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Abstract: Trials for comparing interventions where cluster of subjects, rather
than individuals, are randomized, are commonly called cluster randomized
trials (CRTs). For comparison of binary outcomes in a CRT, although there
are a few published formulations for sample size computation, the most
commonly used is the one developed by Donner, Birkett, and Buck (Am
J Epidemiol, 1981) probably due to its incorporation in the text book by
Fleiss, Levin, and Paik (Wiley, 2003). In this paper, we derive a new x?
approximation formula with a general continuity correction factor (¢) and
show that specially for the scenarios of small event rates (< 0.01), the new
formulation recommends lower number of clusters than the Donner et al.
formulation thereby providing better efficiency. All known formulations can
be shown to be special cases at specific value of the general correction factor
(e.g., Donner formulation is equivalent to the new formulation for ¢ = 1).
Statistical simulation is presented with data on comparative efficacy of the
available methods identifying correction factors that are optimal for rare
event rates. Table of sample size recommendation for variety of rare event
rates along with code in“R” language for easy computation of sample size in
other settings is also provided. Sample size calculations for a published CRT
(“Pathways to Health study” that evaluates the value of intervention for
smoking cessation) are computed for various correction factors to illustrate
that with an optimal choice of the correction factor, the study could have
maintained the same power with a 20% less sample size.

Key words: Approximate sample size formula, binary responses, cluster ran-
domized trials, continuity correction.

1. Introduction
Cluster randomized trials (CRTSs) are necessary in the evaluation of health

care interventions because of practical and ethical reasons. The units for ran-
domization (“clusters”) for the evaluation of intervention in CRT are typically
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communities, clinics, hospital wards, or medical practices. This design has been
used by investigators in the field of drug treated device for assessment of disease
control [1] [2], in the evaluation of interventions intended to improve the deliv-
ery of health services and quality of care [3|, in appraisal of health education
activities [4] and prevention models for sexually transmitted diseases [5], to name
a few. Donner and Klar (1994) provide an excellent review of the reasons for
conducting CRTs, related design issues, and statistical methods for data analysis
[6]. CRTs are usually less efficient than individually randomized trials (IRTs) be-
cause the responses of individuals within a cluster tend to be more similar than
responses of individuals in different clusters [7]. This phenomenon is quantified
by a statistics called intraclass correlation coefficient (ICC). Proper design with
adequate sample size calculation is of utmost importance in trials utilizing CRT
as they are logistically very demanding. For comparison of binary outcomes in
a CRT, although there are few published formulations for sample size computa-
tion, the most commonly used is the one developed by Donner, Birkett, and Buck
[8], perhaps due to its incorporation in the text book by Fleiss, Levin, and Paik
[9]. However, there is room for improvement, especially for trials with binary
endpoint with rare occurrence.

We begin with a motivating example from the field of surgery in Section
2. Although leaving objects behind in the body cavity after surgery is rare
(1 in 5,500 surgeries) [10], it has the potential to be lethal for patients and
detrimental to hospitals and insurance companies. A new medical device for
detecting these objects by scanning has been marketed but a CRT for evaluation
of this device compared to manual sponge count is needed. In our attempt to
provide power calculation for this study, we briefly reviewed the existing methods
of sample size computation for binary endpoint for IRT (Section 3.1) and their
extensions to CRT (Section 3.2). We were unsure about the applicability of
the existing formulas for such low proportion of events. Therefore we derived
a new sample size formula using a general correction factor (Section 3.3). All
known formulations are shown to be special cases at specific value of the general
correction factor. In Section 4, we present a simulation study for comparison of
all methods identifying correction factors that are optimal for rare event rates.

Sample size calculations for a published CRT (“Pathways to Health study”
that evaluates the value of intervention for smoking cessation [11]) are computed
for various correction factors to illustrate that with an optimal choice of the
correction factor, the study could have maintained the same power with a 20%
less sample size (Section 5). This points out the usefulness of our new formulation
which allows choosing a different correction factor depending on the setting.

We present table of sample size recommendation for variety of rare event
rates and also provide related code in “R” language for easy computation of
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sample size in other settings (Section 6). We return to our motivating example
in this section and through computation of sample size for this trial, provide a
guideline on how to approach designing of a CRT, specially in a setting where
ICCs are not available. In Section 7, we offer some discussion on issues related to
varying cluster size, generation of correlated binary data, and the need for exact
formulation of sample size.

2. Motivating Example: Planning of CRT for Evaluation of a Newly
Developed Medical Device for Discovering Retained Surgical Sponges

Inadvertently leaving sponges inside patients who undergo surgery contin-
ues to occur despite manual counting of sponges by operating room personnel.
Retained sponges may cause no adverse effects in patients and may remain undis-
covered for decades. Alternatively, retained sponges may lead to serious seque-
lae, including sepsis, intestinal obstruction, fistulization, and death. Cima et al.
(2008) reviewed the incidence and characteristics of surgical retained foreign ob-
jects (RFOs) at a tertiary care institution during 4 years and found the incidence
rate to be quite small (approximately 1 in 5,500 operations = 0.0002) [10].

