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Abstract: In this paper, a new approach of finding sub-structures in
chemical compounds by searching peak combinations in mass spectra
is given. Based on these peak combinations, further identification
and classification methods are also proposed. As an application of
these methods, saturated Alcohol and Ether are classified efficiently
by using a variable selection method.
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1. Introduction

Data mining (DM), also named knowledge discovery in databases (KDD)
is an extraction of interesting (non-trivial, implicit, previously unknown and
potentially useful) information or patterns from data in large databases
(Han and Kamber 2001). It has been widely used in computer science,
statistics, business management and biology, etc. Chemistry is an experience-
dependent science. Most of the rules and disciplines obtained in this field
come from chemical experiments and measurement data. With the growth
of chemical measurement and modern information technology, more and
more huge databases containing a large amount of chemical compounds in-
formation are established, such as the spectral databases, chromatographic
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databases, or databases on molecular structures and their properties. How
to discover new information from such huge collections is a new challenge.

In this paper, we wish to explore new knowledge from a mass spec-
tral library, especially, we investigate sub-structures in different chemical
compounds. By comparing large amount of compounds stored in the mass
spectral library, we can define a certain peak combination that represents
the character of a certain sub-structure. As long as these connections be-
tween peak combinations and sub-structures are established, further inves-
tigations can be carried on. As an example, saturated Alcohol and Ether
can be classified efficiently by using a variable selection method.

All the data used in this paper are taken from the same mass spectral
library as in Liang and Gan (2001). It was established by transferring
NIST62 mass spectrum library, which is built in the GCMS-QP5000 of
Shimadzu.

The paper is organized as follows. Section 2 introduces the method
for finding sub-structures by searching peak combinations in mass spectra.
Three case studies are demonstrated in Section 3. The last section gives
some discussion.

2. Method for Sub-structure Discovering

2.1 Concept of peak combination

Mass spectrum is one of the most important spectra in Chemometrics.
It can identify different chemical compounds by showing different spectral
skeleton. But, generally speaking, how to identify efficiently or how to clas-
sify different compounds by the analysis of mass spectra is still an open
problem as up to now more than 23,400,000 chemical compounds have been
found. In the past decades, many authors have used the values of sin-
gle peaks as variables to identify or classify different chemical compounds,
see, for example, Gan et al. (2001). However, different peaks occurring
in the mass spectrum should not be regarded as independent with each
other. In fact, many series of peak combinations in mass spectrum are
always relevant, as it will be seen in the later discussion. In Werther et
al. (1994) and Werther et al. (2002), the authors proposed some vari-
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ables representing the character of the compounds based on the peak val-
ues of the origin mass spectra. Many features (transformations), such as
“Modulo-14-features”, “Autocorrelation features”, “Logarithmic intensity
ratios” and “Spectra type features” have appeared in the literature. Es-
pecially, the feature “characteristic peak series” presented in Werther et
al. (2002) shows some prior information of sub-structure contained in the
compounds. They used three peak combinations, that is, peak values of
64-65-66-90, 28-55-82-109 and 45-59-73-87-101 to identify the existence of
sub-structures “nitrogen-substituted pyrimidine”, “[(HCN)1−4 +H ]+” and
“[CnH2n−1O2]

+”, respectively. How to select more of such characteristic
peak combinations is the motivation of the present paper.

Mass spectrum is a stick diagram which records the abundances of dif-
ferent ions broken from the vaporized organic molecular after its being bom-
barded by a stream of electrons. Firstly the organic molecular is to become
an energetically unstable molecular ion, and then the molecular ion is subse-
quently broken into a host of particles. Among them, those fairly larger and
unstable particles continue to be broken into smaller ones. During the frag-
mentation, the charged particles will be accelerated, deflected and detected
by the mass spectrometer and finally be recorded in the mass spectrum.
Figure 1 is a typical mass spectrum of Heptane.

Figure 1: The Mass Spectrum of Heptane

From the formation of the mass spectra, we see that each charged parti-
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cle during the fragmentation may leave a line in the mass spectra and these
series of particles are produced step by step. Thus, when two compounds
contain a common sub-structure, same particles may have chances to ap-
pear during the fragmentation and their “trace” will be recorded in the mass
spectra. If we check large amount of known compounds in the library, we
can select certain position combinations occurring together most frequently
in the mass spectra. Tabulating these position combinations in a file, we
browse the database again and compare the performance of different com-
pounds on each fixed position combination. We can select certain position
combinations on which some of compounds perform the same behavior, i.e.
their mass spectra share similar peak values on the corresponding position
combinations. We call such a position combination a peak combination.
And those compounds are called models. Then we will draw a conclusion
that all models on a peak combination belong to the same class in the sense
of their existing a common sub-structure. So roughly speaking, a peak com-
bination in mass spectra corresponds to a sub-structure in compounds. In
this way, the spectrum-structure information can be established.

