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Abstract: A new kind of orthogonal block variables, derived from
subspace projection and canonical correlation analysis, is applied to
model pharmaological activity of alkaloids from plant drugs. The al-
kaloids are grouped into three cases by intravenous, intraperitoneal,
and subcutaneous injections. Four block variables (family of vari-
ables) investigated in this work are valence molecular connectiv-
ity index, alpha kappa index, E-State index and element counts of
molecules, respectively. The regression model embracing only few
new orthogonal block variables against pharmaological activity shows
significant improvement than those, say multiple linear regression
(MLR) simply using original variables, principal component regres-
sion (PCR) and the ones selecting only one or two of the original
family variables, both in fitting and prediction ability of the corre-
lation model. The reason for this might be that the new orthogonal
block variables in fact include almost all of the information of the
original variables but without collinearity between them.

Key words: Alkaloids, canonical correlation analysis, orthogonal
block variable, orthogonal variable, and plant drugs.

1. Introduction
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Herbal medicine (HM) has a long therapeutic history over thousand
years and is currently still serving many of the health needs of a large
population in the world. However, currently existing approaches for quality
assessment cannot fulfill the practical requirements of the safety and efficacy
of HMs. One of these reasons might be that, unlike a chemically synthetic
drug with much purity, a HM and/or a HM formula may consist of hun-
dreds of complex phytochemicals. First to model the activity of individual
composition from plant drugs, and then to study the synergistic action of
its components might be useful for revealing the mystery of Chinese herb
medicine. Thus, the technique developed in chemometrics, the so-called
quantitative structure-activity relationships (QSAR), is used to fulfill the
above-mentioned task.

The aim of QSAR is to relate the structure of a molecule to a biological
activity by means of statistical tools, which can be expressed mathemati-
cally as follows (Devillers 1999):

A = f(molecular structure) = f(molecular descriptors), (1)

where A denotes the activity of chemical component, which is essentially
a biological measurement value. In order to evaluate structural similarity
and diversity of the molecules and/or to build QSAR model as shown in the
above equation, one needs first to obtain the suitable numerical molecular
descriptors associated with the molecular structure in QSAR researches.
In fact, there are many molecular descriptors available, such as quantum
chemical descriptors, physical chemical parameters, and topological indices,
to describe the molecular structures. Only for topological indices, there
emerged hundreds (Katritzky et al. 1994) of indices since 1947 (Wiener
1947). However, the multiplication of descriptors caused worry in some
parts of the scientific community (Balaban and Ivanciuc 1999).

In QSAR research, to evaluate whether the information contents of de-
scriptors are enough to describe the molecules and how much information
is not “duplicated” by other descriptors are two very important aspects in
building QSAR equations. Randić 1991 proposed orthogonal method to
select variables. Xu and Zhang 2001 studied systematically some of the in-
genious methods, such as forward selection, backward elimination, stepwise
regression, leaps-and-bounds regression and genetic algorithm. In many
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cases, the information of descriptors is not enough and, under this case,
whether the variable selection method by deleting some variables for re-
gression is the best choice is still a question. The methods in our former
study (Du et al. 2002) and the present work might offer a new way to select
variable by including almost all the information of original variables and,
at the same time, reducing the number of variables.

In the research (Du et al. 2002), a subspace projection method is pro-
posed to orthogonalize block variables in modeling the relationship between
structure and retention index. The regression against retention index shows
significant improvement both in fitting and predicting ability of the corre-
lation model. Moreover, the quantitative intercorrelation between the dif-
ferent block variables of topological indices can also be evaluated by the
proposed techniques. The basic idea is to first classify descriptors into dif-
ferent blocks (groups) and then, apply canonical correlation analysis to get
new variables to represent the different blocks.