A new device recently approved by FDA (RF Surgical detection system) is cur-
rently poised for marketing and evaluation (http://www.rfsurg.com/productover-
view.htm). This system consists of two features: 1) sponges, gauzes, and towels
with a small unobtrusive embedded chip (measuring at 3.5 mm by 11 mm) and
2) a Blair-Port wand with a 9 foot connection cord that has the capability of
scanning a patient weighing up to 500 pounds. A CRT, in support of a com-
parative trial (Arm 1: Use of the new device for sponge detection versus Arm 2:
Use of standard practice of manual sponge counting) with the binary endpoint
of detection of a foreign object in body cavity after surgery, is being planned.
Accuracy of the existing sample size formulations for extremely low incidence
like the one in this study has been questioned in the field of IRT and adjustment
to the sample size formulation has been suggested [24]. Therefore we reviewed
the sample size formulations in CRT and concluded that some adjustment to the
sample size formulation is needed for the special case of rare events in the context
of CRT as well.

3. Methods
3.1 Review of Sample Size Formulations in IRT
Before discussing further the sample size formulas for CRTs, we offer a brief

review of the most commonly used formulation of sample sizes for the IRTSs.
Sahai and Khurshid (1996) provides an excellent detailed review [8]. Consider



184 Sample Size Formula for CRTs with Binary Responses

the setting of a two armed clinical trial with dichotomous outcome (i.e., event
versus non-event). The null hypothesis under test is Hy : m; = my versus the
alternative hypothesis of Hy : m; > m where 7; is the proportion of events in
the ith population. The overall context is to estimate the sample size so that if
in fact there is no difference between the two underlying proportions, then the
chance is approximately « of falsely declaring the two proportions to differ, and
if in fact the proportions are unequal, then the chance is approximately 1 — 5 of
correctly declaring the two populations to differ, for a > 0,3 < 1. Throughout
this manuscript, we assume equal sample sizes for the two groups.

“Exact” formulation for sample size, considered “gold standard” in this set-
ting is derived in [11] but the approximate methods are most commonly utilized
due to their simplicity in computation [9-10,12-14]. One of the commonly em-
ployed method is the “arcsine formula” [9],

. Z1—a + 28
 2((arcsine /7 — arcsine,/m2)?2)’

where ®(z,) = v and @ is the cumulative normal distribution function.
Another commonly used approximation is the “uncorrected x? formula” (UC),

_ (s1ma/(2mp) + zpy/mipn + mop2)?

B (m1 — m2)?

(1)

(2)

where p; =1 —m,i=1,2; 7 = (71 +m2)/2, p = (p1 + p2)/2 [10].

It has been shown that the above two formulas, (1) and (2), give similar output
but are considered to be serious underestimation of the sample size recommended
by the “exact” method [11].

To rectify this, Kramer and Greenhouse (KG) developed a “corrected y?
method” given by

2
A (1 + /1 +8(m — 7T2)/A)
, 3

(i w27 @

where A = (21-+/(2711) + zgy/m1 1 + m2p2)? [12]. Later, Casagrande, Pike and

Smith (CPS) developed a x? approximation sample size formula with a general
correction factor, ¢, given by

n =

2
A (1 /T +4(1 = 20 (m — 7T2)/A>
n = 13]. 4
The KG and UC formulation were shown to be special cases of the CP for-
mulation by setting ¢ = —0.5 and ¢/ = 0.5 respectively. Casagrande, Pike and
Smith also demonstrated that the sample size recommended by the UC and KG
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formulation are an underestimate and an overestimate of the sample size obtained
through the exact formulation [13]. They proposed a formula based on ¢/ = 0 and
established that the sample size obtained via this new formula was satisfactorily
close to that obtained by the exact method.

3.2 Review of Sample Size Formulations in CRT

In the two-armed clinical trial with CRT design, the most widely used sample
size formula is the one given in the text book by Fleiss, Levin, and Paik (FLP)
[14] which was originally developed by Donner, Birkett, and Buck (DBB) [15].
Assuming there are K clusters in each group, with clusters of equal size 7, the
formulation is given by

(ZajoV2mpf + zgy/fimipn + fomops)?

K = ) ) (5)

ﬁ(ﬂ'l — 7T2)

where fi; and f2 denote the variance inflation factors (VIFs) of the two sets of K
clusters; f = (fi + f2)/2 =1+ p(”n — 1) is the VIF under the null hypothesis of
equality of proportions; and p being the intra-cluster co-efficient assumed to be
the same within each groups [14-15].

Since in the IRTSs, f1 = fo = 1, it is clear that (5) is an extension of the uncor-
rected x? formula to the CRT setting. To be exact, the FLP formula is actually an
approximation of the DBB formula, by the fact that \/fimiu1 + fomous ~ \2wuf.

Several other formulations of sample size computation are available for related
but somewhat different settings. For example, Liu and Liang [17] proposed sample
size formulation in the context of generalized linear models which used unified
tools for correlated continuous and discrete responses. For the special case of the
“two-sample problem with binary responses”, their general formula reduces to
the DBB formula under the assumption of equal sample size in the two groups
and an exchangeable correlation structure for the working correlation matrix.
Fleiss et al. [14] extends FLP/DBB formula to the case where the “exposure”
varies across clusters. Hayes [19] present a formula which takes into account
the between cluster variability, but this formula doesn’t take into account the
intra-cluster correlation. Manatunga et al. [20] and Van Breukelen et al. [21]
extends these sample size estimation methods to account for variability in cluster
size. An interesting recent paper by Rotondi and Donner [22] presents sample
size estimation for CRTs under an evidence based perspective; their method is
especially useful when considering the role of the planned CRT on a future meta-
analysis. Campbell et al. [23] present a sample size calculator for CRTSs; they
also consider the implications of either increasing the cluster size or the number
of clusters on the design of a CRT.
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3.3 Derivation of a New Sample Size Formula for CRTs

In this section, we derive our x? approximation formula for sample sizes with
a general continuity correction factor. Let X;; and Yj; denote the outcomes
of the i*" individual in the j** cluster in the intervention and control groups
respectively; ¢ = 1,---,n; j = 1,--- , K. We assume that X;; ~ Bernoulli(m)
and Yj; ~ Bernoulli(my). Let us denote the intra-cluster correlations as p; and po
and the corresponding variance inflation factors (VIFs) in each group as f; and

fa.

