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Abstract:  Boosting is a machine learning algorithm that is not well
known in chemometrics. We apply boosting tree to the classification
of mass spectral data. In the experiment, recognition of 15 chemical
substructures from mass spectral data have been taken into account.
The performance of boosting is very encouraging. Compared with
previous result, boosting significantly improves the accuracy of clas-
sifiers based on mass spectra.
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1. Introduction

Identification of compounds or automatic recognition of structural prop-
erties from mass spectral (MS) data has been attracted by many authors in
chemometrics. Commonly, there are two classes of methods for identifying
compounds: one is library search methods based on spectra similarities;
another is classification methods. A number of mass spectral library search
algorithms are offered and have been routinely used in identification. These
algorithms perform well when the substance that needs to be identified is in-
cluded in the library. At present, the number of compounds in the available
libraries is limited (about 100,000 spectra in the NIST 98 MS Database and
about 130000 spectra in the Wiley/NBS collection), while there are more
than twenty million chemical compounds described by Chemical Abstracts
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Service. So the spectrum of an unknown substance often deviates consid-
erably from the spectra in the reference library and the unknown can not
be identified directly. In this case the library search method may lose some
efficiency. On the other hand, identification of an unknown compound that
is not in the library can be supported by classification methods indicating
the probabilities of presence or absence of certain chemical substructures or
compounds classes. So numerous classifiers based on MS data and multivari-
ate statistics have been developed for automatic recognition of substructures
and other structural properties. Part of them are efficient enough to be used
together with automatic isomer generation for a systematic and exhaustive
structure elucidation (Varmuza and Werther 1996). However, there are still
many substructures which can not be recognized efficiently by existing clas-
sifiers because the relationship between MS data and chemical structures is
too complex to be detected. So seeking a better technique for mass spectral
pattern recognition has being a mission in chemometrics.

A number of classification methods have been applied in the analysis
of mass spectra. Linear discriminant analysis (LDA) is one of the meth-
ods firstly applied to mass spectral data, because its decision rule is simple
to implement and describe. However, this method has severe limitations,
because of arithmetic problems caused by collinearity in the high dimen-
sion mass spectral data. Principal component analysis (PCA) and partial
least squares (PLS) are used to deal with this problem via abstracting most
principal components of predictors (Werther et al. 2002). However, clas-
sifiers based on PCA or PLS are weak on detecting the local character of
data and modeling irregular decision boundaries. When the relationship
between MS data and chemical structures is complex, such classifiers may
be not efficient. Recently a tree-based method, classification and regression
tree (CART), has attracted attention. The method, which generates a tree
structure though recursively splitting the predictor space until the space is
completely partitioned into a set of non-overlapping subspaces, is effective
in capturing the local character and the complex interaction. Another ad-
vantage is its interpretability. In spite of these advantages, its instability
may make interpretation somewhat precarious because small changes in the
data may lead to a complete different decision rule. Neural networks (NN)
based on artificial intelligence principles is another method which has al-

392



Boosting Applied to Classification of Mass Spectral Data

ready been widely used for the classification of mass spectral data (Klawun
and Wilkins 1996). It has the powerful capability of a non-linear separation
of classes. However, overfitting is dangerous and interpretation of the model
is difficult.

In order to identify compounds correctly, high predictive abilities of the
classifiers are very important. All the methods mentioned above have been
applied to mass spectral data for constructing classifiers. However, for many
substructures, the prediction accuracy of these classifiers are far from sat-
isfied, and an improvement is highly desirable. Boosting, the effective en-
semble method proposed by Freund and Schapire (1996, 1997), is regarded
as the “best off-the-shelf classifier in the world” (Breiman 1998). It is a
procedure that combines the outputs of many classifiers to produce a pow-
erful “committee” of the classifiers obtained by training certain versions of
the training sample. In our knowledge the boosting technique has never
been applied in classification of MS data. In this paper, we apply boosting
method to mass spectral data for the automatic recognition of 15 substruc-
tures. Compared with the result obtained by a given single classifier or
previous classifiers, the classifiers obtained by boosting are indeed more
accurate in prediction.

The paper is organized as the follows. Section 2 introduces the method
of boosting tree. The used mass spectral data sets are described in Section
3. The result of experiments are shown and discussed in Section 4. The last
section gives a conclusion.

