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Abstract: Clustering is an extremely important task in a wide variety of ap-
plication domains especially in management and social science research. In
this paper, an iterative procedure of clustering method based on multivariate
outlier detection was proposed by using the famous Mahalanobis distance.
At first, Mahalanobis distance should be calculated for the entire sample,
then using T 2-statistic fix a UCL. Above the UCL are treated as outliers
which are grouped as outlier cluster and repeat the same procedure for the
remaining inliers, until the variance-covariance matrix for the variables in
the last cluster achieved singularity. At each iteration, multivariate test of
mean used to check the discrimination between the outlier clusters and the
inliers. Moreover, multivariate control charts also used to graphically visual-
izes the iterations and outlier clustering process. Finally multivariate test of
means helps to firmly establish the cluster discrimination and validity. This
paper employed this procedure for clustering 275 customers of a famous two-
wheeler in India based on 19 different attributes of the two wheeler and its
company. The result of the proposed technique confirms there exist 5 and 7
outlier clusters of customers in the entire sample at 5% and 1% significance
level respectively.

Key words: Mahalanobis distance, multivariate outliers, multivariate test,
upper control limit, variance-covariance matrix.

1. Introduction and Related Work

Outliers are the set of objects that are considerably dissimilar from the re-
mainder of the data (Han, 2006). Outlier detection is an extremely important
problem with a direct application in a wide variety of application domains, in-
cluding fraud detection (Bolton, 2002), identifying computer network intrusions
and bottlenecks (Lane, 1999), criminal activities in e-commerce and detecting
suspicious activities (Chiu, 2003). Different approaches have been proposed to
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detect outliers, and a good survey can be found in (Knorr, 1998; Knorr, 2000;
Hodge, 2004). Clustering is a popular technique used to group similar data points
or objects in groups or clusters (Jain and Dubes, 1988). Clustering is an impor-
tant tool for outlier analysis. Several clustering-based outlier detection techniques
have been developed. Most of these techniques rely on the key assumption that
normal objects belong to large and dense clusters, while outliers form very small
clusters (Loureiro, 2004; Niu, 2007). It has been argued by many researchers
whether clustering algorithms are an appropriate choice for outlier detection.
For example, in (Zhang and Wang, 2006), the authors reported that clustering
algorithms should not be considered as outlier detection methods. This might
be true for some of the clustering algorithms, such as the k-means clustering
algorithm (MacQueen, 1967). This is because the cluster means produced by
the k-means algorithm is sensitive to noise and outliers (Laan, 2003). Similarly,
that the case is different for the Partitioning Around Medoids (PAM) algorithm
(Kaufman and Rousseeuw, 1990). PAM attempts to determine k partitions for n
objects. The algorithm uses the most centrally located object in a cluster (called
medoid) instead of the cluster mean. PAM is more robust than the k-means algo-
rithm in the presence of noise and outliers. This is because the medoids produced
by PAM are robust representations of the cluster centers and are less influenced
by outliers and other extreme values than the means (Laan, 2003; Kaufman and
Rousseeuw, 1990; Dudoit and Fridlyand, 2002). Furthermore, PAM is a data-
order independent algorithm (Hodge, 2004), and it was shown in (Bradley, 1999)
that the medoids produced by PAM provide better class separation than the
means produced by the k-means clustering algorithm. PAM starts by selecting
an initial set of medoids (cluster centers) and iteratively replaces each one of the
selected medoids by one of the none-selected medoids in the data set as long as
the sum of dissimilarities of the objects to their closest medoids is improved. The
process is iterated until the criterion function converges. In this paper, a new
method of clustering was proposed based on multivariate outlier detection. Note
that our approach can be easily implemented when compare to other clustering
algorithms that are based on PAM, such as CLARA (Kaufman and Rousseeuw,
1990), CLARANS (Ng and Han, 1994) and CLATIN (Zhang and Couloigner,
2005).