~ 1 n K ~ 1 n K
X=—2D 0> Xiys V=0 DV
n i=1 j=1 n i=1 j=1
Define
d=X-Y and Z= d_"LK

2 (X+Y X4Y
e (5) (1= (59)) #
7 is a test statistic (—x? test with Yates’ correction—) commonly used to test the
null hypothesis Hy : w1 = m3. Let d* be such that
d* 1

“1-a = \/73( <X2+Y)_<1ni( (*5%)) 1

under the null hypothesis. Here f = (f1 + f2)/2 is the variance inflation factor
calculated under the null hypothesis. Replacing (X + Y)/2 by its expectation,
we get

Rearranging,

Also




Majnu John 187

where ® is the cumulative normal distribution function and ¢ is a correction factor
to allow for the discreteness in the distribution of d. If this d* is to lead to a test
with power 1 — 3 then it should satisfy

d* — (7T1 —7T2) —c/(nK)

—ZR = .
O mipfi + mapiafa)/(nK)
That is,
. +
d" =~ (m —m) + nLK - Zﬁ\/ﬂ'lﬂlfan?TQ,U«2f2' (7)

Equating (6) and (7) and solving for K, we get,

2
4(m—m2)(1—c
K =

An(my — mg)?

, (8)

where

2
A= (zl_a\/2ﬁﬂf + 2/ M fi + 7T2M2f2) :

Note that when ¢ = 1, the formula (8) is the same as the FLP formulation
reproduced in (5) of this document. ¢ = 0 and ¢ = —1 are extensions of CGS and
KG formulas respectively to the CRT setting.

4. Statistical Simulations for Comparison of x? Approximations with
Different Correction Factors

We compare the performance of the sample size formula given by (8) with
different choices of the continuity correction factor, ¢, via statistical simulations.
The primary endpoint for comparison is the number of clusters recommended by
different formulas maintaining the power closest to 80% to the one corresponding
to exactly 80%.

4.1 Simulation Parameters

We compare the choices of ¢ = 1,0, —1 for the following settings of the pa-
rameters:

o (m1,m) pairs of (0.0002,0.0001), (0.01,0.0005), (0.1,0.05), (0.4,0.25),

(0.60,0.40);
e p1 = p2 = 0.25;
o 1= 30;
e o = 0.05;

1-8=0.8.
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Because of symmetry, the sample sizes required for (71, m2) is the same as that
for (1 —ma,1—m1). Therefore, we do not simulate cases where min{my, w2} > 0.5.

4.2 Data Generation and Parameter Estimation Methods

We generated 500 correlated binary data within each cluster for the above pa-
rameters, using a Monte Carlo simulation method proposed by Lunn and Davies
[18]. For each j, X;;’s were generated using the formula (given in [18]),

Xij = (1 = Uij)Vij + Uij Zj,

where Vjj, Z; are independent with Bernoulli(7) distribution, and U;; are in-
dependent with Bernoulli(,/pr) distribution. Yj;’s were obtained similarly with
m and p; replaced by mo and po. p’s were estimated using the FLP formula.
Empirical power was calculated by the proportion of times the x? test statistic
with Yates’ correction exceeds the critical value.

4.3 Format of Tables Presenting Simulation Results

Simulation results are presented in Table 1 with 8 columns. For each (7, m2)-
pair listed in column 1 and for each choice of ¢ (= 1,0, —1) listed in column 2,
the required number of clusters via the formula (8) is computed at 80% power
and 0.05 significance level with specification of p; = pa = 0.25. These number
of clusters are shown at the top of each cell in column 3 (-the numbers without
parenthesis-). Using the generated data, the mean estimated p1, po, 71, 7o along
with their standard deviations are presented in columns 4-7. Using the estimated
p’s, the number of clusters are estimated again and are presented in column 3
(-the numbers with parenthesis-). Empirical power is listed column 8.

