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Abstract: Let {(Xi, Yi), i ≥ 1} be a sequence of bivariate random variables
from a continuous distribution. If {Rn, n ≥ 1} is the sequence of record
values in the sequence of X’s, then the Y which corresponds with the nth-
record will be called the concomitant of the nth-record, denoted by R[n].
In FGM family, we determine the amount of information contained in R[n]

and compare it with amount of information given in Rn. Also, we show
that the Kullback-Leibler distance among the concomitants of record values
is distribution-free. Finally, we provide some numerical results of mutual
information and Pearson correlation coefficient for measuring the amount of
dependency between Rn and R[n] in the copula model of FGM family.
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1. Introduction

Let (X1, Y1), (X2, Y2), · · · be a sequence of bivariate random variables from
a continuous distribution. If {Rn, n ≥ 1} is the sequence of record values in
the sequence of X’s, then the Y which corresponds with the nth-record will be
called the concomitant of the nth-record, denoted by R[n]. The concomitants of
record values arise in a wide variety of practical experiments such as industrial
stress testing, life time experiments, meteorological analysis, sporting matches
and some other experimental fields. For other important applications of record
values and their concomitants see Arnold et al. (1998) and Ahsanullah (1995).
Some properties from concomitants of record values were discussed in Houchens
(1984), Nevzorov and Ahsanullah (2000). The cumulative distribution function
(cdf) for the FGM family is given by Johnson and Kotz (1975) as

FX,Y (x, y) = FX(x)FY (y)[1 + α(1− FX(x))(1− FY (y))], −1 ≤ α ≤ 1, (1)

where FX(x), FY (y) are marginal cdf of X and Y , respectively. The copula model
for this family is defined by Nelson (1999) as follows:

fX,Y (x, y) = [1 + α(−1 + 2x)(−1 + 2y)] , 0 ≤ x, y ≤ 1. (2)
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Houchens (1984) has obtained the probability density function (pdf) of concomi-
tant of nth-record value for n ≥ 1 arising in (1) as

h[n](y) =

∫ +∞

−∞
f(y|x)gn(x)dx = fY (y)[1 + αn(2FY (y)− 1)], (3)

where αn = α(1− 21−n) and pdf of Rn is

gn(x) =
1

(n− 1)!
[− ln(1− FX(x))]n−1fX(x). (4)

Also, the joint density function of Rn, R[n] for the FGM copula is given by

fn,[n](x, y) = [1 + α(1− 2x)(1− 2y)]
[− ln(1− x)]n−1

(n− 1)!
. (5)

The information measures for record values have been investigated by several au-
thors, including, Zahedi and Shakil (2006), Baratpour et al. (2007), and Madadi
and Tata (2009). Amini and Ahmadi (2007) investigate the properties of Fisher
information in the sequence of the first n records and their concomitants. Tah-
masebi and Behboodian (2012) obtained some results of information measures for
concomitants of order statistics. Recently, Fashandi and Ahmadi (2012) studied
characterizations of symmetric distributions based on Rényi entropy of concoco-
miants. Shannon’s entropy of a continuous random variable X, with pdf fX(x),
is given by

H(X) = −
∫ +∞

−∞
fX(x) ln fX(x)dx. (6)

This is a mathematical measure of information which measures the average re-
duction of uncertainty of X. The organization of this article is as follows. In
Section 2, we determine the amount of information contained in R[n] and com-
pare it with amount of information given in Rn. In Section 3, we show that the
Kullback-Leibler distance between concomitants of nth- and mth- record values
in FGM family is free from marginal distributions. Also, we present analyti-
cal expressions and some numerical results of mutual information and Pearson
correlation coefficient between Rn and R[n] in the copula model of FGM family.

2. Entropy for Concomitants of Record Values in FGM Family

Theorem 2.1. Let (Xi, Yi), i = 1, 2, · · · be a sequence of independent obser-
vations from (1). If R[n] is the concomitant of the nth-record value on the X
sequence of observations, then the Shannon entropy of R[n] for n > 1, and α 6= 0
is given by

H(R[n]) = Cα(n) +H(Y )(1− αn)− 2αnφ(f), (7)
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where

Cα(n) =
1

8αn
{(1− αn)2[2 ln(1− αn)− 1]− (1 + αn)2[2 ln(1 + αn)− 1]}, (8)

and

φ(f) =

∫ 1

0
u ln fY (F−1Y (u))du.