As discussed in (Loureiro, 2004; Niu, 2007; Zhang and Wang, 2006), there
is no single universally applicable or generic outlier detection approach. There-
fore, many approaches have been proposed to detect outliers. These approaches
can be classified into four major categories based on the techniques used (Zhang
and Wang, 2006), which are: distribution-based, distance-based, density-based
and clustering-based approaches. Distribution-based approaches (Hawkins, 1980;
Barnett and Lewis, 1994; Rousseeuw and Leroy, 1996) develop statistical models
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(typically for the normal behavior) from the given data and then apply a statis-
tical test to determine if an object belongs to this model or not. Objects that
have low probability to belong to the statistical model are declared as outliers.
However, distribution-based approaches cannot be applied in multidimensional
scenarios because they are univariate in nature. In addition, a prior knowledge
of the data distribution is required, making the distribution-based approaches
difficult to be used in practical applications (Zhang and Wang, 2006). In the
distance-based approach (Knorr, 1998; Knorr, 2000; Ramaswami, 2000; Angiulli
and Pizzut, 2005), outliers are detected as follows. Given a distance measure
on a feature space, a point q in a data set is an outlier with respect to the pa-
rameters M and d, if there are less than M points within the distance d from
q, where the values of M and d are decided by the user. The problem with this
approach is that it is difficult to determine the values of M and d. Density-based
approaches (Breunig, 2000; Papadimitriou, 2003) compute the density of regions
in the data and declare the objects in low dense regions as outliers. In (Breunig,
2000), the authors assign an outlier score to any given data point, known as Local
Outlier Factor (LOF), depending on its distance from its local neighborhood. A
similar work is reported in (Papadimitriou, 2003). Clustering-based approaches
(Loureiro, 2004; Gath and Geva, 1989; Cutsem and Gath, 1993; Jiang, 2001;
Acuna and Rodriguez, 2004), consider clusters of small sizes as clustered out-
liers. In these approaches, small clusters (i.e., clusters containing significantly
less points than other clusters) are considered outliers. The advantage of the
clustering-based approaches is that they do not have to be supervised. Moreover,
clustering-based techniques are capable of being used in an incremental mode
(i.e., after learning the clusters, new points can be inserted into the system and
tested for outliers). (Cutsem and Gath, 1993) present a method based on fuzzy
clustering. In order to test the absence or presence of outliers, two hypotheses are
used. However, the hypotheses do not account for the possibility of multiple clus-
ters of outliers. Jiang et al. (Jiang, 2001) presented a two-phase method to detect
outliers. In the first phase, the authors proposed a modified k-means algorithm
to cluster the data, and then, in the second phase, an Outlier-Finding Process
(OFP) is proposed. The small clusters are selected and regarded as outliers by
using minimum spanning trees. In (Loureiro, 2004) clustering methods have been
applied. The key idea is to use the size of the resulting clusters as indicators of
the presence of outliers. The authors use a hierarchical clustering technique. A
similar approach was reported in (Almeida, 2007). Acuna and Rodriguez (Acuna
and Rodriguez, 2004) performed the PAM algorithm followed by the technique
(henceforth, the method will be termed PAMST). The separation of a cluster A is
defined as the smallest dissimilarity between two objects; one belongs to cluster
A and the other does not. If the separation is large enough, then all objects that
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belong to that cluster are considered outliers. In order to detect the clustered
outliers, one must vary the number k of clusters until obtaining clusters of small
size and with a large separation from other clusters. In (Yoon, 2007), the authors
proposed a clustering-based approach to detect outliers. The k-means clustering
algorithm is used. As mentioned in (Laan, 2003), the k-means is sensitive to
outliers, and hence may not give accurate results.

2. Proposed Approach

In this paper we proposed a new approach of outlier based clustering based
on Mahalanobis distance. In statistics, Mahalanobis distance is a measure in-
troduced by P. C. Mahalanobis (1936), which is based on correlations between
variables by which different patterns can be identified and analyzed. It gauges
similarity of an unknown sample set to a known one. It differs from Euclidean
distance which takes the correlations of the data set and it is scale-invariant. In
other words, it is a multivariate size. Formally, the multivariate distance of a
multivariate vector X = (X1, X2, X3, · · · , Xn)T from group of values with mean
X̄ = (X̄1, X̄2, X̄3, · · · , X̄n)T and the co-variance matrix S is defined as