Table 1: Power Simulations

Comparison of the sample size formulas with various choices of the correction factor, c

No. of p1 P2 st 1 Estimated
clusters s.d s.d s.d s.d Power
1 50999  0.233 0.239 0.99x 107% 1.98 x 107* 86.4%
(48550) 0.069 0.050 2.35x107° 3.44x107° e
50330 0.233 0.239 0.99x107% 1.98 x 107*
0 s s 85.4%
71 = 0.0002 (47881)  0.069 0.050 2.36 x 10 3.46 x 10
m =0.0001 | 49657  0.233 0.239 0.99 x 107% 1.98 x107* 85.4%
(47207)  0.071 0.051 239 x107° 3.51x107° e
* 46275  0.230 0.238 0.99 x 107*  1.98 x 10~* 80.0%
—3  (46307) 0.075 0.052 2.51x107° 3.64x107° e
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Table 1: (continued) Power Simulations

Comparison of the sample size formulas with various choices of the correction factor, c

No. of o1 T 1 Estimated
S.

c 02
clusters d s.d s.d s.d Power

50999 0.239 0.233 1.98x10"% 0.99 x 10~* 84.49%
(48649) 0.050 0.069 3.45 x 107° 2.35 x 10~° ’

0 51663  0.240 0.233 1.98 x 1074  0.99 x 10~*
w1 = 0.0001 (49314)  0.050 0.069 3.46 x 107>  2.37 x 10~°

m =0.0002 _ 52324  0.240 0.233 1.98x 104 0.99 x 10~* 86.2%
(49974)  0.049 0.067 3.44x107° 2.37x 107° ’

—

85.6%

47500 0.239 0231 1.98x10~%* 0.99 x 10~*

*
80.2
3 (47523) 0.057 0.073 3.57x107° 245x 107® %
1 1013 0.236 0.244 0.50x 1072  1.00 x 10~2 871%
(975) 0.070 0.048 1.00x 1072 2.00 x 10~3 ’
998 0.236 0.243 0.50x 1072  1.00 x 10~2
0 86.1%
w1 = 0.01 (962) 0.070  0.048 1.00 x 10=3  2.00 x 103
mo = 0.005 1 986 0.236 0.243 0.50x 1072  1.00 x 10~2 85.1%
(948) 0.070  0.048 1.00 x 1073 2.00 x 103 ’
* 933 0.241 0233 1.70 x 1072 0.50 x 102 80.1%
-5 (931) 0.048 0.070 2.00x 1073 1.20 x 1073 '
1 1013 0.244 0.236 1.00x 1072 0.50 x 10~2 871%
(977) 0.002 0.001 1.67x 1072 1.18x 1073 ’
1026 0.243 0.235 1.00x 1072 0.50 x 10~2
0 ) 88.3%
1 = 0.005 (990) 0.048 0.070 1.66x 1073 1.18 x 1073
m = 0.01 _1 1039 0.244 0.235 1.00x 1072 0.50 x 10~2 88.6%
(1003)  0.047 0.070 1.64x 1073 1.18 x 103 ’
* 906 0.234 0241 1.00 x 1072 0.50 x 102 80.1%
9 (903) 0.071  0.048 2.00 x 1073  1.00 x 103 '
95 0.244  0.239 0.101 0.051
1 .
(91) 0.044  0.066 0.017 0.011 84.2%
93 0.243  0.238 0.101 0.051
0 .
w1 =0.1 (90) 0.044  0.067 0.016 0.012 83.8%
w2 = 0.05 1 92 0.243  0.237 0.101 0.051
(90) 0.044  0.067 0.016 0.012 83.1%
* 90 0.243  0.238 0.101 0.050 80.8%
-2 (88) 0.045 0.068 0.017 0.012 )

The numbers at the top (in the first three cells corresponding to each (71, m2)-pair) of the
third column are the no. of clusters calculated using the formula (8) for the correction
factors, ¢ = 1,0, —1, with p; = p2 = 0.25, nominal power = 0.80, & = 0.05 and cluster size
= 30. The mean, over the 500 Monte Carlo samples of the estimated, p1, p2, 71 and 72, the
corresponding Monte Carlo standard deviations, and the empirical power with the above no.
of clusters are also given. The numbers, in parenthesis at the bottom (in the first three cells
corresponding to each (71, m2)-pair) of the third column are no. of clusters calculated using
the estimated p1, p2, 71 and 2. Finally, the top number in column three for the row “*” is
the minimum no. of clusters (obtained by trial and error) to achieve 80% empirical power
corresponding to each (1, m2)-pair. In column 2, the number below “*” (in the same cell) is
the correction factor that gives the no. of clusters closest to achieving just above 80% power
with estimated p1, p2, 71 and m2. The corresponding no. of clusters is given in parenthesis
in column 3 of row “*”.
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Table 1: (continued) Power Simulations

Comparison of the sample size formulas with various choices of
the correction factor, ¢

NO. Of PAI ﬁz 7f1 71:1 Estimated

clusters s.d s.d s.d s.d Power

95 0.239 0.244 0.051 0.101 86.1%
(92) 0.066 0.044 0.012 0.016

0 96 0.239 0.244 0.051 0.101 87.1%
m1 = 0.05 (91) 0.067 0.047 0.012 0.017

7o = 0.1 1 97 0.239 0.244 0.051 0.101 87.5%
(92) 0.068 0.047 0.011 0.017

88 0.237 0.243 0.051 0.101 81.0%

(91) 0.068 0.048 0.012 0.017

1 33 0.241 0.243 0.251 0.399 82.4%
(32) 0.041 0.030 0.040 0.043

33 0.241 0.243 0.251 0.399

0 82.4%
m = 0.40 (32) 0.041 0.030 0.040 0.043
my = 0.25 . 32 0.241 0.243 0.251 0.399 80.6%
(32) 0.042 0.030 0.040 0.044
* 32 0.241 0.243 0.251 0.399 80.6%