Two types of peak combinations are defined as follows. The first type
is called “subsequential type”. It refers to such peak combinations that are
formed by recording a series of subsequential ions from big to small. In the
mass spectrum, it has the character of the following properties:

a. different positions in such peak combinations scattering far from each
other;

b. each position with higher abundance.

Another type is called “cluster type” that is typically formed by losing
several small particles from a definite ion fragment and has the following
properties:

1. the positions of these peak combinations occurring together in an
area of mass spectrum, constituting a cluster of a family;

2. at least one of the abundance of different positions should be higher,
but some can be fairly low.

As showed in Figure 1, 71-57-43-29 can be regarded as the subsequential
type, while 26∼29, 39∼44, and 53∼58 can be regarded as the cluster type.

2.2 Data set construction
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As stated in Subsection 2.1, we establish a data file which records the
position combinations frequently occurring in the mass spectral library. It
will be used for the later comparison. Corresponding to the two types of
peak combinations defined above, we adopt two strategies to search them
in the mass spectral library.

For the subsequential type, we list all the peak positions with their
abundance above a threshold for each selected sample. Then from these po-
sitions we select their combinations most frequently occurring in the same
mass spectra, say, the frequency ratio of their occurrences together in the
total samples is above 10%. For a typical mass spectrum, it always has
several scores of peaks, sometimes even more than one hundred. So when
the mass spectral library is large enough, it is a hard task to list all these
position combinations. In our program, instead of listing all these position
combinations, a random selection method is used. That is, we randomly
select certain position combinations whose single peak positions occur fre-
quently, then record those position combination whose occurrences in the
mass spectra library as a whole are above the threshold value. Though this
substitution may leave out many characteristic peak combinations, it might
explore some interesting results in our experiment, where the number of
selection time is set to be a fairly large number, for example, 100,000 times.

For the cluster type, we record all the successive positions with definite
length which most frequently occur in the database. Here we admit of
at most one zero value among these positions. For example, if we set fixed
length five, and many compounds have non-zero values on 41-42-43-45, then
we also regard 41∼45 as a position combination. From now on, the data
set is constructed by the above method.

2.3 Sub-structure learning

It should be emphasized that the position combinations in the data set
are not necessary to link to certain sub-structures existed in compound.
However, if a certain sub-structure does exist in some compounds, it may
leave some information related on these position combinations.

Given a compound, whether it is in the library or not, we can compare its
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values on all the recorded position combinations with those of compounds
listed in the library. If there are some compounds in the library share sim-
ilar values on a certain position combination with the given compound, we
can pick out these compounds. As stated in Subsection 2.1, such position
combination is now defined as a peak combination and will link to a certain
sub-structure, while these compounds are treated as models. In the pro-
gram, we use two similarity indices for the behavior of two compounds on
each of these peak combinations. The first one is the correlation coefficient.
Denote A = {a1, a2, · · · , an} and B = {b1, b2, · · · , bn} the corresponding
value vectors on n-peak combination of two compounds, respectively. The
correlation coefficient between A and B is defined as follows:

ρ =

n∑
i=1

(ai − a)(bi − b)

√
n∑

i=1

(ai − a)2

√
n∑

i=1

(bi − b)2

,

where a and b represent the mean of A and B, respectively, i.e., a =
1

n

n∑
i=1

ai

and b =
1

n

n∑
i=1

bi. The second one is called coefficient of variation (CV ):

CV =

√√√√ 1

n − 1

n∑
i=1

(Ri − R)2

/
R,

where
Ri =

ai

bi
, i = 1, 2, · · · , n,

and R =
1

n

n∑
i=1

Ri represents the mean of Ri. It is obvious that if some bi

equals zero while the corresponding ai is a non-zero value, then compound
A and B must not share the common behavior on this peak combination,
so we terminate the process. The two criteria can frequently be seen in the
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literature, we use both of them for comparison. The threshold values of the
two criteria can be fairly arbitrary. Generally speaking, they don’t affect
the result much. In Case Study II in Section 3, they are set to be 0.99 and
0.15 in the program, respectively. However, when the sample size is not so
large, as it will be showed in Case Study I, they are set to be 0.99 and 0.25.
And when we want to get more peak combinations for later identification
and classification, as in Case Study III, they can be set even looser.