Proof. From (3) and (6), we get

H(R[n]) = −Eh[n] [ln fY (Y )]− Eh[n] [ln(1 + αn(2FY (Y )− 1))]

= H(Y )(1− αn)− 2αn

∫ 1

0
u ln fY (F−1Y (u))du

−Eh[n] [ln(1 + αn(2FY (Y )− 1))] . (9)

Now, we need to find Eh[n] [ln(1 + αn(2FY (Y )− 1))]. First, we write

T (r) = Eh[n] [(1 + αn(2FY (Y )− 1))r] =

∫ +∞

−∞
fY (y)[1 + αn(2FY (y)− 1)]r+1dy

=
1

2αn
[
(1 + αn)r+2 − (1− αn)r+2

r + 2
]. (10)

Since the function under the integral sign in (10) is bounded by an integrable
function. So, we have

−∂T (r)

∂r
|r=0 = −Eh[n] [ln(1 + αn(2FY (Y )− 1))] = Cα(n)

=
1

8αn
[(1− αn)2(2 ln(1− αn)− 1)− (1 + αn)2(2 ln(1 + αn)− 1)]. (11)

Putting (11) in (9) the result follows. 2

The difference between entropy of (n+ 1)th- and nth- concomitant of record
values is obtained as

∆(n) = H(R[n+1])−H(R[n]) = Cα(n+ 1)− Cα(n)− α

2n
[H(Y ) + 2φ(f)].

Note that limn→∞∆(n) = 0. A general expression for the entropy of the nth-
record value Rn is presented by Zahedi and Shakil (2006) as

H(Rn) = ln(Γ(n))− (n− 1)ψ(n)

− 1

Γ(n)

∫ +∞

−∞
[− ln(1− FX(x))]n−1fX(x) ln(fX(x))dx, (12)

where ψ(n) is the digamma function. More recently, Baratpour et al. (2007)



62 Entropy for Concomitants of Record Values

have explored the properties of H(Rn). In the following examples we compare
H(R[n]) with H(Rn) in FGM family.

Example 2.1. Let Z[n] be concomitant of nth-record value from (2), then, by
using (3), the density function of Z[n] is

p[n](u) = 1 + αn(2u− 1).

Now, by using (7) and (12), we can easily show that H(Z[n]) with H(Zn) for
the copula model of FGM family have the following properties

(i) H(Z[n]) = Cα(n) = C−α(n), ∀n > 1, and α 6= 0.

(ii) H(Zn) = log(Γ(n))− (n− 1)ψ(n).

(iii) H(Zn) ≤ H(Z[n]).

(iv) .5− ln(2) < H(Z[n]) ≤ 0, for n ≥ 1, and −1 ≤ α ≤ 1.

(v) for n > 1, H(Z[n]) is increasing (decreasing) in α for −1 ≤ α < 0 (0 < α ≤ 1).

(vi) H(Z[n]) is decreasing in n for α 6= 0.

The relative differential entropy index, ηα(m,n), between mth- and nth- (1 <
m < n) concomitant of record values, is given by

ηα(m,n) =
H(Z[n])−H(Z[m])

H(Z[n])−H(Z[1])
=
Cα(n)− Cα(m)

Cα(n)
.

Our numerical computations indicate when n and α are fixed, then, ηα(m,n) for
the copula model of FGM family is decreasing in m.

Remark 1. Using FGM example of Ebrahimi et al. (2010), insightful expression
for H(R[n]) is given by

H(R[n]) = H(Z[n])− Eh[n] [ln fY (Y )], (13)

where H(Z[n]) = Cα(n) is the entropy for nth- concomitant of record value in the
copula model of FGM family.

Remark 2. The following representation gives the Rényi entropy of order β for
R[n] in FGM family as

R∗β(R[n]) =
1

1− β
lnEU{[p[n](U)]β[fY (F−1Y (U))]β−1}, (14)

where U is a uniform random variable with parameters 0 and 1.
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Example 2.2. Let (Xi, Yi), i = 1, 2, · · · be a sequence of independent observa-
tions from Gumbel’s bivariate exponential distribution with cdf

F (x, y) = (1− exp(
−x
θ1

))(1− exp(
−y
θ2

))[1 + α exp(
−x
θ1
− y

θ2
)],

− 1 ≤ α ≤ 1, x, y > 0, θ1, θ2 > 0.

Then in this case by using (3), the pdf of R[n] is

h[n](y) =
1

θ2
e

−y
θ2 [1 + αn(1− 2e

−y
θ2 )].

Now, with using (7), we have

H(R[n]) = Cα(n) + (1 + ln(θ2)) +
αn
2
. (15)

If we put θ1 = θ2, then by using (12), (15) and numerical computations, we have

Bα(n) = H(R[n])−H(Rn) = Cα(n) + 1 +
αn
2
− ln(Γ(n)) + (n− 1)ψ(n)− n > 0.

