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Abstract: Variable selection is an important tool in QSAR. In this
article, we employ three known techniques: sliced inverse regres-
sion (SIR), principal components regression (PCR) and partial least
squares regression (PLSR) for models to predict the boiling points
of 530 saturated hydrocarbons. With 122 topological indices as in-
put variables our results show that these three methods have good
performance and perform better than some existing methods in the
literature.
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1. Introduction

The goal of quantitative structure and activity relationship (QSAR)
research is to establish a relationship between certain molecular activity
and molecular descriptors by means of statistic tool (Devillers and Balaban
1999):

A(activity) = f(molecular structure) = f(molecular descriptors).

For example, one can predict the molecular physicochemical, biological and
toxicological properties from the statistic model based on chemical charac-
teristics. One of the most frequently used chemical characteristics is the
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so-called topological index (TI). A TI is a numerical value which is in-
tended to characterize the chemical structure of the underlying chemical
compound. This numerical value quantifies a link between molecular ac-
tivity and molecular structure of this compound. The concept of TI is so
attractive that we are flooded with various TI’s in the literature. Since the
Wiener index, the first TI, was proposed in 1947, more than four hundred
TI’s have been defined by researchers. The TI’s are proposed with a mind to
capture the most important characteristic of molecular activity and struc-
ture of the compound. But molecular activity and structure are complex
matters so no such TI that can completely determinate molecular activity
for a certain class of chemical compounds. A natural approach, in fact a
popular direction used by many authors, is to consider all possible TI’s and
choose a set of TI’s such that one can predict a certain molecular activity
based on this set.

Along this line of approach there exist many difficulties, such as (a) there
are strong collinear among TI’s; (b) many useful techniques of model selec-
tion, like the backward elimination and best subset, cannot be implemented
as the number of possible models is 2p which become large exponentially
fast. It is clear that, with this approach, it is difficult to reach an ideal
model. As a result, many more new TI’s have have been proposed every
year. It leads more serious situation in difficulties (a) and (b). Thus, se-
lection of the efficient variables becomes very important in QSAR studies.
How can we select efficient variables and use them to construct an ideal
model? In this paper, we take the view that the performance of a learning
method is measured by its prediction capability on independent test data.
From this view, the better prediction on the new test data, the better the
model is. We will use cross-validation for performance assessment in this
paper. But first let us discuss about the interplay between bias, variance
and model complexity.

1.1 Model selection and bias-variance tradeoff

Assume we have p input variables for each of the n responses. For exam-
ple, in this paper, each variable may be a certain TI and each response is a
boiling point of a compound under consideration. The output of n samples
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can be summarized as a n-vector y = (y1, y2, · · · , yn)′. The i-th observed
value is written in lowercase as xi = (xi1, xi2, · · · , xip), corresponds to the
p TI’s of this compound. In this paper, matrices are denoted by bold up-
percase letters, for example, a set of n input p-vectors xi, i = 1, 2, · · · , n
would be written by the n × p matrix X = (xij) and the j-th column of X
is denoted by x(j). Give an input matrix X, the prediction of output y is
typically denoted by ŷ. We will use the design matrix X and the response
data y to find new variables for better prediction of the boiling points of
compounds in the testing samples. These new variables are also called new
features and the methods we employ are basically dimension reduction tech-
niques. All the new features derived by the dimension reduction methods
will be denoted as zm, m = 1, 2, · · · , M . The meaning of these notation will
remain unchanged through this paper unless specified otherwise.

Assume that the true model is y = f(X) + ε where E(ε) = 0, V ar(ε) =
σ2

ε . It is unknown and we want to find an approximate model f̂(X) to
replace the true one. The square residual at X = x0 under the f̂(X) is

Err(x0) = E[(y0 − f̂(x0))
2|X = x0]

= σ2
ε + [f(x0) − Ef̂(x0)]

2 + E[f̂(x0) − Ef̂(x0)]
2.

= σ2
ε + Bias2(f̂(x0)) + V ar(f̂(x0))

= Irreducible Error + Bias2 + V ariance.