-1 (32) 0.042 0.030 0.040 0.044

33 0.243 0.241 0.399 0.251
1 81.0%
(33) 0.030 0.041 0.043 0.040

34 0.243 0.241 0.399 0.251

0 83.8%
w1 = 0.25 (33) 0.030 0.040 0.043 0.040
w2 = 0.40 1 34 0.243 0.241 0.399 0.251 83.8%
(33) 0.030 0.040 0.043 0.040
* 33 0.243 0.241 0.399 0.251 81.0%

1 (33) 0.030 0.041 0.043 0.040

1 21 0.241 0.241 0.400 0.600 69.0%
(21) 0.039 0.039 0.053 0.053

21 0.241 0.241 0.400 0.600

0 69.0%
w1 = 0.60 (21) 0.039 0.039 0.053 0.053
mo = 0.40 _ 21 0.241 0.241 0.400 0.600 69.0%
(21) 0.039 0.039 0.053 0.053
* 31 0.242 0.242 0.399 0.601 80.4%

35 (31) 0.031 0.031 0.044 0.044
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Table 1: (continued) Power Simulations

Comparison of the sample size formulas with various choices of
the correction factor, c

No. of o1 D2 1 1 Estimated

clusters s.d s.d s.d s.d Power

1 21 0.241 0.241 0.600 0.400 68.0%

(21) 0.039 0.039 0.053 0.053

22 0.242 0.242 0.600 0.401

0 66.2%
m = 0.40 (21) 0.038 0.038 0.052 0.052
m2 = 0.60 1 22 0.242 0.242 0.600 0.401 66.2%
(21) 0.038 0.038 0.052 0.052
* 32 0.243 0.243 0.601 0.399 80.0%

—-35 (32) 0.030 0.030 0.044 0.044

Note: The numbers at the top (in the first three cells corresponding to each (w1, m2)-
pair) of the third column are the no. of clusters calculated using the formula (8)
for the correction factors, ¢ = 1,0, —1, with p1 = p2 = 0.25, nominal power = 0.80,
«a = 0.05 and cluster size = 30. The mean, over the 1000 Monte Carlo samples of the
estimated, p1, p2, m1 and 72, the corresponding Monte Carlo standard deviations, and
the empirical power with the above no. of clusters are also given. The numbers, in
parenthesis at the bottom (in the first three cells corresponding to each (71, 72)-pair)
of the third column are no. of clusters calculated using the estimated p1, p2, 71 and
mo. Finally, the top number in column three for the row “*” is the minimum no. of
clusters (obtained by trial and error) to achieve 80% empirical power corresponding
to each (1, 72)-pair. In column 2, the number below “*” (in the same cell) is the
correction factor that gives the no. of clusters closest to achieving just above 80%
power with estimated p1, p2, ™1 and m2. The corresponding no. of clusters is given in
parenthesis in column 3 of row “*”.

Note the row labeled “*” corresponding to each (71, m2)-pair. The top number
in column 3 corresponding to this row is obtained by trial and error and is the
number of clusters required to achieve as close to the power of 80% as possible.
The corresponding estimated p’s and 7’s are presented in the same row for the
next four columns. Using these estimates, the choice of ¢ that provides the
number of clusters closest to that corresponding to “*” is listed below “*”. This
is the most “optimal” choice of ¢ for each setting of (71, 72)-pair.

4.4 Simulation Results and Explanation

Under the null hypothesis of equality of the rate of events, the nominal signif-
icance values were found, on average, to be around 0.05 (data not shown). The
numbers in Table 1 may be better explained using a particular case of (7, m2)-
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pair, say (0.01, 0.005), as an example (see Table 1).

The required number of clusters obtained via (8) for ¢ = 1, 0 and —1, with
simulation parameters specified above are 1013, 998 and 986 respectively. Respec-
tively for ¢ = 1, 0 and —1, the mean estimated p; are 0.236,0.236, and 0.236 and
the mean estimated ps’s are 0.244,0.243 and 0.243. The corresponding empirical
power is 87.1%, 86.1% and 85.1%, respectively. Since the p’s are somewhat un-
derestimated which could be an artifact of the data generation process, for true
comparison of the number of clusters needed by different values of ¢, we need to
compute these numbers based on the mean estimated p’s as opposed to the true
value of p = 0.25. Using the estimates, the corresponding number of clusters are
975, 962, and 948 respectively for ¢ = 1, 0, and —1. The last row (“*”) gives
the minimum number of clusters required to achieve 80% power which in this
particular case is estimated to be 933.

The mean estimated p’s in this case are comparable to those for ¢ = 1, 0
and —1, and hence the performance of the formula (8) with correction factors
¢ =1, 0 and —1 may compared by assessing the deviances 42 (= 975 — 933), 29
(=962 —933), and 15 (= 948 — 933). The best choice of the correction factor is
¢ = —1 corresponding to the least deviance compared to ¢ = 1 and ¢ = 0. Lastly,
the number below “*” provides the choice of ¢ that corresponds to the required
number of clusters closest to that given by “*”. In this particular case, a choice
of ¢ = —5 gives the number of clusters, 931, closest to that given by “*” 933.
Therefore ¢ = —5 is considered the most optimal choice of the correction factor
for detecting a doubling in proportion when m; = 0.01 and 7 = 0.005.