Before ending this section, we summarize the whole procedure for search-
ing peak combinations from mass spectra into the following steps:

Step 1: According to the two types of peak combination, use two cor-
responding ways of searching methods introduced in Subsection
2.2 to list position combinations.

Step 2: For each position combination found in step 1, select a compound
in the library, and calculate two similarity indices between the
other samples with the one selected.

Step 3: Record the samples whose correlation coefficient is above the
bound and whose coefficient of variation is below the bound.
Check these samples whether they share a common sub-structure.
If so, then regard the position combination as a peak combi-
nation. And these samples with satisfied similarity indices are
recorded as models.

Step 4: Iterating step 2 and 3 after all the samples are selected for com-
paring.

Step 5: Iterating step 2, 3 and 4 after all the position combinations in
step 1 are tested.

3. Case Studies

In this section, three case studies are investigated and show that the
peak combination approach is very useful in data mining.

Case Study I. We use 34 saturated Alcohol and Ether with molecule
weight 102. Using the searching method in Subsection 2.2 and 2.3, we
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find several peak combinations in Table 1 which seem to represent the sub-
structure CH3CH(OH)− existed in compounds (in this paper, the Index
means the serial No. in NIST62).

Table 1: Peak combinations in the first experiment

Index
(Model)

Value of peaks Molecular formula

−−
1769
1773
1777
1792
1794

27 29 41 44 45
7.2 7.2 13.6 6.8 100.0
8.8 7.2 18.0 6.8 100.0
11.614.0 19.2 11.6100.0
8.0 7.6 15.6 6.0 100.0
8.0 8.4 15.2 6.8 100.0

CH3(CH2)3CH(OH)CH3

CH3CH(CH3)CH2CH(OH)CH3

CH3CH2CH(CH3)CH(OH)CH3

CH3(CH2)3CH(OH)CH3

CH3(CH2)3CH(OH)CH3

Figure 2: Results selected from 8000 compounds

Here We find that No. 1769, 1792 and 1794 have the same peaks pattern,
it is not surprise as they share the same molecular formula CH3(CH2)3CH(OH)CH3.
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We also check the above rule in the whole library. For each compound
in the library, we compared it with the selected models in the rule, that is,
calculate the ρ and CV on the position combination 27-29-41-44-45. If the
average of ρ and CV are greater than 0.9 and 0.25, respectively, we claim
that the compounds contain the sub-structure CH3CH(OH)−.

Figure 2 lists the compounds it finds from serial No. 5501 to 13501.
Most of them contain sub-structure CH3CH(OH)− in deed. What should
be pointed out is that the base peak 45 seems much more important. How-
ever, in all the 34 samples, there are five types of Ether with base peak 45
listed in Figure 3. Single peak value may mix up all of these substances.
We distinguish them by using peak combinations.

Figure 3: Ether in 34 samples with base peak 45

Case Study II. We use all single alkene and cycloparaffinic hydrocar-
bons in the library and altogether there are 693 compounds. Similar to
Case Study I we only list the result peak combinations in Table 2.

Case Study III. This is the most interesting one. As we know, it is a
difficult task to distinguish whether a compound is Alcohol or Ether due to
their similar properties. In this experiment we will present an efficient way
to distinguish these two classes by using peak combinations.

We select all saturated Alcohol and Ether in the library. Altogether
there are 375 samples, with 295 types of Alcohol and 80 types of Ether. We
use half of them, i.e. all the even order in the 375 samples sorted by the
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Table 2: Peak combinations in the second experiment

Index
(Model)

Value of peaks
Possible

Sub-structure
−−

18491
21972
25488
28779
34426

54 55 57 67 68 111
14.80 81.60 60.00 12.00 12.80 15.20
15.60 80.40 60.40 12.80 13.60 15.60
14.80 84.80 66.00 13.60 14.00 19.20
16.40 91.60 66.00 15.20 14.40 24.40
15.20 88.40 71.60 14.00 14.40 22.40

