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Abstract: The matrix expression, topological index and atomic
attribute of molecular topological structure are reviewed. Nine ma-
trices, twenty-six kinds of indices and eight methods dealing with
weighted molecular graphs are summed up in three tables. Some
shortcomings of the topological indices are discussed as: (1) the
physical-chemical meaning of topological index is not explicit; (2)
it is difficult to interpret the QSAR and QSPR models derived from
the topological indices; and (3) topological index usually neglects the
stereochemical information or the three-dimensional structure of the
molecule. Three directions of topological index are focused on: (1)
description of local information; (2) studies on inter-correlation of
topological index; and (3) variable index.

Key words: Atomic attribute, matrix expression, molecular topolog-
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1. Introduction

Quantitative structure-activity relationships (QSAR) and quantitative
structure- activity relationships (QSPR) represent attempts to correlate ac-
tivities or properties with structural descriptors of compounds. To correlate
and predict physical, chemical and biological activity/property from molec-
ular structure is a very important and an unsolved problem in theoretical
and computational chemistry, environmental chemistry, medical chemistry,
and life science as well. Indeed, many QSAR/QSPR articles (Suresh and
Hansch 2001, Koh et al. 1998, David, A. C. 2000, David, F. V. 2000, Yu et
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al. 1999, Yuan and Parrill 2000, Geiss and Frazier 2001, Zhao et al. 1998,
Shapiro et al. 1998, Christian et al. 1999, Liu et al. 2001, and Huang et
al. 2002), reviews (Simona et al. 2000, Hansch et al. 2001, Katritzky 1996,
Gao et al. 1999, Karmarkar and Khadikar 2000, and Kurup et al. 2001),
and monographs (Karcher and Deviller 1990, Fujita and Timmerman 1995,
Zhou and Wang 2001, Wang 1993, 1997, Diudea 2000, Kubinyi et al. 1998,
and Rambon et al. 2000) were published on different fields.

The first step, also the most important step in QSAR/QSPR, is to nu-
merically code the chemical structures of various molecules so as to build a
correlation model between the chemical structures of various chemical com-
pounds and the corresponding chemical and biological activities/properties.
Thus, how to exactly transfer the chemical formula (or molecular graph)
into numerical format has been a major task in QSAR/QSPR researches.
There are many methods to quantify the molecular structures, in which
topological index is the most popular since it can be obtained directly from
molecular structures and rapidly computed for large numbers of molecules.
A research (Basak et al. 1999) concluded that the topological index is the
first effective choice in QSAR research. Recently, many articles (Cao and
Yuan 2001, Balaban 1998, Bonchev 2000, Miguel et al. 2001, Agrawal 2001,
Madan 1997, 1999, Bonchev 2001, Li et al. 2000, Rücker and Rücker 1999,
and Erovnik 1999), reviews (Bono et al. 2001, Pogliani 2000, Randić and
Zupan 2001, Estrada and Molina 2001, Diudea et al. 1995, Katritzky and
Gordeeva 1993, and Schultz 2000), and monographs (Devillers and Balaban
1999, Kier and Hall 1999, Xin 1991, Xu and Hu 2001, Trinajstic 1992, King
1992, Gutman et al. 1991, and King and Rouvray 1987) gave systematic
and comprehensive studies. Graph theory is nowadays a standard method
of theoretical and computational chemistry (Harary 1969, and Cvetkovic et
al. 1995) and a large number of references are available on its application in
chemistry (Devillers and Balaban 1999, Kier and Hall 1999, Xin 1991, Xu
and Hu 2001, Trinajstic 1992, King 1992, Gutman et al. 1991, King and
Rouvray 1987, Balaban 1995, and Diudea and Ivanciuc 1995).

Numerous activities and properties of organic molecules depend on the
presence of specific atoms and/or functional groups in their structures. The
main aim of QSAR/QSPR is to link the structure of a molecule to a bio-
logical activity or a property by means of a statistics tools, which can be
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expressed mathematically as follows (Devillers 1999):

A/P = f(molecular structure) = f(molecular descriptors).

where A/P denotes the activity or property, which is essentially a chemical
or a biological measurement value. The activity or property of a molecule
can be commonly used normal boiling point, heat of formation, critical tem-
perature, density, flash points, refractive index, chromatographic retention
time, and octanol-water partition coefficient as well. Here, f(·) denotes a
function, which depends on the molecular structure or molecular descrip-
tors. In general, the model function, say f(·), can be linear or non-linear
depending on different complexity of the data.

In order to evaluate structural similarity and diversity of the molecules
and/or to build QSAR model as shown in the above equation, one need first
to obtain the suitable numerical molecular descriptors associated with the
molecular structure in QSAR/QSPR researches. There are many numerical
molecular descriptors available in chemistry, including physical-chemical pa-
rameters, topological index, 3D descriptors and quantum chemical indices.
However, in most cases, many chemists prefer to use topological index as
molecular descriptors to evaluate toxicity, and predict biological activity
(David, A. C. 2000, Liu et al. 2001, Basak et al. 1994, and Basak and
Grunwald 1994), since the topological indices offer a simple way of mea-
suring molecular branching, shape, size, cyclicity, symmetry, centricity and
complexity.