4.5 Conclusions from Simulation Results

Similarly assessing the results from all 10 scenarios presented in Table 1, the
following conclusions can be drawn:

e For (m,my) pairs with max{m, mo} < 0.0001, all three choices of ¢ = 0, —1,1
recommend higher sample size than optimal. Recommended value for num-
ber of clusters using ¢ = 3 and ¢ = —3 when m; > m and 7 < o, respec-
tively are more optimal.

e For all (m,m2) pairs with 0.01 < max{m,m2} < 0.4, ¢ = —1 is a better
choice than ¢ = 0,—1, when m; > m, and ¢ = 1 is a better choice when
T < 7.

e For all (71, m9) pairs with 0.4 < max{m,m2} < 0.6, all three correction
factors specified (namely, ¢ = 1, 0 and —1), provides underestimate for the
required number of cluster sizes. More extreme values of ¢ is needed to
produce optimal sample size but the value varies for particular pairs.
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5. CRT for Evaluation of Nicotine Gum and Motivational Interviewing
for Smoking Cessation: An Illustrative Example

Although there has been significant decline in smoking prevalence among
adults in the United States in the past few decades, it has not been the case in
all the subpopulation of smokers. This is particularly true in smokers below the
poverty level. An intervention study for smoking cessation in this subpopulation
is of significance, especially since studies have shown high prevalence and moti-
vation to quit among residents of low-income housing. Okuyemi et al. (2007)
reported the results from a CRT that tested nicotine gum plus motivational in-
terviewing (MI) for smoking cessation in 20 low-income housing developments
(HDs), in which intervention participants (10 HDs) received educational materi-
als addressing fruit and vegetable consumption, 8 weeks of 4 mg nicotine gum,
and 5 MI sessions on quitting smoking, and comparison participants (10 HDs)
received 5 MI sessions and educational materials only [11]. The sample size (-no.
of clusters-) calculation was based on the assumptions that there would be 20
participants in each of the 20 HDs, a moderate intra-cluster correlation of 0.02, a
6-month quit rate of 6% (1) in the comparison arm, and a 18% (m2) quit rate in
the cessation arm. Power analysis based on the DBB formula showed that there
would be 89% power to detect a significant difference between the two arms.

Since m; < 7o, from the results in the previous section, we suspect that the
DBB formula overestimated the required number of clusters, and that formula
(8) with a continuity correction factor of ¢ = —1 will provide a better estimate of
the required number of clusters. Indeed, a power simulation described in Table 2
provides support to our thinking. The number of clusters required in each arm to
detect a difference of 12% at 89% power (with all other assumptions kept same)
is respectively, 11, 9 and 8 cluster per arm, for ¢ = 1,0, —1 in (8). We generated
100,000 Monte Carlo two-samples of clusters, with 20 per cluster, for 4 different
scenarios: 11, 10, 9, and 8 clusters in each arm (-note that, 10 clusters in each
arm corresponds to the DBB formula that was used for the study design in [22]).
Since the estimates of p; and py are lower than the actual p; and pg used in Lunn
and Davis [18] method, we used p; = pa = 0.04 (which is more conservative than
0.02 used in [18]) for our power simulations.

From Table 2, we observe that even with 9 clusters per arm (corresponding
to ¢ = 0), the empirical power is greater than 89% and with 8 clusters per arm
(corresponding to ¢ = —1), the empirical power is 88.1%. But the estimated ps is
substantially higher than 0.02. So, with p; = p2 = 0.02, there is reason to believe
that even 8 clusters per arm would have been sufficient for 89% power. In other
words, this example illustrates the point that formula (8) with ¢ = —1 provides
a more accurate estimate of the required number of clusters for this choice of
(m1,m2). The reduction (that is, the improvement) in number of clusters is 20%
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((20 — 16)/20 = 0.2) which amounts to a substantial gain in terms of the cost of
conducting the study.

Table 2: Sample size comparison for the illustrative example: Pathway to
Health Study

Comparison of various sample size estimates for the Pathways to the Health Study

Method used for

sample size

No. of clusters Estimated Mean gi Mean g2 Mean 71 Mean 72

. in each arm Power s.e s.e s.e s.e
calculation
Formula (8) 1 94.9% 0.024 0.030 0.060 0.180
with ¢ = 1; (FLP) 70 0.0002  0.0001 < 0.0001 0.0001
DBB 0.023 0.029 0.060 0.180
Formula 10 92.9% 0.0002  0.0001 < 0.0001 0.0001
Formula (8) 9 90.8% 0.021 0.028 0.060 0.180
with ¢ =0 ©70 0.0002  0.0001 < 0.0001 0.0001
Formula (8) 8 88.1% 0.019 0.027 0.060 0.180
with ¢ = —1 e 0.0002  0.0001 < 0.0001 0.0001

Note: nominal power = 89%, « = 0.05, Number of Monte Carlo samples = 100,000.

6. Sample Size Table, Codes, and Guidelines for Designing CRT

We present in Tables 4 and 5 (in Appendix) with some sample size tabulations
for assistance with future trial design and show empirically the settings where
¢ = +3 recommend lower sample size. These tables provide the required number
of clusters obtained via (8) using ¢ = 1, 0, and —1 for various small values 7’s
(< 0.01), p = 0.01, and average cluster size of 30, 5% level of significance, and
80% power. We also provide the number of clusters required based on ¢ = 3
(when m > mo) and ¢ = —3 (when 7 < m2). “R” code for the sample size
computation (for Hy: 7 < m2) is provided below for easy implementation in any
other setting.

