 are really arbitrary.
We use f0 = 15 and f1 = 110 as in DSS. We expect the confidence bands for the
DSS model to be narrower than SNR model.
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Figure 1: Observed and fitted mortality curves with 95% credible bands for
the DSS and SNR models
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Using box plots the empirical posterior distributions of the parameters for
the two models are displayed in Figure 2. Again, larger variability for these
parameters occurs in the SNR model.

In Figure 3 we have compared the fits of the DSS and SNR methods to the
US mortality data. We have observed that when the DSS method is used, many
of the observed mortalities are outside the 95% credible bands or very close to
the bands. This is not true for the SNR method though. For age 0 to 30 the
DSS bands are narrower and for age 30 to 84 wider than the SNR bands. Even
when the SNR bands are narrower, they still contain the observed mortality rates.
Therefore, it is reasonable to conclude that the SNR method can perform better
than the DSS method.
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Figure 2: Box plots of the posterior simulations of parameters a, b, c, d, e, f, g
and h for the DSS and SNR models
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Figure 3: Observed and fitted mortality curves with 95% credible bands for
the DSS and SNR models for US data

4.2 Median Lifetime

There are many useful quantities (e.g., survival probability, first to die, joint
lifetime and median time to death) that are of interest to actuaries and demogra-
phers. Here we consider inference about the median lifetime, m, of an individual
of age, g. It can be obtained automatically under the Bayesian method as de-
scribed by DSS. The median lifetime is obtained using the survival probability
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from g to m. That is, m is determined by solving the equation,

m−1∏
x=g

(1− πx) = 0.5,

where πx is the probabilities of death which can be obtained after fitting the HP
law using the sampled parameter values of each iteration.

Because the observed deaths for the English and Welsh data are from age
0 to 74, at each iterate using the spline regression model we need to predict
the probabilities beyond 74 up to 100 to allow computation of m. Then, using
each sampled iterate of πx, x = 0, · · · , 100, we solve the equation for m. This
provides the posterior distribution of the median lifetime. The posterior inference
of the median life times for adults who are at ages 55, 60, 65, 70, 75, 80 and 85
are presented in Table 4. The posterior means are similar but the intervals are
narrower under the DSS method. In addition, we have obtained the posterior
estimates of the median life for adults who are at ages in the range from 10 to 75.
The plot of the median life is shown in Figure 4. Again, we see that the shape of
the curve is same but the confidence band is narrower in DSS.

Table 4: Summaries of the posterior density of median lifetime by age

Model 55 60 65 70 75 80 85

DSS 81.4(.494) 81.9(.508) 82.4(.495) 83.4(.488) 84.9(.235) 87.0(0) 89.3(.475)

(81, 82) (81, 83) (82, 83) (83, 84) (84, 85) (87, 87) (89,90)

SNR 83.2(1.42) 83.6(1.4) 84.3(1.34) 85.2(1.26) 86.6(1.18) 88.6(1.03) 91.05(0.88)

(81, 86) (81, 86) (82, 87) (83, 88) (85, 89) (87, 91) (90,93)

5. Concluding Remarks

The Heligman-Pollard empirical law is very useful to fit mortality data for all
ages. However, it is well known that the eight unknown parameters of the model
are very difficult to estimate because there is over parameterization. While Della-
portas, Smith and Stavropoulos (2001) has pioneered Bayesian analysis for fitting
the HP empirical law, we have found that it is beneficial to incorporate additional
information about the eight parameters. Here, our Bayesian nonlinear spline re-
gression model reduces the difficulty in estimating the parameters, thereby safe
guarding from over parameterization. There are two difficulties which we have ad-
dressed. First, we have constructed the constraint parameter space via Theorem
1. Second, we have constructed a useful algorithm for fitting the joint posterior
density.
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Figure 4: Expected median lifetimes with 95% credible bands of individuals,
age 10 to 75, under DSS and SNR models

We fit the three curves separately and then connect them smoothly using
switching regression. Like Dellaportas, Smith and Stavropoulos (2001), we have
incorporated the HP law directly in the model. The results show that the es-
timated curves provide reasonable fits to the observed mortalities. We have
also compared the results obtained from our model with Dellaportas, Smith and
Stavropoulos (2001). Our switching non-linear regression model fits are similar to
Dellaportas, Smith and Stavropoulos (2001) for the English and Welsh data but
the confidence bands are wider. However, fitting both the model to US mortality
data, 1999-2001, we found that our model fits better than one of the models of
Dellaportas, Smith and Stavropoulos (2001). In addition, for both models we
have obtained median lifetimes for individuals at different ages for the English
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and Welsh data.