2. Methodology

2.1 Algorithm of boosting

The boosting used in this paper is the most popular boosting algorithm
called “AdaBoost.M1.” (Adaboost for short) (Freund and Schapire 1997).
Suppose there is a training sample with N observations (z@), (), each
x@) = (21, -+, xp) having p predictor variables, and y = 1 for category I
and y = —1 for category II. A classifier G(x) can be obtained by applying
a classification algorithm, for example LDA, to the training sample. And
given a vector of the predictor variables x = (xy,-- -, x,), it will produce a
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prediction by taking one of the two values -1, 1. Then the fitting error rate
of the classifier on the training sample is defined as

w:%z (4: # Clag) 1)

where I(A) is the indicator function, I(A)=1 if A is true, otherwise I(A)=0.
In order to reduce the error rate, boosting sequentially applies the classifica-
tion algorithm to repeatedly modified versions of the training data, thereby
producing a sequence of classifiers G,,(x),m = 1,---, M. Then the final
prediction can be obtained from the combination of these classifiers by a

weighted major vote G(x) = sign( Z G (X)), where oy, - - -,y are the

weights of classifiers and sign(-) is the sign function, sign(A) = 1 if A>0 ,
otherwise sign(A) = —1. Figure 1 shows a schematic of the AdaBoost pro-
cedure. The process of averaging weighted classifiers not only reduces the
fitting error rate but also protects against overfitting (Freund et al. 2001)
The algorithm of Adaboost can be implemented as follows (Hastie et al.
2001).

Oiginal Weighted Weizhted Weighted
satnile sarnple sarnmle sarnple
I’E.'WElEhtEd I’E.'WElEhtEd @ted
G0 G, (x) G (x) G x)

l

Gx) = sign T, aGulx)]

Figure 1. The schematic of the AdaBoost pro-
cedure
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1. Initialize the observation weights, w; = 1/N,i=1,---, N and choose
a positive integer M.

2. For m=1to M
(a) Fit a classifier G,,,(x) to the training data using weights w;.
(b) Compute erry, = >0, wil () # Gm(7)))/ sy wie
(c) Compute «a, = log((1 — erry,)/erry,).
(d) Let w; = wiexplam, * I (yu) # Gm(xe)))], i =1, ..., N.

3. Output G(z) = sign[3- M, 0, Gy ().

At each step, boosting modifies the model by applying weights wy, - - - wy
to each of training observations (x(;), y()), that is, the higher the weight, the
more the observation influences the classifier learned. Initially all samples
are assigned the same weight w} = 1/N, so that the first step simply trains
the classifier on the data in the usual manner. At each round m =1,---, M,
the classifier G,,(x) is constructed by applying the classification algorithm
to the samples with weight w!" and the error of this classifier (err,, ) is also
measured with respect to the weights. The determination of w]" is according
to the rule that the weights of those observations that were misclassified by
the classifier G,,—;(x) are increased, whereas the weights are decreased for
those that were classified correctly. The re-weighting architecture reflects
the idea that the modified version of the data makes the next learner fo-
cusing on the samples hard to classify. At last, the final classifiers G(x) are
obtained by a weighted majority vote and these weights ay, - - -, aps are the
monotonic decreasing function of err,,,m = 1,---, M. They reflect that
the more accurate classifiers in the sequence, the higher influence they will
have. As far as the choice of M, the number of iteration in boosting, al-
though there are theoretical analysis about it (Freund and Schapire 1997),
these tend not to give practical answer. So in practice, the number of rounds
M is determined by cross validation. The reasons for success of boosting in
classification can be described as follows. Firstly, one can see boosting is an
ensemble method that averages the models, which are produced by applying
certain classification algorithm to different version of training samples. The
way of averaging models can reduce the variance of the finally model and en-
hance the prediction ability (Hastie et al. 2001). Secondly, the re-weighted
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process makes the successive classifier focus on the observations which are
misclassified by the previous one, so that the final model is also effective
for the sample which is hard to be classified. The Adaboost approach also
has a good theoretical fundament. It has been proved by Friedman et al.
(2001) that the final classifiers obtained by Adaboost.M1 is the optimum
solution to the forward stepwise additive modeling with the loss function

L(y,G(x)) = exp(—yG(x)).