The alkaloids from natural sources are of importance in medical stud-
ies. Elbein and Molyneux 1999 reviewed alkaloids, isolated from natural
resources, as inhibitor of glycoprotein processing. Wang and Xie 1999 re-
viewed the clinic effects of alkaloids of Chinese aconitum plants. To corre-
late the structure with activity of alkaloids is of use to predict the activity
of other alkaloids, to deeply understand the changes of different chemical
structures upon the activity and finally to make modification on the original
structures to improve the activity.

Topological index has advantages of simplicity and quick speed of com-
putation (important for large data) and so attracts attentions of scientist.
What is important is that topological descriptors can explain most of the
property modeled, as shown by some researchers (Basak et al. 1999, and
Brown and Martin 1997). The research (Basak et al. 1999) indicates that
the easily calculable topostructural and topochmical indices will be an effec-
tive first choice in QSAR studies. Brown and Martin 1997 concludes that
2D descriptors are better than 3D descriptors from information content.
There are many kinds of topological descriptors in modeling pharmaologi-
cal activity of drugs (Hu et al. 2003a). In this work, three most popular
topological index families are first selected to build the statistical model.
The first is valence molecular connectivity index (Kier and Hall 1976), sec-
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ond is alpha kappa index (Kier 1986), and the third is e-state indices (Kier
and Hall 1990). In order to describe the heteroatomic effect in investigated
alkaloids, element counts are also included as the fourth block variables.
The valence molecular connectivity index has wide applications (Kier and
Hall 1986, and Hall and Kier 1991) in modeling activity of drugs. Kappa
index codes information of cyclicity, spatial density, centrality of branching,
and symmetry of molecules (Kier 1986, and Kier and Hall 1999) and it has
been applied to many situations in QSAR researches (Kier 1985, 1997, and
Shen 1967). The E-State index (Kier 1986, and Hall and Kier 1999a) is
a very successful topological index for modeling activity of drugs, which is
discussed in detail in a book (Hall and Kier 1999b). E-State indices have
been used in molecular similarity and diversity research, and QSAR study
(Hall et al. 1995, Kellogg et al. 1996, Hall and Vaughn 1997, and Hall and
Story 1996). Furthermore, element counts combined with other topological
indices have also been successfully used in QSAR studies (Balaban et al.
1992a, and Balaban et al. 1992b). It is worthy noting that none of any sin-
gle family of the above mentioned variables could give satisfactory results
if one tries to correlate them individually with pharmaological activity of
alkaloids from plant drugs. Thus, in the present work, orthogonal block
variables, derived from subspace projection and canonical correlation anal-
ysis, are applied to model pharmaceutical activity of alkaloids from plant
drugs. The regression shows that the results by a few orthogonal block
variables including almost all of the information of original descriptors are
much better than by selecting one or two of the original family variables.

2. Methodology

In the former study (Du et al. 2002), orthogonal block variables that are
from some families of topological indices or quantum chemical parameters
were proposed by applying a subspace-projection method. The outline of
the method is only briefly given in the following sections.

2.1 Orthogonalization of block variables by subspace projection

A series (or a family) of topological indices (not individual index) with
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similar calculation strategy were often encountered, such as the molecular
connectivity indices (0χ,1 χ,2 χ,3 χp,

3 χc,
4 χp, · · ·), Kappa indices (0κ,1 κ,2 κ,

3κ, · · ·). A series of descriptors were generally defined by accounting for
more molecular structure information and less redundancy. Thus, a series
of descriptors might be considered as an ensemble named block descriptor
(variable), which includes all individual descriptors in this series. Being
similar to the orthogonalization of individual descriptor, orthogonal block
descriptors (variables) would also be obtained easily. The advantage of
using block descriptor is that one may work with only a few block variables
instead of many individual variables. The procedure of orthogolization of
the block variables could be fulfilled in the following steps:

1. The procedure starts by selecting a block variable say X1, as the
first orthogonal matrix Ω1. The second orthogonal matrix Ω2 can be
obtained through the orthogonal projection, that is

Ω2 = X21 = (I −X2(X
t
2X2)

−1Xt
2)X1 (2)

2. Ω3, which will be orthogonal with both Ω1 and Ω2, can be calculated
easily by first defining Xj = [Ω1Ω2],Xi = X3 and then using the
following equation, that is,

Xij = (I− Xj(X
t
jXj)

−1Xt
j)Xi (3)

Similarly, a series of orthogonal matrices of Ω1, Ω2, · · · , Ωn can be ob-
tained.