CH2 = CH−

−−
28772
28776
34414
34415
34422
39519

29 67 82 83 84 111
29.20 20.40 16.80 66.40 32.40 22.40
24.00 14.80 12.00 51.60 24.00 15.20
30.40 19.60 18.80 72.80 31.60 26.80
23.20 14.40 13.20 54.80 21.20 17.20
34.80 20.40 16.40 77.20 28.80 22.40
31.60 21.20 20.00 84.80 30.00 29.20

−CH = CH−

−−
28770
31652
34421
34423
37069

43 55 82 97 111
73.20 100.00 65.60 58.80 26.00
73.20 90.80 61.60 52.80 21.20
66.00 84.80 61.60 50.80 20.00
67.60 82.80 58.00 51.20 25.20
62.40 74.40 59.60 50.40 19.60

K6 − CH <

−−
31650
31651
31652
34420
34421
37067
37071
50827
50829

53 54 55 56 57 58
3.60 8.40 97.20 25.20 100.00 3.60
3.60 7.60 87.60 18.00 93.20 3.60
3.60 8.00 90.80 18.00 100.00 3.60
3.20 7.20 85.60 17.20 91.20 4.00
3.20 8.00 84.80 19.60 100.00 3.60
4.00 9.20 87.60 22.40 98.00 3.60
3.20 7.60 77.60 16.40 100.00 3.60
3.60 10.00 96.80 22.00 95.20 4.00
3.60 10.00 98.40 23.20 100.00 4.40

K6 − CH <

−−
4653
4664
4674
11059
11074
11081

50 51 52 53 54 55 56
2.00 4.40 2.80 14.40 15.60 100.00 56.00
2.00 4.80 2.80 16.00 16.00 100.00 57.60
1.60 4.00 2.40 13.60 13.60 100.00 61.20
1.60 3.60 2.40 14.40 14.80 100.00 60.00
1.60 3.20 2.00 12.00 12.40 62.00 47.20
2.00 4.00 2.80 15.20 14.80 93.60 62.40

−CH = CH−

serial No. in NIST62, to establish a classifier, and use all of them (including
the training samples) to check the efficiency of the classifier. Firstly, as done
in the above two experiments, we also list all the peak combinations the
program finds. While here there are some differences. As the second “cluster
type” peak combination allows of zero value (as pointed out in Subsection
2.2), it is not used here to define variables. For the first “subsequential
type” peak combination, the bound values of the two criteria, i.e. ρ and
CV , are set to be a little looser. In fact, in the program they are set

490



Sub-structures Learning in Mass Spectra

to be 0.7 and 0.3, respectively in order to present more chances to find
useful variables which can classify the compounds. As a result, we obtain
1381 peak combinations. In the following, we will define corresponding 1381
variables based on these peak combinations. Also we use a variable selection
method to select some of these important peak combination variables to
establish a linear model to classify Alcohol and Ether efficiently. If a peak
combination forms by positions P1, P2, · · · , Pl with models a1, a2, · · · , an,
then we define a corresponding variable v as follows. For convenience, we use
the notation x(Pj) to represent the abundance of compound x on position
Pj . Denote

mj =
1

n

n∑
i=1

ai(Pj), j = 1, 2, · · · , l.

For each compound x, the variable v can be calculated as follows:

vx =

√√√√ 1

l − 1

l∑
i=1

(Rj − R)2

/
R, (1)

where

Rj =
x(Pj)

mj
, i = 1, 2, · · · , l,

and R =
1

n

l∑
i=1

Rj . However, these 1381 peak combination variables may

be highly correlated and may not be efficient enough to distinguish the two
classes. We aim to select several of them to establish the classifier. For this
reason two steps are added on these peak combination variables. Firstly,
we eliminate the highly correlated variables. If the correlation coefficient of
two such variables is higher than 90%, one of them will be removed. After
this process, 162 variables are left to be further selected from. Then we use
a variable selection method proposed by Fan and Li (2001). The main point
of this method is to use penalty functions which are symmetric, nonconcave
and have singularities at the origin to produce sparse solutions. The authors
also provide an algorithm in their paper for optimizing penalized likelihood
functions. Here we apply their algorithm to our database. To the end, it
recommends six variables. After checking with the origin peak combinations
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record, we find these six variables correspond to the six peak combinations
listed in Table 3.