2.2 Boosting tree

From subsection 2.1., we know the boosting strategy can be applied to
different basic classification techniques. In this subsection we briefly intro-
duce boosting combined with a decision tree. A decision tree as proposed
by Breiman et al. (1984) is a powerful classification tool in data mining. It
generates a tree structure though recursively splitting the predictor space
until the space is completely partitioned into a set of non-overlapping sub-
spaces. In the process of growing a tree, the splitting rule which includes
splitting variables x; and the corresponding split point A can be automati-
cally selected according to a certain criterion, for example, minimizing cross-
entropy/deviance (Hastie et al. 2001). When the split rule is obtained, the
data can be partitioned into two regions x; > A and z; < A, and then the
splitting process in the sub-regions is repeated until all the stopping criteria
are satisfied. The details of the algorithm have been published by Breiman
et al. (1984).

One of the disadvantages of decision tree is its instability because of
the hierarchical nature of the process. The effect of an error in the top
split will be propagated down to all other splits below. The instability
can be alleviated by combining sequential trees. In the process of boosting
decision tree, the successive trees can be achieved by directly fitting the
weighted data. It is fulfilled via altering the criterion of finding the split
pairs (variable, point) and the stopping criteria to the weighted criteria.
For example, suppose a region R, including N, observations (z(), y(), the
deviance of this region is defined as

deviance = — Y pu1og pu, (2)
k=—1,1
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here

Pk = Ni > Iy = k). (3)

t :E(i)ERt
Then the weighted criterion can be described

deviance,, = — Z Dekw 108 Priw, (4)
k=—1,1

and
1

x(i)eRt ¢ xR

Other steps of boosting can also be directly implemented according with
Adaboost.

wi Iy = k). (5)

3. Mass spectral data

3.1. Mass spectrometry

Mass spectrometry is a commonly used instrumental technique for the
characterization and identification of chemical organic compounds. In a
mass spectrometer molecules of the investigated sample are ionized and the
produced ions are separated according to their mass-to-charge ratio (m/z,
mostly z=1), and their abundances are measured. A mass spectrum can
be graphically represented as a bar plot with m/z (mass of ions ) versus
abundance of ions (peak height). For example, Figure 2 shows a mass spec-
trum of CyH,0, called acetaldehyde. The distribution of peaks in a mass
spectrum is very characteristic for a compound, although not unique. Main
information obtained from a mass spectrum are molecular mass, and hints
about substance class and parts (substructures) of the molecular structure.

In our work, mass spectra and chemical structures are taken from the
NIST mass spectral database (NIST 1992) that contains more than 62000
compounds. Substances considered for this work are restricted to the molec-
ular mass range 50-400, with elements C, H, N, O, S, Si, and halogens
allowed, resulting in 50286 compounds. A set of 15 substructures as de-
scribed in Table 1 are used for defining the development of spectra classifiers
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(Yoshida et al. 2001). In this paper, for each substructure two random sam-
ples were generated: a class 1 set with 300 different substances containing
the substructure, and a class 2 set with 300 different substance not contain-
ing the substructure. For the substructure searches and the elimination of
structure duplicates software ToSiM and SubMat (Varmuza and Scsibrany
2000) have been used.

abundance
44

50+

a0 a0 n/z

Figure 2. Mass spectrum of Co H4O

3.2 Spectral feature

Previous work shows that the generation of suitable spectral features is
a crucial step in the development of classifiers (Werther et al. 1994). Spec-
tral features are variables obtained by (mostly nonlinear) transformations
of mass and abundance data. Appropriate spectral features are simpler
related to molecular structures than the original peak heights of mass spec-
tra (Varmuza 2000 and Werther et al. 2002). In this work, a set of 400
spectral features have been used as summarized in Table 2 (Yoshida et al.
2001). All used features are in the range from 0 to 100 and can be automat-
ically calculated from a low resolution mass spectrum (mass and abundance
values).