2.2 Canonical correlation analysis (CCA)

Canonical correlation analysis (CCA) (Mardia et al. 1979) offers a way
to establish the maximum correlation between variables. The original aim
of CCA is to find linear combinations of Xa and Yb, which makes the cor-
relation between Xa and Yb maximum. Xa and Yb are called canonical
correlation variables. Only consider variance of v(Xa) and v(Yb) to be one
and if there exits a1 and b1 making R(Xa1, Yb1) = max R(Xa, Yb), then,
Xa1 and Yb1 are called as the first pair canonical correlation variables.
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After getting the first pair variables, second, third and so on pair variables
can be found step by step. The canonical correlation variables reflect the
linearity between X and Y. The problem of obtaining the canonical corre-
lation variables is how to calculate the eigenvalues and eigenvectors of the
matrix K=(V

−1/2

XX
)VXY(V

−1/2

YY
). Through singular value decomposition of

the matrix K, ui and vi can be obtained by K=[u1, u2, · · ·, ur]S[v1, v2, · · ·,
vr]t. The canonical correlation variables can be calculated by the formula

bi = V
−1/2

XX
ui (4)

ai = V
−1/2

YY
vi (i = 1, 2, · · · , r) (5)

And then, Xa1 and Yb1 are obtained as the ith pair of canonical correlation
variables.

2.3 Outlines of the calculation procedure

1. Split all the given descriptors into a few subsets, say X1, X2, · · · Xn,
each of which comes from the same family of descriptors proposed by
the same authors.

2. The block variables X1, X2, · · · Xn were then mean-centered.

3. Orthogonalize block variables by equation (3). Note that the order
of variables strongly impacts on the orthogonalization result. Here
we use “based on Ri” approach to orthogonalize variables. First pick
up a block variable in the set of X1, X2, · · · Xn with maximum cor-
relation coefficient R against the property y as the first orthogonal
block variable Ω1. Then for the remaining block variables, calculate
their orthogonal block variables to Ω1 by equation (2), and select the
orthogonal block variables with maximum R in the left ones as the
second orthogonal block variables Ω2. The third orthogonal block
variable Ω3 is such orthogonal one to Ω1 and Ω2 that have maximum
R in the remaining ones. Other orthogonal block variables have the
same calculation procedure.
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4. The canonical correlation variables can be calculated by using equa-
tions (4) and (5). Note that Y is actually the property vector y in
the present work. Thus, b1 is a scalar and there is only one pair of
canonical correlation variable for each orthogonal block variable with
y. The new orthogonal variables, ω1, ω2, · · · , ωn, corresponding to the
orthogonal block variables, say Ω1, Ω2, · · · , Ωn are then used to build
the regression model.

5. Select a few variables with maximum correlation coefficient Ri to es-
tablish the descriptor-property correlation model if necessary.

3. Experimental Data

3.1 Drug data collection

The total 65 compounds, all of the alkaloids with LD50 for mice of the
reference (Shakirov et al. 1996), are from plant drugs. The details of the
compounds are listed in the Table 1, which is divided into three cases,
according to different injections, intervenes, intraperitoneal, and subcuta-
neous injections, respectively. The column (NO.) of Table 1 corresponds to
the names of the compounds. The data of activity values (y) and all the
numerical descriptors (X) of the compounds are not given here for the sake
of brevity of the paper. They are available from the corresponding author,
if readers are interested in them.