For a linear approximate model f̂(x) = xβ̂, where β̂ is the least square
estimator of β, we have

Err(x0) = E[(y0 − f̂(x0))
2|X = x0]

= σ2
ε + [f(x0) − Ef̂(x0)]

2 + V ar[f̂(x0)]

= σ2
ε + [f(x0) − Ef̂(x0)]

2 + ‖h(x0)‖2σ2
ε .

Here h(x0) = x0(X
′X)−1X′. While this variance changes with x0, its

average (over n1 testing sample values) is p
n1

σ2
ε , hence,

1
n1

∑n1

i=1 Err(xi) = σ2
ε + 1

n1

∑n1

i=1

[
f(xi) − Ef̂(xi)

]2

+ p
n1

σ2
ε (1)

How to minimize 1
n1

∑n1

i=1 Err(xi) is the goal of constructing a satisfied
model. Let’s study the three parts on the right hand side of equation (1)
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above:
(1) The first term on the right hand side of (1) cannot be avoided no matter
how well f(xi) to be estimated;
(2) The second term is:

Bias2 =
1

n1

n1∑
i=1

[f(xi) − Ef̂(xi)]
2.

Let β∗ denote the parameters of the best fitting linear approximate to f :

β∗ = argminβ∗E(f(x) − xβ)2,

then,

Bias2 = 1
n1

∑n1

i=1[f(xi) − Ef̂(xi)]
2

= 1
n1

∑n1

i=1[f(xi) − xiβ∗]2 + 1
n1

∑n1

i=1[xiβ∗ − E(xiβ̂)]2

= [Model Bias]2 + [Estimation Bias]2.

If β̂ is ordinary least squares estimation, the “Estimation Bias” is zero,
while “Model Bias” can only be reduced by enlarging the dimension of the
input variables space, p.
(3) The third term p

n1
σ2

ε obviously increases as p increases.
So there is a bias-variance tradeoff behavior. The Figure 1 shows the

typical behavior of the test and training error, as model complexity is varied.

1.2 Cross-validation

In this subsection we describe the cross validation method that we shall
use to find a suitable set of p variables in our eventual model which mini-
mizes prediction error of testing samples.

Ideally if we have enough data, we would set aside a validation set and
use it to assess the performance of our prediction model. Since data are
often scare, this is usually not possible. To finesse the problem, K-fold cross-
validation uses part of the available data to fit the model, and a different
part to test it. We split the whole data into K roughly equal-sized parts; for
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Figure 1: Test and training error as a function of model complexity.

example, denote the full data set by T , divide T into K mutually disjoint
subsets with approximately the same size. For each k = 1, 2, · · · , K, we use
T − T k and T k as the training set and testing set respectively. We find
the fitted function f̂−k(β) using the training set T − T k and then calculate
the prediction error of the fitted model when predicting k-th part of the
data. We repeat this for k = 1, 2, · · · , K and combine the K estimates of
prediction error. So the cross-validation estimate of prediction error is:

CV (β) =
1

N

N∑
i=1

(yi − f̂−k(i)(xi; β))2.

Typical choices of K are 5 or 10 when the number of observations is very
large. The case K = N is known as leave-one-out cross-validation. Our data
has 530 observations and we employ leave-one-out cross-validation to assess
the ability of every method. At the same time, the function CV (β) provides
an estimate of the test error curve, and we find the tuning parameter β that
minimizes CV (β). The final model is thus obtained for fitting all the data.
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In this paper three function approximation methods, i.e. sliced inverse
regression (SIR), principal components regression (PCR) and partial least
squares regression (PLSR) are compared. These methods are evaluated
under the framework of chemometrics, especially in QSAR research. We
further analyze similarities, difference and efficiency of these methods from
their basic reasoning and concept. Finally, we compare our results with
that of previous work and conclude that SIR, PCR and PLSR are promising
methods in reducing the dimension of variable space.

This paper is organized as follows. In Section 2, we will briefly introduce
the methods of SIR, PCR and PLSR. Then, in Section 3 these three methods
are applied to a real set of chemical data. The cross-validation is employed
for comparisons among the models recommended by the three methods.

2. Dimension Reduction

In this section, three methods, sliced inverse regression (SIR), principal
components regression (PCR) and partial least regression (PLSR) are briefly
introduced.