4. Results and Discussion

In the experiment, Boosting tree is applied to the 15 mass spectral data
sets. As described in section 3, every data set contains 600 substances
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Table 1: Substructures used for spectral classifiers
No. Substructure

1 (CH3)5C (tertiary butyl)
2 (C,C,C)C-OH (tertiary alcohol)
3 CH3-O-CH; (methyl ether)
4 CH3-C=0 (acetyl)
5 CH3-COO (acetoxy)
6 O=C-OCH; (methyl ester)
7 (CHj3)2N (dimethyl amine)
8 CeHs (phenyl)
9 Benzene ring with -CHy (benzyl)
10 Benzene ring with -O
11 CgH5-CH3-O
12 Benzene ring with -N
13 Benzene ring with -Cl
14 Cl in molecule
15 (CH3)3Si (trimetyl silyl)
Table 2: Spectral feature
Group Feature description feature numbers
1 Modulo-14 summation for mass ranges m/z 1-42
31-800, 31-120, and 121-800
2 Spectra type features describing the distribu-  43-45
tion of peaks
3 Logarithmic intensity ratios of m/z 39-109 46-187
with mass differences of 1 and 2
4 Autocorrelation for mass differences of 1,2, 188-307

and 14-51 in mass ranges m/z 31-800, 31-120,
and 100-800, respectively

5 Peak intensities (% base peak) at masses m/z  301-396
31 and 3-120
6 Averaged intensities in mass ranges m/z 33- 397-400

50, 51-70, 71-100, and 101-130
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Table 3: The result of boosting tree and PLS for test sample

sub-structure PLS Desicion tree Boosting tree

No. (test sample) (test sample) test sample
Py (%) [Pa(%) [P (%) | P1(%) | P2 (%) | P(%) | P1(%) | P2 (%) | P(%)
1 79 88 | 84 | T4 76 75 81 87 | 84
2 64 73 | 69 | 69 69 69 76 4175
3 86 92 89 | 84 82 83 88 91 89
4 69 85 77| T8 79 79 84 85 84
5 80 84 | 82 80 79 79 87 83 | 8
6 72 83 78 76 72 74 | 82 81 82
7 79 83 | 81 79 75 77| 85 83 | 84
8 72 81 77| T8 IO A 82 84
9 83 70 77| 70 71 71 81 74 | T8
10 82 70 76 72 70 71 82 76 79
11 94 93 | 94 | 90 91 90 95 94 | 94
12 75 76 76 | 69 68 69 80 75 78
13 91 89 | 90 | 87 86 87 | 94 93 | 94
14 78 89 | 84 | &4 87 | 85 88 92 90
15 97 97 | 97 | 92 93 93 95 97 | 96

belonging to two categories: one with the substructures present denoted by
class 1, the other with the substructures absent denoted by class 2. Each
substance has 400 spectral features/predictors. Three indices are used to
evaluate the classifiers: P; is the correctly classified rate from class 1, P,
is the correctly classified rate from class 2 and P = (Py 4+ P3)/2. In the
procedure of this experiment, randomly select 200 observations from class
1 and 200 from class 2 have been used as training sample and the remains
as test sample. For boosting and decision tree applications, We repeated
the random partitioning procedure 100 times and got the averaged values
of indices as the final results. For PLS only one experiment was performed
for each classifiers. Table 3 shows the results of test samples obtained by
boosting tree, decision tree and PLS which has been applied to the same
data sets before. (Note: all the results have been rounded to integer). From
this table, we can see the boosting tree significantly improves the predictive
ability of single decision tree and yields the better results than PLS.
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A graphical comparison of the predictive abilities for the boosting and
PLS is presented in Figure 3. The horizontal coordinates of the three plots
are in turn the values of three indices measuring PLS’s predictive ability and
the vertical coordinates are those of Boosting tree. From this plot, we can
see for class 1, the boosting tree classification gives much higher predictive
abilities than PLS; for class 2 both methods are equal. In summary boosting
tree is better than PLS.

9| 9| 3 wB

, , , . 1 . . . .
8 %0 % 00 ) 65 i 13 80 8 %0 % 100
P, for PLS

L L L L L L
60 65 0 75 80 85 % 95 100
P, for PLS

Figure 3: Comparison of the predictive abilities
for PLS and boosting tree

5. Conclusion

Improving the accuracy of prediction of classifiers based on mass spectra
is important for chemical structure elucidation. In this paper, the boost-
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ing tree is applied to mass spectral data for classifying presence/absence
of substructures in compounds with unknown chemical structure. Exper-
iments show that the boosting tree indeed can find classifiers with higher
predictive ability than obtained with PLS classifiers. This approach is new
for mass spectra classification. There are many work worth for further devel-
oping, for example, how to interpret the relationship between substructure
and mass spectrum using the model established by boosting.
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