(Mahalanobis distance)i =
√

(Xi − X̄)TS−1(Xi − X̄). (1)

From (1), X is the sample mean matrix of order p×1 and S is the sample variance-
covariance matrix of order p× p. The test statistic for the Mahalanobis distance
is the squared Mahalanobis distance defined as T -square was first proposed by
Harold Hotelling (1951) and it is given as

T 2
i = (Xi − X̄)TS−1(Xi − X̄). (2)

From (2), Hotelling derived the (UCL) upper control limit of T -square statistic
as UCL = ((n − 1)2/n)β(α, p/2, (n − p − 1)/2), where n is the sample size, p
is the number of variables, α is the level of significance and β(α, p/2, (n − p −
1)/2) followed a beta distribution. Based on the above said distance measures,
first, assume all the variables follows a multivariate normality and calculate the
Mahalanobis distance from (1) for the n observations based on p variables, where
n > p. Secondly, from (2) fix a UCL for T -square statistic, observations above
the UCL are consider as outlier cluster and named as cluster 1. Repeat the
same procedure for remaining observations excluding the observations in cluster
1. Repeat the process, until the nature of variance-covariance matrix for the
variables in the last cluster achieves singularity. Moreover, the cut-off T -square
value can fixed by using the beta distribution and the identification of individual
outlier observation can be done with the help of 1% or 5% significance points of
T -square test statistic. The basic structure of the proposed method is as follows:
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Step 1: Calculate the Mahalanobis distance for n observations based on p
variables.

Step 2: Determine the observations which are above the UCL of T -square
statistic and consider those observations are outlier cluster 1.

Step 3: Using multivariate test of means, check the equality of means for the
variables in cluster 1 and remaining observations. If the means are equal,
then stop the iteration and it shows there are no clusters in the sample.
If the means are not equal, there exists some discrimination between the
variables in cluster 1 and for the remaining variables. Then repeat the
process of Step 3.

Step 4: Repeat step No.1 and 2 for the remaining observations and ascertain
the cluster 2.

Step 5: Continue the iteration process, until the nature of variance-covariance
matrix of the p variables in the last cluster is singular.

Step 6: In order to scrutinize the overall discriminant validity of the clusters,
multivariate test of means should use with the assumption of the homoge-
nous variance-covariance matrix.

3. Results and Discussion

In this section, we investigated the effectiveness of our proposed approach
on the survey data collected from the famous two wheeler users’ in India. The
data comprised of 19 different attributes about the two wheeler company and the
data was collected from 275 two wheeler users. A well-structured questionnaire
was prepared and distributed to 300 two wheeler customers and the questions
were anchored at five point likert scale from 1 to 5. After the data collection
is over, only 275 completed questionnaires were used for analysis. The aim of
this article is to describe the proposed clustering approach not the application of
the theoretical concept. The following table shows the results extracted from the
analysis by using SAS JMP v9.0 and STATA v11.2.

Table 1 visualizes the iteration summary of the identification of the multivari-
ate outlier detection by using the T -square distance or the squared Mahalanobis
distance. At first iteration, 275 observation and 19 variables were used to calcu-
late the Mahalanobis distance for all observation. Among 275 observations, the
value T -square statistic for 220 observations were below the UCL of T -square
test statistic (29.53) at 5% significance level and the remaining No. of obser-
vations (55) are above the cut-off. Therefore, we consider the 55 observations
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as first outlier cluster. Then repeat the iteration process to the next stage for
calculating the T -square distance or the squared Mahalanobis distance based on
220 observations (275 − 55) for the same 19 variables in iteration 2. Likewise, if
we continue the iteration process for the remaining stages, the iteration reached
the limit in the fifth step with 111 observations as outlier cluster No.5. At the
iteration No.5, the variance-covariance matrix of 19 variables for 111 observations
is singular, therefore it is not possible to calculate the T -square distance or the
squared Mahalanobis distance for the observations. Hence based on 5 iterations,
we identified five different outlier cluster at 5% significance level with (n = 55),
(n = 44), (n = 34), (n = 31) and (n = 111) observations respectively.