6.1 Code for Sample Size Computation

ss.crt < function(power, alpha, pil, pi2, n, rhol, rho2, c){
#+# c is the continuity correction factor,

## n is the cluster size

#7 the function ss.crt returns the required number of clusters

VIF < function(n, rho){
rslt < 1+((n-1)*rho)
return(rslt)}
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f.beta < function(z, level){
rslt < pnorm(z)-level}

f.z < function(level){
rslt < uniroot(f.beta, c(-10, 10), level = level)$root
return(rslt)}

A < function(power, alpha, pil, pi2, vifi, vif2){

pi < (pil+pi2)/2
mu < 1-pi

mul < 1-pil
mu2 < 1-pi2

vif « (vifl+vif2)/2

# beta < l-power
zbeta < f.z(power)
zalpha < f.z(1-alpha)

rslt < $(zbetax*sqrt(pil*mul*vifl+pi2*mu2*vif2))+(zalpha*sqrt (2*pi*
mu*vif))$

rslt « rslt’2

return(rslt)}

ss « function(a, pil, pi2, c){
terml < (4*(pi2-pil)*(1-c))
term2 < 1l+sqrt(1+(terml/a))

numer < (a*(term2)"2)
denom <+ (4*(pi1l-pi2)”\2)
rslt < numer/denom

return(rslt)}

vifl < VIF(n, rhol)
vif2 < VIF(n, rho2)
a < A(power, alpha, pil, pi2, vifl, vif2)
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rslt < ss(a, pil, pi2, c)
rslt < rslt/n

return(rslt)}

6.2 Connecting to the Motivating Example

Getting back to our motivating example, where we needed sample size com-
putation for the (1, mg)-pair of (0.0002,0.0001) the number of clusters needed
are 7975, 8629, 9260, 6574 respectively for the value of the correction factors
taking different values, with the last one being most optimal. This will mean
that 6574 hospitals with 30 surgery each will be needed to detect a halving of the
incidence rate of leaving foreign objects inside the patient during surgery. Since
for practical purpose, it will be easier if we can recruit higher number of patients
in each hospital (say 100 patients from each hospitals) and reduce our need for
convincing a big number of hospitals to join the trial, we compute the number of
clusters in that setting and find that 3279 hospitals will suffice.

7. Variable Cluster Sizes

The sample size formulas presented in this paper were derived under the
assumption that the cluster size was same across all the clusters. In real-life
situations, it is very rare to have equal cluster sizes, and hence it is not feasible to
design a study under such an assumption. In this regard, that is when the cluster
sizes vary, the sample size calculation methodology described in this paper has
limitations. In order to assess the performance of our sample size size formula
under variable cluster sizes, we conducted a simulation study; results of this
study are presented in Table 3. We considered two scenarios: 1) mp = 0.1,m9 =
0.05,p1 = p1 = 0.25, and 2) m; = 0.01, 72 = 0.005,p1 = p1 = 0.25. For the
first scenario, based on our methodology, the optimal number of clusters needed
assuming an equal cluster size of 30 at 80% power and 5% significance level is
90 (see Table 1); the corresponding optimal number of clusters for the second
scenario is 931. Keeping the overall sample sizes the same in each scenario (i.e.
90 x 30 = 2700 and 931 x 30 = 27930), we estimated the empirical power after
varying the cluster sizes. For example, in the first scenario, when we had 20,
50 and 20 clusters of respective cluster sizes 20, 30 and 40, the estimated power
was reduced to 77.1%. As an example from the second scenario, when 300, 331
and 300 clusters with respective cluster sizes 20, 30 and 40 were considered, the
estimated power decreased to 73.8%. Based on the results from Table 3, it looks
like our methodology is robust under small deviations from equal cluster size
assumption, but is limited when the variability in cluster size is substantial. In the
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first scenario, for example, when the size of 40 out of 90 clusters (i.e., 44%) differs
by 2 units, (i.e., 6.7%), the power is reduced by only 0.9%(= 80.8% — 79.9%).
On the other hand, in the second scenario for example, when the size of 600 out
of 931 clusters (i.e., 64%) differs by 10 units, (i.e., 33.3%), the power is reduced
by 6.3%(= 80.1% — 73.8%).

Table 3: Performance under variable cluster sizes

Performance under variable cluster sizes

Variable cluster size Estimated power
20 x 28 4+ 50 x 30 + 20 x 32 79.9%
m = 0.1, m2 = 0.05, 20 x 24 4+ 50 x 30 + 20 x 36 78.6%
p1=p2=0.25 20 x 20 4+ 50 x 30 + 20 x 40 77.1%
Optimal sample size = 90 x 30 30 x 28 4 30 x 30 4 30 x 32 79.8%
(90 clusters of cluster size 30) 30 x 24430 x 30 + 30 x 36 7. 7%
Estimated power = 80.8% 30 x 20 4 30 x 30 4+ 30 x 40 75.6%
Variable cluster size Estimated power
200 x 28 4+ 531 x 30 + 200 x 32 77.6%
w1 = 0.01, w2 = 0.005, 200 x 24 + 531 x 30 4 200 x 36 77.3%
p1=p2=0.25 200 x 20 + 531 x 30 4+ 200 x 40 75.7%
Optimal sample size = 931 x 30 300 x 28 + 331 x 30 + 300 x 32 77.0%
(931 clusters of cluster size 30) 300 x 24 4+ 331 x 30 + 300 x 36 76.6%
Estimated power = 80.1% 300 x 20 + 331 x 30 + 300 x 40 73.8%