In our approach we have used the standard binomial assumption for the death
counts. But both nx and yx are large, so we can make an accurate normal
approximation via the central limit theorem. As in the Lee-Carter model (Lee
and Carter, 1992), letting m̂x = yx/nx denote the observed mortality rate, we
can take

m̂x
ind∼ N{πx, πx(1− πx)/nx},

where πx are the population mortality rates. This framework is complicated
because the variance is dependent on πx as well. We can make a variance sta-
bilizing transformation instead to reduce the complexity by applying the arcsine
transformation (Efron and Morris, 1974) to get

sin−1(
√
m̂x)

ind∼ N{sin−1(
√
πx), 1/4nx}.

Then we can proceed as in our switching regression model. Perhaps a more
efficient algorithm can be obtained in this manner.

Appendix A: Support for the Conditional Posterior Density

The supports for the conditional posterior densities of the parameters are
needed to perform the griddy Gibbs sampler. Note that 0 < a, b, c, d, g < 1.

(i) For a (given b, c, d and g, κ1, κ2), we have d > a(b+κ1)
c
, and it follows that

a < exp{ln d/(b+ κ1)
c}. Because 0 < a < 1, and exp{ln d/(b+ κ1)

c} < 1,
we get 0 < a < d1/(b+κ1)

c
.

(ii) For b (given a, c, d, g, κ1, κ2), we have d > a(b+κ1)
c
, and it follows that

b > {ln d/ln a}1/c − κ1. Because 0 < b < 1, we get max{0, {ln d/ ln a}1/c −
κ1} < b < 1.

(iii) For c (given a, b, d, g, κ1, κ2), we have d > a(b+κ1)
c
, and it follows that

c > ln(ln d/ln a)/ ln(b + κ1). Note here that ln(a) < 0 and ln(d) < 0.
Because 0 < c < 1, we get max{0, ln(ln d/ln a)/ ln(b+ κ1)} < c < 1.

(iv) For d (given a, b, c, g, κ1, κ2), we have max{a(b+κ1)c , g/(1 + g)} < d < 1.

(v) For f (given a, b, c, d, g, κ1, κ2), we have max{(κ
√
A

1 κ2)
1

1+
√
A ,
√
κ1κ2} <

f < κ2.

(vi) For g (given d), we have d > g/(1 + g), and it follows that g < d/(1 − d).
Because 0 < g < 1, we get 0 < g < min(1, d/(1− d)).
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Appendix B: Collapse Gibbs Sampler in Beta-binomial with Extra
Variations

With the intention to use a collapsed Gibbs sampler, we integrate π
˜

from the
joint posterior density to get

p(θ
˜

∗, ζ|y
˜
)∝

t∏
x=0

(
nx
yx

)
B(yx + ζmx, nx − yx + ζ(1−mx))

B(ζmx, ζ(1−mx))

1

(1 + ζ)2
1

(1 + e)2
1

(1 + h)2
,

with

mx =
a(x+b)

c
+ d exp{−e(log x

f )2}+ ghx

1 + a(x+b)c + d exp{−e(log x
f )2}+ ghx

,

where 0 < a, b, c, d, g < 1, e > 0, f0 < f < f1 and h > 1. The conditional
distributions of θ

˜

∗ and ζ are obtained as

p(θ
˜

∗ | y
˜
, ζ) ∝

t∏
x=0

B(yx + ζmx, nx − yx + ζ(1−mx))

B(ζmx, ζ(1−mx))

1

(1 + ζ)2
1

(1 + e)2
1

(1 + h)2
,

(B.1)
and

p(ζ|y
˜
, θ
˜

∗) ∝
t∏

x=0

B(yx + ζmx, nx − yx + ζ(1−mx))

B(ζmx, ζ(1−mx))
× 1

(1 + ζ)2
. (B.2)
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