Table 3: Peak combinations in the third experiment

Position Index(Model) Value of peaks

29 67 82 97 125

26420
29675
40236
46406
55569

36.0 19.6 36.0 56.0 14.4
29.2 18.8 42.8 57.2 12.0
30.4 18.8 44.0 72.0 19.2
39.6 19.2 31.6 76.4 13.2
27.2 13.2 21.6 55.2 10.8

70 81 84 98 125

26420
40236
46406
55569
57795

34.0 14.0 22.8 13.6 14.4
39.6 12.4 27.2 16.4 19.2
34.0 14.8 24.8 20.0 13.2
23.2 10.4 14.4 12.4 10.8
28.4 11.6 17.2 11.2 10.4

29 67 83 111 125

26420
29675
40236
46406
55569

36.0 19.6 66.8 28.4 14.4
29.2 18.8 82.8 27.6 12.0
30.4 18.8 82.8 36.4 19.2
39.6 19.2 71.2 33.2 13.2
27.2 13.2 48.4 24.0 10.8

31 55 82 85 98

26420
29675
32424
37841
40236

16.0 95.2 36.0 18.8 13.6
20.4 100.0 42.8 14.8 17.6
22.4 100.0 39.2 15.2 16.0
18.0 100.0 41.2 22.0 20.0
20.8 100.0 44.0 22.0 16.4

69 81 84 98 111

26420
32424
40236
46406
55569
57795

68.0 14.0 22.8 13.6 28.4
82.0 12.4 29.2 16.0 25.2
77.2 12.4 27.2 16.4 36.4
61.2 14.8 24.8 20.0 33.2
46.8 10.4 14.4 12.4 24.0
62.4 11.6 17.2 11.2 23.6

54 69 81 84 97

26420
29675
32424
40236
46406

13.2 68.0 14.0 22.8 56.0
12.8 80.0 10.4 32.4 57.2
14.8 82.0 12.4 29.2 57.2
12.4 77.2 12.4 27.2 72.0
13.6 61.2 14.8 24.8 76.4
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Define a response variable y. For Alcohol, set y = −10; for Ether, set
y = 10, then the variable selection method proposed in Fan and Li (2001)
also gives a linear regression on these six variables, which is listed in the
following:

Y = 0.0989v1 + 0.0907v2 − 0.0632v3 − 2.6395v4 + 0.0244v5 − 0.0368v6. (2)

Here vi, i = 1, 2, · · · , 6 represents the i-th variable in the sense of (1). Use
this regression model, we check all 375 samples, and obtain an extremely
satisfied result with only one misclassification. We show it by Figure 4.

0 50 100 150 200 250 300 350 400
−50

0

50

100

150

200

250

300

0 50 100 150 200 250 300 350 400
−20

−10

0

10

20

Figure 4: Regression result in the third experiment. Top: for all the
samples; below: after removing the outlier.

The misclassification sample is called Nonacosan-10-ol with molecular
form C29H60O. Its mass spectrum is showed in Figure 5. Deep investigation
into this mass spectrum, we can find that it has totally 10 peaks and all of
the peaks are separated from each other. It is strange in our knowledge and
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Figure 5: The mass spectrum of Nonacosan-10-ol.

may be considered as an outlier. Thus the program distinguishes it out of
the other compounds.

It should be noted that the same process has been added to the Case
Study II and the result is even better. Alkene and cycloparaffinic hydro-
carbons are classified exactly with five variables. So it has a potential
application in classification of chemical compounds.

4. Conclusion and Discussion

In this paper, a new classification approach of dealing with the mass
spectra is proposed. By selecting characteristic peak combinations of dif-
ferent sub-structures, different compounds can be identified and classified
using prior information obtained from a given library.

What’s more, the above approach can be extended directly to determine
a mixture with several different compounds, which is mostly useful for the
determination and classification in the Chinese herbal medicine. Due to
the experiment conditions and other constrains, pure component can’t be
picked out by using high-resolution chromatography. Thus, the mass spec-
trum obtained may represent a combination of more than one compound’s
skeleton. It makes the decomposition of the mixture and one-one match
work more complex. However, if we use the information of peak combina-
tions comparison, we may recognize these compounds even when they are
not contained in the library samples. We can identify the sub-structures
from these peak combinations, and finally reconstruct the compounds the
mixture contains by combining these sub-structures.
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In short, peak combinations approach can provide a new chance for the
analysis of mass spectra. A series of subsequent results will be carried out.
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