Table 1: Iteration summary for multivariate outlier identification

UCL Below UCL Above UCL Outlier
Iteration (n) of T -square of T -square of T -square clusters (n)

statistic* statistic (n) statistic (n) at 5% level

1 275 29.53 220 55 55
2 220 29.37 176 44 44
3 176 29.17 142 34 34
4 142 28.93 111 31 31
5 111 - - - -
6 - - - - -
7 - - - - -

UCL Below UCL Above UCL Outlier
Iteration (n) of T -square of T -square of T -square clusters (n)

statistic** statistic (n) statistic (n) at 1% level

1 275 35.05 237 38 38
2 237 34.87 207 30 30
3 207 34.68 177 30 30
4 177 34.42 155 22 22
5 155 34.17 129 26 26
6 129 33.75 115 14 14
7 115 - - - -

P (number of variables) = 19 *p-value < 0.05 **p-value < 0.01

Moreover we also identified the outlier clusters at 1% level. In iteration 1, 275
observations and 19 variables were used to calculate the Mahalanobis distance.
Among the 275 observation, the value of T -square statistic for 237 observations
was below the UCL of T -square test statistic (35.05) at 1% significance level
and the remaining observations (38) are above the cut-off value. Therefore we
finalize 38 observations as 1st outlier cluster. By repeating this iteration process,
finally we reached the final iteration No.7 with 115 observations as outlier cluster
No.7. In the final iteration, it is not possible to calculate the T -square statistic
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or the squared Mahalanobis distance because of the singularity of the variance-
co-variance matrix. Hence, based on 7 iterations we identified 7 different outlier
clusters at 1% significance level with (n = 38), (n = 30), (n = 30), (n = 22),
(n = 26), (n = 14) and (n = 115) observations respectively. The iteration and
identification of multivariate outlier clusters were explained with the help of the
following multivariate control charts.

Multivariate control chart shows the classification of outliers with
UCL of T -square statistic at 5% level
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Figure 1: Iteration 1 (n = 275) Figure 2: Iteration 2 (n = 220)
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Figure 3: Iteration 3 (n = 176) Figure 4: Iteration 4 (n = 142)

Table 2 describes the results of the five different test statistics such as Wilk’s
lambda, Pilla’s trace, Lawley-Hotelling trace, Roy’s largest root test and the
traditional F -statistic which helps us to finalize the discriminant validity of the
clusters based on the 19 variables at each iteration. In the first iteration, out of
275 observations, 55 are treated as outlier cluster 1 and remaining are inliers. The
result of the test statistic confirms that the means of 19 variables are significantly
differed at 1% between the outlier cluster 1 and the inliers. This indicates the
variables in the outlier cluster are different from the inliers. This process is done at
each iteration and we achieve a positive indication of attaining the discriminant
validity between the outlier cluster and the remaining inliers. Finally, in the
last iteration, it is not possible to segregate the new outlier cluster, because the
variance-covariance matrix of the 19 variables for 111 observations is singular.
So, the iteration is stopped and we treat the 111 observations as outlier cluster
No.5.
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Multivariate control chart shows the classification of outliers with
UCL of T -square statistic at 1% level
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Figure 5: Iteration 1 (n = 275) Figure 6: Iteration 2 (n = 237)
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Figure 7: Iteration 3 (n = 207) Figure 8: Iteration 4 (n = 177)
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Figure 9: Iteration 5 (n = 155) Figure 10: Iteration 6 (n = 129)

Similarly, the above said test statistic were also used to finalize the discrim-
inant validity of the outlier clusters at 1% level. The result of the test statistic
confirms that in all iterations, the means of the 19 variables are significantly
differed between the outliers and the inliers at 1% significant level. Finally, in
last iteration it is not possible to classify the new outlier cluster with (n = 115)
observations because of a singularity of variance-covariance matrix. Hence the
iteration was stopped here and we treat 115 observations as outlier cluster No.7.
The following table shows the cluster wise means of the variables.