2.1 Sliced inverse regression (SIR)

The data set for SIR is of the same form as for a typical linear regression.
There are n observations on p variables. A typical observation is of the form
(yi, xi1, xi2, · · · , xip), i = 1, 2, · · · , n. We can, of course, rewrite it with the
familiar matrix notation: the response vector y is a n × 1 together with a
design matrix X which is n × p in size. The distribution of X is assumed
elliptically symmetric (e.g., the normal distribution). Li (1991) suggests a
model with the structure

y = g(xβ1,xβ2, · · · ,xβm, ε),

which is used to approximate the true one, where g is an unknown func-
tion. In SIR, β1, β2, · · · , βm are m p-dimensional column vectors, called
projection directions. A salient feature of SIR is the concept of the effec-
tive dimension reduction (e. d. r.) space B which is generated by the
m vectors β1, β2, · · · , βm. Any non-zero vector in the e.d.r. space is called
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an e.d.r. direction, and in a typical SIR application, it is hoped that m
is much smaller than p. If this is the situation, then we only need to find
estimates of these m p-dimensional vectors β1, β2, · · · , βm determined up to
an equivalence relation defined by (xβ1,xβ2, · · · ,xβm).

In exploring non-linear relationship between y and x, SIR considers
the inverse regression that treats y as if it were the independent vari-
able and treat x as if it were the dependent variable. In fact, it is the
curve η(y) = E(x|y), treated as a function of x but conditioning on y,
that is to be explored. We denote conditional covariance matrix of x by
Ση = Cov(E(x|y)). Note that the point E(x|y = y), being p-dimensional
by definition, stays in p-dimensional space, it can be shown that it is con-
tained in the linear subspace spanned by Σxβi, i = 1, 2, · · · , m, where Σx is
the covariance matrix of x. The details of the theory can refer to Li (1991).

The estimations of β1, β2, · · · , βm can be obtained from the eigenvalue
decomposition of Ση with respect to Σx: Σηβi = λiΣxβi, (λ1 ≥ λ2 ≥, · · · ,≥
λp) where λi is the i-th eigenvalue and βi is the corresponding eigenvector.
For detailed statistical theories justifying the inverse regression view, read-
ers are referred to Li (1991), and Duan and Li (1991), Zhu and Fang (1996)
and Chen and Li (1998).

Algorithm 1. Sliced inverse regression

1. Standardize each observation xi = (xi1, xi2, · · · , xip) by x̃i = (xi −
x̄)Σ̂

− 1
2

x for i = 1, 2, · · · , n, where Σ̂x and x̄ are the sample variance matrix

and sample mean, Σ̂
1/2
x is the positive defined squared root of Σ̂x and Σ̂

−1/2
x

is the inverse of Σ̂
1/2
x .

2. Sort the response y = (y1, y2, · · · , yn)′ from the smallest to the largest.
3. Partition the standardized data set x̃i’s into H slices according to the

sorted sequence of y: nh is the sample size in the slice Ih, h = 1, 2, · · · , H.
We choose I’s so that nh are approximately equal.

4. Compute the sample mean of each slice:

η̂h =
1

nh

∑
i∈Ih

x̃i.

5. Find the eigenvalues and eigenvectors for the weighted covariance
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matrix:

V̂ =
1

n

H∑
h=1

nhη̂
′
hη̂h

denote its sorted eigenvalues by λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂p and their corresponding
eigenvectors by v̂1, v̂2, · · · v̂p.

6. Compute the estimation of e.d.r. direction by β̂i = Σ̂
− 1

2
X v̂i, i =

1, 2, · · · , m.

We call the eigenvector β̂1 the first SIR direction and Xβ̂1 the first SIR
variate, Xβ̂2 the second SIR variate, and so on. After finding a good e. d.
r. space, we can project data into this smaller space and then estimate the
response surface applying smoothing techniques to this projected variables.
For the sake of simpleness, the models which we will estimate are assumed
linear regression models based on the new input variables.