It is easy to check the following properties regarding H(R[n]) from FGM type
Gumbel’s bivariate exponential distribution.

(i) H(R[n]) is monotone increasing in α, for n > 1; ∀θ2 > 0.

(ii) H(R[n]) is an increasing concave function of θ2, for n > 1, α 6= 0.

(iii) H(R[n]) is increasing (decreasing) in n, for 0 < α ≤ 1 (−1 ≤ α < 0).

Example 2.3. Suppose (Xi, Yi), i = 1, 2, · · · be a sequence of independent
observations from (1) with cdf

F (x, y) = (1− x−λ1)(1− y−λ2)[1 + α(x−λ1)(y−λ2)], x, y > 1, λ1, λ2 > 0.

In this case, by using (3), the pdf of R[n] is

h[n](y) = λ2y
−(λ2+1)[1 + αn(1− 2y−λ2)], y > 1.

By using (7), we get

H(R[n]) = Cα(n)− lnλ2 +
λ2 + 1

λ2
(1 +

αn
2

). (16)

Now, if we put λ1 = λ2 = λ, then by using (12), (16) and numerical computations,
we have

Jα(n) = H(R[n])−H(Rn) = Cα(n)−ln Γ(n)+(n−1)ψ(n)+
λ+ 1

λ
(1+

αn
2
−n) < 0.

It is easy to check the following properties of H(R[n]) as:
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(i) H(R[n]) is monotone decreasing in λ2, for n > 1, α 6= 0.

(ii) H(R[n]) is monotone increasing in α, for n > 1; ∀λ2 > 0.

(iii) H(R[n]) is increasing (decreasing) in n, for 0 < α ≤ 1 (−1 ≤ α < 0).

In the following theorem, we provide entropy bounds for concomitants of
record values in FGM family.

Theorem 2.2. Let R[n] be the concomitant of the nth-record value in FGM
family. Then for n > 1, and α 6= 0, we have

Cα(n) +H(Y )[1− |α|(1− 21−n)] ≤ H(R[n]) ≤ Cα(n) +H(Y )[1 + |α|(1− 21−n)].

(17)

Proof. From Theorem 2.1, we have

H(R[n]) = Cα(n) +H(Y ) +Dα(n), (18)

where

Dα(n) = α(1− 21−n)

∫ +∞

−∞
(1− 2FY (y))fY (y) ln fY (y)dy,

and Cα(n) is defined in (8). Since −1 ≤ 1− 2FY (y) ≤ 1, we have

−|α|(1− 21−n)H(Y ) ≤ Dα(n) ≤ |α|(1− 21−n)H(Y ). (19)

Thus, by (18) and (19), the proof is clear. 2

3. Kullback-Leibler Distance

The Kullback-Leibler distance for two continuous random variables Z1 and
Z2 with pdf’s f1 and f2, respectively, is given by

K(Z1, Z2) =

∫ +∞

−∞
f1(z) ln(

f1(z)

f2(z)
)dz = E1(ln

f1(Z)

f2(Z)
), (20)

where E1 denotes the expectation with respect to f1. K(Z1, Z2) ≥ 0, and equality
holds if and only if f1(z) = f2(z) almost everywhere. It generalizes two measures
of information, entropy and mutual information for communication theory.

Theorem 3.1. Let R[n] and R[m] be the concomitants of nth- and mth- record
values in FGM family. Then the Kullback-Leibler distance between R[n] and R[m]

is

K(R[n], R[m]) = K(Z[n], Z[m])

= −Cα(n) + (2−n − 2−m)Uα(m) +
1− 21−n

1− 21−m
Cα(m), (21)
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where

Uα(m) =
1

α(1− 21−m)2
{(1− αm)[ln(1− αm)− 1]

−(1 + αm)[ln(1 + αm)− 1]}, (22)

and Cα(n) is defined in (8).

Proof. By using the invariance property of Kullback -Leibler information, the
proof is easy. 2

Corollary 3.1. If n = 1 and m > 1, then, we obtain

K(R[1], R[m]) = −
∫
fY (y) ln[1 + αm(2FY (y)− 1)]dy = Vα(m), (23)

where

Vα(m) =
1

2αm
{(1− αm))[ln(1− αm)− 1]− (1 + αm)[ln(1 + αm)− 1]}.

It is easy to see that K(R[1], R[m]) for m ≥ 1, and −1 ≤ α ≤ 1 has the
following properties:

(i) 0 ≤ K(R[1], R[m]) < 1− ln 2 for m ≥ 1, and −1 ≤ α ≤ 1.