Table 3 exhibits the cluster wise centroids of the 19 variables. In order to test
the equality of multivariate means of 19 variables among 5 outlier clusters, five
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Table 2: Iteration summary for test of equality of means

Outlier
Test statistic*

Iteration (n) cluster
Inliers Wilk’s Pillai’s

Lawley- Roy’s
F-

(n) at
(n) lambda trace

Hotelling Largest
ratio

d.f
5% trace root

1 275 55 220 0.5404 0.4596 0.8505 0.8505 11.41 (19,255)

2 220 44 176 0.4721 0.5279 1.1180 1.1180 11.77 (19,200)

3 176 34 142 0.4334 0.5666 1.3074 1.3074 10.73 (19,156)

4 142 31 111 0.4090 0.5910 1.4452 1.4452 9.28 (19,122)

5 111 - - - - - - - -

6 - - - - - - - - -

7 - - - - - - - - -

Outlier
Test statistic*

Iteration (n) cluster
Inliers Wilk’s Pillai’s

Lawley- Roy’s
F-

(n) at
(n) lambda trace

Hotelling Largest
ratio

d.f
1% trace root

1 275 38 237 0.6039 0.3961 0.6560 0.6560 8.80 (19,255)

2 237 30 207 0.6820 0.3180 0.4664 0.4664 5.33 (19,217)

3 207 30 177 0.5505 0.4495 0.8166 0.8166 8.04 (19,187)

4 177 22 155 0.4384 0.5616 1.2809 1.2809 10.58 (19,157)

5 155 26 129 0.5332 0.4668 0.8755 0.8755 6.22 (19,135)

6 129 14 115 - - - - - -

7 115 - - - - - - - -

P (number of variables) = 19 *p-value < 0.01

different test statistic such as Wilk’s lambda, Pilla’s trace, Lawley-Hotelling trace,
Roy’ largest root test and the traditional F -statistic which helps to strongly
establish the discriminant validity among the clusters. From Table 4, the result
of the battery of multivariate test confirms that the means of variables among the
5 outlier clusters are significantly differed at 1% level. This indicates all clusters
are different and each outlier cluster conveys different meaning which leads to
achieve the overall discriminant validity among the clusters.

Similarly the above said test of multivariate means also utilized to check the
differences among the means of 19 variables for the outlier clusters at 1% level.
The result of the test confirms the means of the variables among the 7 outlier
clusters are significantly differed at 1% level. This indicates the entire outlier
clusters at 1% level are different and each clusters conveys different meaning
which leads to achieve the overall discriminant validity among the clusters. The
following graph visualizes the summary of membership of each observation in
each outlier cluster.
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Table 4: Test of equality of cluster means with homogenous variance covariance
matrix

Multivariate
outlier clusters at 5% level outlier clusters at 1% level

Test
Test

F-ratio d.f p-value
Test

F-ratio d.f p-value
value value

Wilk’s
0.2474 5.57 (76,995) < 0.01 0.2124 3.92 (114,1446) < 0.01

lambda

Pillai’s
0.9016 3.91 (76,1020) < 0.01 1.0074 2.71 (114,1530) < 0.01

trace

Lawley-

Hotelling 2.4762 8.16 (76,1002) < 0.01 2.7783 6.05 (114,1490) < 0.01

trace

Roy’s

Largest 2.2477 30.17 (19,255) < 0.01 2.4552 32.95 (19,255) < 0.01

root

P (number of variables) = 19
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Cluster membership for outlier clusters at 5% level 
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Cluster membership for outlier clusters at 1% 

level

 
                     Fig.12 

Figure 11: Cluster membership for outlier clusters at 5% level
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Figure 12: Cluster membership for outlier clusters at 1% level

4. Conclusion

In this paper a new method of clustering was proposed based on Multivariate
outlier detection. Though several clustering procedures available in the literature,
the proposed technique gives a unique idea to cluster the sample observations in
a survey study based on the multivariate outliers. The feature of the proposed
clustering technique was elaborately discussed and the authors also highlighted
the application of the technique in a survey research. Based on the results de-
rived, the proposed technique gives more insights to the researcher to cluster
the sample observation at 5% and 1% significance level. Finally the authors
enlighten an idea for further research by conducting simulation experiments for
testing relationship between the significance level and the number of outlier clus-
ters extracted. Moreover more rigorous experiments may conduct to identify the
Multivariate outliers’ inside the outlier clusters.
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