2.2 Principal components regression (PCR)

When a regression model has a large number of input variables, the
collinearity between variables is always the problem. One approach to over-
come this difficulty is to transfer the original variables to be new orthog-
onal variables and hoping just a few of them will accommodate most of
the variations of the data set. This approach has been long employed in
the statistical literature. For example, the principal components analysis
accords with this idea. It “models out” the main part of the variation from
the original data set X by:

zm = Xvm, m = 1, 2, · · · , M ≤ p,

where the vector vm is the eigenvector associated to the m-th largest eigen-
value of the covariance matrix Cov(X). If this set of eigenvalues can be
found, then a model based on y, regressed over z1, z2, · · · , zM , can serve as
a simpler model for prediction. Since the principal components zm’s are
orthogonal, this regression is just a sum of univariate regressions,

ŷpre = ȳ +

M∑
m=1

θ̂mzm,
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where θ̂m = 〈zm,y〉
〈zm,zm〉 . And because the zm’s are linear combinations of the

original x(j)’s, we can express the least squares solution in term of coeffi-
cients of the x(j)’s

β̂pre(M) =

M∑
m=1

θ̂mvm

Note that if M = p, we would just get back the usual least squares estimates.
If M is less than p, the number of dimension of original variable space can
be reduced.

2.3 Partial least squares regression (PLSR)

Partial least squares regression (PLSR) is another approach aimed for
dimension reduction which was introduced by Wold (1975). The idea of
PLSR is similar to that of PCA, but with the modification that both y and
X are considered in the process. In PCA, only X is used. It begins by
computing the univariate regression coefficient γ̂1j of y on each x(j), that
is, γ̂1j =

〈
x(j),y

〉
/
〈
x(j),x(j)

〉
. When x(j) is standardized to have mean

0 and variance 1, we will have a simpler formula: γ̂1j =
〈
x(j),y

〉
. The

quantity z1 =
∑

γ̂1jx(j) is called a derived input which is the first partial
least squares variate. From this expression, it can be seen that each inputs
is weighted by the strength of their univariate effect on y.

If we use the first new feature to fit the response y, the least square
estimate θ̂1 on z1 can be found. Then we orthogonalize x(1),x(2), · · · ,x(p)

with respect to z1 to get another set of input variables. We use this set of
input variables as before, and based on which we produce the second PLSR
variate. Repeat the process until M ≤ p new PLSR variables have been
computed.

So we obtain a sequence of derived inputs z1, z2, · · · , zM . If the model
involves using all z1, z2, · · · , zp, it reduces to the usual least squares esti-
mates. The algorithm 2 gives the process and Chart 1 is the flow chart of
PLSR:
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m-th input variables

x
(m)
(1) , x

(m)
(2) , · · · , x

(m)
(p)

�

��
�

�
�

y

(m + 1)-th input variables

x
(m+1)
(1) , x

(m+1)
(2) , · · · , x

(m+1)
(p)

�
Univariate regression coefficient

γ̂m1, γ̂m2, · · · , γ̂mp

�

�m − th PLSR feature

zm =
∑

γ̂mjx
(m)
(j)

� �Output variable fitted values

ŷ(m) = ŷ(m−1) + θ̂mzm

Chart 1 : Flow chart of PLSR

Algorithm 2. Partial least squares regression

1. Standardize each x(j) and set ŷ(0) = ȳ, x
(0)
(j) = x(j), j = 1, 2, · · · , p;

2. For m = 1 to p

zm =

p∑
j=1

γ̂mjx
(m−1)
(j) , where γ̂mj =

〈
x

(m−1)
(j) ,y

〉
,

θ̂m = 〈zm,y〉 / 〈zm, zm〉 ,

ŷ(m) = ŷ(m−1) + θ̂mzm,

orthogonalize each x
(m−1)
(j) with respect to zm :

x
(m)
(j) = x

(m−1)
(j) −

[〈
zm,x

(m−1)
(j)

〉
/ 〈zm, zm〉

]
zm, j = 1, 2, · · · , p.

3. Select the optimal m according to test prediction error.
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3. A Case Study on Boiling Points via Topological Indices

This section concerns with boiling points of 530 saturated hydrocarbons
with 2-10 carbons. The 122 TIs are chosen in Table 1 and y is one of their
physical activity: boiling points at normal pressure. The three dimension
reduction methods mentioned in the previous section are employed to this
data.