3.2 Descriptor calculation

In the present work, four series of descriptors are selected. They are
valence molecular connectivity index (0χv,1 χv,2 χv,3 χv

p,
3 χv

C ,4 χv ) (Kier and
Hall 1976), alpha kappa shape index (1κα,2 κα,3 κα, Φ) (Kier 1986), E-State
index (Kier and Hall 1990), and element counts (NC , NO, NN), respectively.
The descriptors are calculated by the heuristic queue notation (H.Q.N.)
system (Hu et al. 2003b). The descriptors used in the QSAR studies of the
three cases are listed in Table 2. The indices from same sources, such as
proposed by the same author or derived from the same invariants, should
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Table 1: Active compounds from plant drugs and the biological activities
NO. Name LD50( I/v I/P S/C )mg/kg

1 14-DEHYDROBROWNINE 68
2 DEOXYPEGANIDINE 143 254 380
3 DEOXYPEGANINE 24 54
4 DIPTERINE 550
5 DUBINIDINE 885 970
6 (+)-OTHSENINE 630
7 PANCRATINE 280
8 PACHYCARPINE(+)- 26 90

SPARTEINE 26
9 PEGANIDINE 143 254 380
10 (+-)-PEGANINE 78.7 220
11 PEGANOL 130
12 PSEUDOKOPSININE 76 125
13 (+)-PSEUDOEPHEDRINE 100
14 PUBERACONITINE 22.5
15 RANACONITINE 6.2
16 RESERPINE 28
17 RESERPININE 148
18 (-)-ROEMERINE 38.8 79.5
19 RETAMINE 1185
20 RINDERINE 562
21 (+-)-SALSOLIDINE 170
22 SARRACINE 1250
23 SENECIONINE 64.1
24 SEPACONITINE 16.5
25 SINAOACUTINE 115
26 SKIMMIANINE 160
27 SOPHORCARPINE 39.43
28 STEPHARINE 245
29 SUPININE 222.5
30 AJMALINE 130 206
31 AKUAMMIDINE 391 550
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Table 1 (continued)
NO. Name LD50( I/v I/P S/C )mg/kg

32 β-ALLOCRYPTOPINE 220
33 ALSTONINE 8.8
34 AMMODENDRINE 385
35 ANABASAMINE 159
36 (-)-ANABASINE 10.2 13.7
37 ANONAINE 109
38 ARMEPAVINE 22.2
39 BERBERINE 9.5 13.3
40 (+)-BICUCULLINE 0.3 1.48
41 BREVICARINE 375
42 BREVICOLLINE 146
43 BUXTAUINE 220
44 (-)-VASICINONE 152 1133
45 VINERIDINE 125 485
46 (-)-VINCADIFFORMINE 90 225
47 (+)-VINCAMINE 57 411
48 VINCANIDINE 85 85
49 (-)-VINCANINE 5.6 13.6 14
50 VINERVINE 24.5 100 102
51 VINERVININE 115
52 GALANTHAMINE 58.5 131.2 200
53 HARMINE 75 124
54 HELIOTRINE 274.4
55 HAEMANTHAMINE 318
56 GENTIANADINE 1210
57 GENTIANAINE 1275
58 GENTIANAMINE 770
59 GENTIANINE 460 504
60 HETERATISINE 192.5
61 (+)-β-HYDRASTINE 0.102 0.97
62 HIPPEASTRINE 195 670 800
63 GLAUCINE 33 420
64 HORDENINE 131
65 GRAVEOLINE 363.5
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hold some common information and should be classified into the same group.
Thus, the descriptors are divided into four block variables.