Note: a = 0.05, Number of Monte Carlo samples = 100,000.
8. Discussions

The effect of an intervention (therapeutic device or drug administration,
lifestyle change, or health care delivery system change etc.) is often evaluated by
a cluster randomized trial. This implies that organizational units such as hospi-
tals, communities, or clinics are randomly allocated to treatment conditions and
all persons sampled from such cluster receive the same treatment assigned to the
cluster. Instead of randomizing clusters, one may randomize persons within each
cluster which is statistically more efficient but not always more convenient. We
provide a formulation for assessing number of clusters needed for trials like this
and show few existing formulations to be special cases.

Assumption of equal cluster size has been made in our formulation. This is
not a practical assumption. It has been shown that sampling 25% more clusters
when the sample sizes within cluster are extremely variable compensates for all
weaknesses arising from this increase in variability [21]. We expect this results to
be applicable for our setting. We also recommend using simulations as a back-up
to our methodology under the variable cluster assumption.
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There has been various approaches for generating correlated binary data.
Park (1996) provides a comprehensive review of related issues [26]. Lunn’s pro-
cedure, although straight and simple to implement, gave slightly biased estimates
of p for our simulation. Relying on approximate formulas is not ideal in the setting
of CRT unlike the IRT setting where there is a particular choice of the optimal
correction factor for all situation. This fact emphasizes the need for deriving a
formula based on exact methods for CRTs with dichotomous outcome.
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Table 5: Sample size tabulation

Number of clusters

Sample Size Formula for CRTs with Binary Responses

p1 = p2 = 0.01, cluster size = 30 p1 = p2 = 0.1, cluster size = 30
T T
L) ¢ 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 045 0.50 0.05 0.10 0.15 0.20 0.25 0.30 035 040 045 0.50
1 X 15 5 3 2 2 1 1 1 1 X 45 15 8 5 4 3 3 2 2
0.05 0 x 17 6 3 2 2 2 1 1 1 x 46 15 9 6 4 3 3 2 2
-1 X 18 6 4 3 2 2 2 1 1 X 48 16 9 6 5 4 3 3 2
1 15 X 24 7 4 3 2 2 1 1 45 X 71 21 11 7 5 4 3 2
0.10 0 14 x 25 8 4 3 2 2 2 1 44 x 72 22 11 7 5 4 3 3
-1 12 x 26 9 5 3 2 2 2 1 42 X 73 22 12 7 5 4 3 3
1 5 24 b 31 9 5 3 2 2 1 15 71 X 93 26 13 8 5 4 3
0.15 0 5 22 X 32 10 5 3 2 2 2 14 69 X 95 27 13 8 6 4 3
-1 4 21 X 34 10 5 4 3 2 2 13 68 X 96 27 14 9 6 5 4
1 3 7 31 x 38 10 5 3 2 2 8 21 93 X 112 31 15 9 6 4
0.20 0 3 7 30 X 39 11 6 4 3 2 8 20 92 X 114 31 15 9 6 5
-1 2 6 28 X 40 12 6 4 3 2 7 20 91 x 115 32 15 9 7 5
1 2 4 9 38 x 43 12 6 3 2 5 11 26 112 X 129 34 16 10 6
0.25 0 2 3 8 36 X 44 12 6 4 3 5 10 25 111 X 130 35 16 10 7
-1 1 3 8 35 X 45 13 6 4 3 5 10 25 110 X 131 35 17 10 7
1 2 3 5 10 43 X 47 13 6 4 4 7 13 31 129 X 141 37 17 10
0.30 0 1 2 4 10 42 X 48 13 6 4 4 6 12 30 127 X 143 38 18 10
-1 1 2 4 9 40 X 50 14 7 4 4 6 12 29 126 X 144 38 18 11
1 1 2 3 5 12 47 X 50 13 6 3 5 8 15 34 141 X 151 39 18
0.35 0 1 2 3 5 11 46 X 52 14 7 3 5 8 14 33 140 X 152 40 18
-1 1 1 2 4 10 44 X 53 15 7 3 4 7 14 33 139 x 154 40 19
1 1 2 2 3 6 13 50 X 52 14 3 4 5 9 16 37 151 X 157 40
0.40 0 1 1 2 3 5 12 49 X 54 14 2 3 5 8 16 36 150 X 159 41
—1 na 1 2 3 5 11 48 X 55 15 2 3 5 8 15 36 148 x 160 41
1 1 1 2 2 3 6 13 52 x 53 2 3 4 6 10 17 39 157 x 161
0.45 0 1 1 1 2 3 6 13 51 X 55 2 3 4 6 9 17 38 156 X 162
—1 na 1 1 2 3 5 12 50 X 56 2 3 4 5 9 16 38 155 x 163
1 1 1 1 2 2 4 6 14 53 b 1 1 1 2 2 4 6 14 53 x
0.50 0 1 1 1 2 2 3 6 13 52 X 2 2 3 4 6 10 17 39 159 x
—1 na na 1 1 2 3 5 12 51 X 2 2 3 4 6 9 17 39 158 X
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Note: nominal power = 80%, o = 0.05.
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