Table 1: 122 indices names used in this data and corresponding references

Names References
9 Atis Moreau and Broto, 1980a and 1980b
1 Bdi Balaban 1983
7 Chi Randic 1975; Kier and Hall 1976
1 Dddi Lukovits 1996
1 Dddqi Balaban 1983
1 Di Lukovits 1996; Razinger 1997
1 Dvali Balaban et al. 1992
1 Hari Plavsic et al. 1993
1 Hsyi Hosoya 1971
1 Idi Randic 1997
1 J Balaban 1982
1 Hwi Klein et al. 1995
4 Infi Bonchev and Trinajstic 1977
4 Kappai Kier 1985, 1986
30 Medi Liu et al. 1998; Liu et al. 2001.
2 Mti Schultz 1989
1 Ordi Balaban 1982
1 Pgi Lukovits 1998 (all-path version of graph)
1 Qwi Mohar et al. 1993
14 Seti Filip et al. 1987
14 Speceiti Lovasz and Pelikanm 1973
10 Szi Khadikar et al. 1995
1 Tci Carbon number (no reference)
3 Tri Filip et al. 1987
4 Uvxyi Balaban and Balaban 1991 and 1992
4 Uvxyoi Ivanciuc and Balaban 1999
1 Wi Wiener 1947
2 Zi Gutman et al. 1975

The data and related study can be found in Rücker and Rücker (1999).
They chose TIs by the use of variable selection procedures in SAS under

471



H. Yin, Y. Liang and Q. Hu

multi-linear regression model.

3.1 Data clearing

Data clearing is important in data mining. There are a lot of preprocess
before making an analysis of data, such as filling in missing values, smooth-
ing out noise, detecting outliers, deleting unnecessary variables, and so on.
According to the characteristics of our chemical data, we carry through the
following actions.

If we code the TIs from 1 to 122, there are 23 couples of indices whose
correlation coefficient are 1. These 23 couples indices are: (1, 53), (2, 54),
(21, 35), (22, 36), (23, 37), (24, 38), (25, 39), (26, 40), (27, 41), (28, 42),
(29, 43), (30, 44), (31, 45), (32, 46), (33, 47), (34, 48), (79, 99), (82, 102),
(83, 103), (85, 105), (86, 106) , (87, 107), (88, 108). It indicates that the
two indices of each pair contain the same information. So we should get
rid of 23 indices from each pair of variables. The 99 remaining indices form
a reduced matrix, without loss of generality, we still denote it as X. This
reduced X is, however, still not full rank. We throw off 7 additional variables
to make the remaining X full rank. Our study is based on the remaining
92 variables. There are 30 variables removed in this preprocess. They are
(1 19 28 32 35 36 37 38 39 40 41 42 43 44 45 46 47 48 53 54 80 81 84 99 102
103 105 106 107 108).

3.2 Results of dimension reduction methods

For convenience, we use M to denote the number of variables which
are used in the reducing dimension methods. We first use SIR to get 92
projection directions and these are used for input variables. Figure 2 gives
plot of test and training error against the number of variables. It shows
that the training error decreases when M increases while the same behavior
does not always occur for test error. The minimal test root mean squared
error (RSME=

√
ave(y − ŷ)2) of SIR is 4.3625 at M = 57 and when M

ranges in 30 to 70 the behavior of test error is more stable. Figure 3 gives
the performance of PCR. When M increases to 30, the test error begins to
level off until M is about 60 and the minimal test error of PCR is 4.3267
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Figure 2: Test and training error of SIR through cross-validation
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Figure 3: Test and training error of PCR through cross-validation
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Figure 4: Test and training error of PLSR through cross-validation

at M = 56. Now let us look into the Figure 4, which presents the result
of PLSR. The minimal test error of PLSR is 4.4261 at M = 21. When M
exceeds 65, the test error levels off. These three figures have the common
ground that the track of RMSE of test samples follows the track of RMSE
of training samples originally and at the some point, it begins to departure
the other. This phenomena is due to bias-variance tradeoff we discussed in
Subsection 1.1.