Table 2: The topological descriptors and their corresponding values for
deoxypeganine

Indices Values Indices Values

0χν 9.7024 S(−CH3) 0
1χν 8.3900 S(−CH2− ) 4.6834
2χν 8.7493 S(−CH<) 0
3χν 8.9924 S(>C<) 0
3χν 1.2145 S(=CH2) 8.4389
4χν 9.0905 S(=C−) 3.8378
1κ 4.3783 S(=C<) 0
2κ 2.6717 S(−NH−) 2.3911
3κ 1.2380 S(−N<) 4.6498

4.3783 S(=N−) 0
Nc 11 S(=0) 0
No 0 S(−0−) 0
NN 2 S−OH) 0

In order to give the readers an intuitive impression of how to get the
numerical quantifier of the molecular structures, an example (No. 3 de-
oxypeganine) from Table 1 is given to show the procedure. The chemical
structure of deoxypeganine is shown in Figure 1. With the help of the struc-
ture, the topological indices can be calculated by the definitions listed in the
proceeding paper (Hu et al. 2003a). What should be noted is that the origi-
nal definitions for hydrocarbons are modified by introducing some chemical
parameters for molecules with multiple bonds and/or hetero-atoms. An
example of the indices of deoxypeganine is listed in Table 2.

4. Results and Discussion

The aim in QSAR is to use the equation (1) to build a model correlating
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Figure 1. Molecular skeleton and numbering of atoms of deoxypeganine

the numerical molecular descriptors with their corresponding activities so
as to further predict the activities of the similar molecules. In general, the
linear model is the first choice, since the reason why the molecules have
activities can be easily deduced with the linear model. From Table 1 and
above discussion, one could easily see that the number of the samples is
rather small, say 39, 26, and 32, respectively, in the present study. However,
the number of variables included in the model is 26 (see Table 2), which
hints that the overfitting might be the most serious problem to be faced in
this work.

4.1 Correlation by different descriptors

First, we tried to use one family of molecular descriptors to build regres-
sion model. However, the regression results listed in the Table 3 are quite
disappointed. The information contents of any individual group of variable
are not enough to obtain satisfactory results. Then, the whole variables are
used to model the activities, and the regression coefficients for the three
cases are 0.8781, 0.9993, 0.9797, respectively. The fitting results seem to be
quite good. In order to check the stability of the built models, leave-one-
out cross-validation is applied for the three cases using cross-validated root
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mean square error of prediction (RMSECV) criteria, that is

RMSECV =

√
PRESS

n
, (6)

in which n is the number of observation and PRESS is the predicted resid-
ual squared sum. The results are collected in Table 4. From the table,
one can easily conclude that the prediction ability of the model is very
bad, say 238.3407, 1.3676e+003, 1.3777e+003, respectively. This means the
overfitting is clearly embedded in the MLR models. In order to cure such
situations in QSAR researches, the chemists always resort to the principle
component regression (PCR) and partial least squares (PLS) developed in
chemometrics, since these techniques may reduce the dimension of variable
space efficiently.

Table 3: Regression of alkaloids by multiple linear regression
with different variables∗

Variables Regression Case 1 Case 2 Case 3
and Methods Results

X1 R= 0.5549 0.6861 0.4189
s= 75.70 246.56 316.27
F= 2.37 4.67 1.44

X2 R= 0.3614 0.5564 0.5354
s= 84.84 281.62 294.18
F= 1.28 2.35 2.71

X3 R= 0.7201 0.8697 0.7982
s= 63.13 167.27 209.80
F= 2.33 2.87 2.78

X4 R= 0.3962 0.7849 0.4833
s= 83.55 210.01 304.92
F= 2.17 11.77 2.84

all variables R= 0.8781 0.9993 0.9797
s= 43.53 12.26 69.82
F= 1.75 31.81 5.73

∗X1: valence molecular connectivity index; X2: Kappa index; X3: E-
State index; X4: Element counts.
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Table 4: RMSECV of CCA and MLR for the three cases
iv39 ip26 Sc32