(ii) for fixed m > 1, K(R[1], R[m]) is decreasing (increasing) in α for −1 ≤ α < 0
(0 < α ≤ 1).

(iii) Vα(m) is increasing in m for α 6= 0.

(iv) Vα(m) = V−α(m), for m > 1, and α 6= 0.

Corollary 3.2. If m = 1 and n > 1, then, we have

K(R[n], R[1]) =

∫
h[n](y) ln(

h[n](y)

fY (y)
)dy = −Cα(n),

where .5 − ln 2 < Cα(n) ≤ 0. Now, by using the results of Example 2.1 and
Corollary 3.1, we can conclude that

min
1≤n

K(R[n], R[1]) = min
1≤m

K(R[1], R[m]) = 0.

For a bivariate random variable (X,Y ) with density function fX,Y (x, y) the mu-
tual information is defined as

I(X,Y ) = H(Y )−H(Y |X), (24)
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where H(Y |X) is the conditional entropy of Y given X. The mutual information
is a generalization of the coefficient of determination, ρ2XY , which unifies a variety
of problems. We know that I(X,Y ) ≥ 0, and equality holds if and only if X and
Y are statistically independent. Also, it has the invariance property under one-
to-one transformation of (X,Y ).

Corollary 3.3. Let Rn = F−1(Zn) be the nth-record value and R[n] = F−1(Z[n])
be its concomitant obtained by a sequence from (1). Then, the mutual informa-
tion between Rn and R[n] for n > 1 is distribution-free and is given by

Iα(Rn, R[n]) = Iα(Zn, Z[n])

= Cα(n) +

∫ 1

−1

∫ 1

−1
ln(1 + αwv)(1 + αwv)

[− ln(1+w2 )]n−1

4(n− 1)!
dvdw

= Cα(n) + Efn,[n] [ln(1 + αWV )], (25)

where W = 1− 2X and V = 1− 2Y .

Proof. By using the invariance property of mutual information, the proof is
clear. 2

We can also obtain an explicit expression for the Pearson correlation coeffi-
cient between Rn and R[n] in the copula model of FGM family. By using (5) and
after some simple algebra, we get

ρα(Rn, R[n]) =
α

3

√
4n − 3n

12n−1[1− α2

3 (21−n − 1)2]
. (26)

Table 1 provides the values of Iα(Rn, R[n]) and ρα(Rn, R[n]) as a function of n
and α, for n = 1(1)9, and α = .2, .4, .8, 1. These values are derived by using (25),
(26) and Maple software. Table 1 and easy computations show that Iα(Rn, R[n])
and ρα(Rn, R[n]) for the copula model of FGM family have the following proper-
ties:

(i) Iα(Rn, R[n]) = I−α(Rn, R[n]),

(ii) ρα(Rn, R[n]) = −ρ−α(Rn, R[n]),

(iii) Iα(Rn, R[n]) < |ρα(Rn, R[n])|,

(iv) Iα(Rn, R[n]) increases as |α| increases,

(v) Iα(Rn, R[n]) ≤ Iα(X,Y ) ≤ 0.0599,

(vi) |ρα(Rn, R[n])| ≤ α/3,

(vii) For fixed α 6= 0, Iα(Rn, R[n]) is decreasing in n.
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Table 1: Iα(Rn, R[n]) and ρα(Rn, R[n]) for the copula model of FGM family

Iα(Rn, R[n]) ρα(Rn, R[n])

α α

n 0.2 0.4 0.8 1 0.2 0.4 0.8 1

1 0.0022 0.0089 0.0371 0.0599 0.0666 0.1333 0.2666 0.3333

2 0.0013 0.0052 0.0227 0.0383 0.0510 0.1025 0.2093 0.2659

3 0.0005 0.0023 0.0109 0.0202 0.0339 0.0686 0.1440 0.1874

4 0.0002 0.0009 0.0047 0.0097 0.0213 0.0433 0.0927 0.1229

5 0.00008 0.0003 0.0018 0.0043 0.0130 0.0265 0.0574 0.0769

6 0.00003 0.0001 0.0007 0.0018 0.0078 0.0159 0.0346 0.0467

7 0.000010 0.00004 0.0002 0.0007 0.0046 0.0094 0.0206 0.0279

8 0.000003 0.000015 0.000092 0.0003 0.0027 0.0055 0.0121 0.0164

9 0.000001 0.000005 0.00003 0.0001 0.0015 0.0032 0.0071 0.0096
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