For convenience, we also list RMSE of the same data in Table 2 and
Table 3 presents comparisons of the three dimension reduction methods.

Table 2: The previous work

Topological Indices RMSE(training samples)

χ 7.97
W χ 7.53
W χ ap4 6.63
W 1Z mwc4 n0.5 6.19
W 1Z 1twc ap4 n 5.75
W 1Z 1twc ap4 dia n0.5 5.64

474



Boiling Points Predictions via Dimension Reduction

Table 3: The dimension reduction results

methods number of variables RMSE(training) RMSE(test)

SIR 57 3.5907 4.3625
PCR 56 3.6037 4.3267
PLSR 21 3.7102 4.4261

The results of Table 2 come from Rücher and Rücher (1999). These are
the best results at present using linear regression models. Table 2 includes
only RMSE of training samples and Table 3 gives RMSE of test samples
through leave-one-out cross-validation. Usually test errors are larger than
training errors. So there is a comparability between our results and the
previous work. From the two tables, it shows dimension reduction methods
we used are better.

Table 3 gives relative results of SIR, PCA and PLSR. The three results
come from the same model structures: y = f(Xα1,Xα2, · · · ,Xαm, ε), here
f is assumed a linear function. The difference among them is the technique
which seeks direction {αi}m

i=1. As we all know, in principal components
regression, the m-th principal component direction αm solves:

max(V ar(Xα)), (‖α‖ = 1, Corr(Xαi,Xα) = 0, i = 1, 2, · · · , m − 1).

The condition Corr(Xαi,Xα) = 0 ensures that zm = Xα is uncorrelated
with all the previous linear combinations zi = Xαi, i = 1, 2 · · · , m − 1.
What optimization problem is the partial least squares solving? It can
be shown that the partial least squares method seeks directions that have
high variance and have high correlation with the response, in contrast to
principal components regression (Stone and Brooks 1990 and Frank and
Friedman 1993). That is to say, the m-th PLS direction αm solves:

max(Corr2(y,Xα)V ar(Xα)), (‖α‖ = 1,

where Corr(Xαi,Xα) = 0, i = 1, 2, · · · , m − 1).
Unlike PCR, the {αm}m

i=1 PLS finds are not orthogonal owing to the
different criterion. For the sliced inverse regression, reversing the role of y
and X, the similar process is to find a variable (derivable from x(j) linearly)
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which is most predictable from y. It is easily proved that the best prediction
is E(Xα|y), a nonlinear function of y in general. Thus the most predictable
variable is the one which maximizes:

V ar(E(Xα|y))

V ar(Xα)
, (‖α‖ = 1, Corr(Xαi,Xα) = 0, i = 1, 2, · · · , m − 1).

From Table 3, we find that the results of SIR’s and PCR’s are very similar.
According to theoretical analysis, we can conclude that the results of SIR’s
may be better than that of PCR’s because SIR considers the information of
the response when it constructs new variables. But this superiority of SIR
over PCR seems not to represent obviously to its performance. There are
two reasons. First, this chemical data has an important characteristic dif-
ferent from other data that most of its topological indices are high collinear
with its boiling points. That is to say, the design matrix has already in-
cluded most information of the response. Under this circumstance, SIR and
PCR just have the same ability in dimension reduction. Second, all results
come from linear models. If we employ generalized additive model or other
nonlinear model, the results of SIR should be prior to that of PCR.

Now let’s compare the results of PCR’s and PLSR’s. PLSR use fewer
components to achieve about the same result as PCR, generally about half
as many components. This property has been empirically observed for some
time and is often considered as an argument in favor of the superiority of
PLSR over PCR. So we can fit the data to the same degree of closeness
with fewer components, thus producing more parsimonious modes. The
superiority of PLSR over PCR can be explained from their different criteria.
PCR only uses the input variables information to determine its components,
whereas PLSR uses the response values as well. Obviously, the response
variable information contributes to the construction of the new input. So
PLSR can fit the training data and predict the test data to a higher degree of
accuracy than PCR with the same number of components. In conclusion,
PLSR is a better satisfied dimension reduction method applied to high-
dimensional chemical data, we will make a further study using more general
model based on the directions derived by PLSR technique.
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