CCA 52.0379 15.6558 82.5655
MLR 238.3407 1.3777e+003 1.3676e+003

Table 5: Correlation coefficient and standard error of
every principal component from PCR for the three cases

sc32 iv39 ip26
pc R s R s R s

1 0.2332 349.6210 0.2081 91.3389 0.4688 311.3538
2 0.0973 357.8284 0.0106 93.3780 0.5588 292.3163
3 0.3768 333.0342 0.4107 85.1436 0.0976 350.7967
4 0.2536 347.7805 0.0932 92.9769 0.3642 328.2708
5 0.4979 311.7970 0.0430 93.2967 0.0412 352.1793
6 0.1965 352.5266 0.0043 93.3824 0.2592 340.4349
7 0.2435 348.7104 0.0802 93.0824 0.2881 337.5363
8 0.0615 358.8534 0.3256 88.2959 0.1083 350.4053
9 0.1471 355.6232 0.3121 88.7173 0.1995 345.3909
10 0.0227 359.4420 0.2338 90.7953 0.1536 348.2951
11 0.1356 356.2144 0.2274 90.9375 0.2406 342.1270
12 0.1596 354.9270 0.0566 93.2334 0.0074 352.4697
13 0.0745 358.5364 0.1219 92.6863 0.0525 351.993
14 0.0782 358.4336 0.1438 92.4120 0.0799 351.3534
15 0.0339 359.3281 0.0122 93.3764 0.0436 352.1445
16 0.1026 357.6370 0.1224 92.6816 0.1026 350.6207
17 0.0296 359.3766 0.0656 93.1820 0.1395 349.0350
18 0.3634 334.9511 0.0119 93.3766 0.2817 338.2043
19 0.1032 357.6147 0.1587 92.1994 0.1180 350.0174
20 0.1014 357.6817 0.0468 93.2810 0.1461 348.6961
21 0.0737 358.5559 0.0866 93.0321 0.0278 352.3433
22 0.0883 358.1304 0.2409 90.6340 0.1282 349.5728
23 0.1488 355.5314 0.2519 90.3708 0.1339 349.3071
24 0.0935 357.9582 0.0111 93.3776 0.1245 349.7389
25 0.2380 349.2028 0.2298 90.8851 0.2252 343.4281
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4.2 Limitation of PCR

The results obtained from PCR are shown in Table 5. From the table, the
correlation coefficients for all the individual principal components from the
first to the 25th (Table 5) show that the order of the values of R has nothing
to do with the order of the eigenvalues of the principal components. Thus,
it is impossible to select reasonably the number of principal components to
be included in PCR model.

Commonly in chemoemtrics, the leave-one-out cross-validation is adopted
to choose the right number of the principal components, which are shown
in Figure 2 for the three cases. From the plots, it can be seen that several
minima in the curves are found, which makes the choice of right number
of principal components very difficult. For instance, the R and s for the
minima at five and seven principal components are 0.6809 and 263.3081;
and 0.7682 and 230.1728 respectively, for Sc32 case, which definitely cannot
be accepted by chemists.

Figure 2: Relationships of cross-validation (leave-one-out) vs the number
of principal components for the three cases.
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Table 6: Regression results with Orthogonal Block Variables
and RMSECV by Cross-validation

iv39 ip26 Sc32
Regression with OBV R= 0.8781 0.9993 0.9797

s= 43.53 12.26 69.82
F= 28.63 4007.8 161.19

RMSECV by Cross-validation 52.04 15.66 82.57

4.3 Improvement on correlation using block variables and CCA

Since the molecular descriptors are from four different families, they can
be grouped into four blocks, and then all the blocks are replaced by new
orthogonal block variables with the help of canonical correlation analysis.
Then, the four orthogonal block variables are utilized to build the regression
model through“based on Ri” approach described in methodology section.
The regression results obtained by the method proposed in this work are
shown in Table 6. One can see that the regression coefficients, standard
errors and F test are quite satisfactory. In order to check the stability of
the model, leave-one-out cross-validation is also adopted. The RMSECV are
quite close to the size of the standard errors of the model, which indicates
that there is no overfitting in the model and the prediction ability of the
model is also quite good. All these show that the orthogonal block variables
by subspace projection and canonical correlation analysis may offer a new
method to reconstruct the variables and the method proposed in this paper
might have a promising prospect in QSAR researches and data mining in
chemistry.
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