The aim of this paper is to introduce the topological indices, which are
essentially numerical molecular descriptors associated with the molecular
structure. In order to make it easier for readers to understand the meth-
ods coding the chemical structures from the molecular graphs, three major
forms are first classified as matrix expression, topological index and atomic
attribute of molecular topological structure as well. Then, nine matrices
expressing molecular structure, twenty-six kinds of topological indices and
seven methods dealing with weighted molecular graphs are summed up in
three tables for readers’ convenient usage.

2. Three Methods Describing Graph Structure

363



Q.-N. Hu, Y.-Z. Liang, and K.-T. Fang

Table 1: Graph matrices and their definitions
Name of matrix (reference) Definition
The Adjacency Matrix (Lukovits
2000)

[A]ij = 1 if i �= j and eij ∈ E(G)
= 0 if i = j or eij /∈ E(G)

A=A(G) where eij is the edge formed by atoms
i and j, E(G) means the set of edges
in the molecular graph.

Distance matrix (Rouvary 1986, Mi-
halic et al. 1992, and Bonchev and
Tinajstic 1977)

[D]ij = min(l(pij)) if i �= j
= 0 if i = j,

D=D(G) where min(l(pij)) is the shortest path
between atoms i and j.

Reciprocal matrix (Ivanciuc 1989,
Plavsic et al. 1993, and Ivanciuc et
al. 1993

[RD]ij = 1/Dij if i �= j
= 0 if i = j,

RD=RD(G) in which, the elements of RD is the re-
ciprocal (excluding the zero elements)
of the elements of D matrix.

Detour matrix (Ivanciuc and Balaban
1994, Amic and Trinajstic 1995, Di-
udea et al. 1998, Rücker 1998, and
Mihalic 1997)

[∆]ij = max(l(pij)) if i �= j

= 0 if i = j

∆=DD(G) where max(l(pij)) denotes the longest
path between atoms i and j.

Edge-adjacency matrix (Estrada 1995,
1996, 1999, Estrada and Ramirez
1996, and Estrada et al. 1998)

[E]ij = 1 if there is a common node
= 0 otherwise.

E=E(G)

The Laplacian matrix (Mohar 1989,
Mohar et al. 1993, Gutman et al.
1994, Trinajstic et al. 1994, and Ivan-
ciuc 1993)

[L]ij = degi if i �= j

= −1 if eij ∈ E(G)
= 0 if eij /∈ E(G)

L=DEG(G)-A(G) where degi means the vertex degree of
atom i.
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Table 1 (contiuned): Graph matrices and their definitions
Name of matrix (reference) Definition
The x matrix (Randić 1992)

χ=X(G) χij = (degidegj)
−1/2 if eij ∈ E(G)

= 0 otherwise
The resistance matrix (Klein and
Randić 1993, and Bonchev et al. 1994)

see reference because the description
of RM(G) is too long.

RM=RN(G)

Cluj matrix(Diudea 1997, Diudea et
al. 1997, Kiss et al. 1997, and Gut-
man 1997)

[Cju]ij = max{Ni,p(m) : m = 1, 2, · · ·}

Cj=Cj(G) where the Ni,p(m) represent the num-
ber of vertices on each side of the path
pij .

In order to extract structure information as much as possible, many
methods focused their attention on describing atom and bond.

2.1 Matrices

In molecular graph, vertex represents atom and edge symbolizes bond.
Thus, the molecular graphs can be easily expressed by matrices. Based on
the matrix expression of the molecular graph, matrix polynomial, determi-
nant, path, walk, and distance can be calculated (Berenike and Joachim
2001, Gutman et al. 2001, and Dayantis 1997). Matrix is the basis to
compute other parameters. Some commonly used matrices expressing the
molecular graphs are summarized in Table 1.

After getting the matrix of molecular graph, the characteristic determi-
nants and spectra, which have important applications in molecular orbital
theory (Graovac et al. 1977, Gutman and Polansky 1986, Trinajstic 1992,
and Knop and Trinajstic 1980) and also are important sources of molecu-
lar descriptors (Hosoya 1971, 1988, 1990, Trinajstic 1988, and Hosoya and
Murakami 1975), can be calculated. There are many references (Graovac et
al. 1977, Gutman and Polansky 1986, Trinajstic 1988, 1992, Knop and
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Table 2: Topological indices and their definitions∗

Name of index (reference) Definition
Autocorrelation descriptors
(Moreau and Broto 1980)

T = (T0, T1, T2) Tn = g(i) ∗ g(j),

where g(i) and g(j) are the contributions at-
tributed to atoms i and j.

Balaban index J (Balaban
1982)

J = Σ(S̄iS̄j)−1/2 = qΣ(SiSj)−1/2,

where Si and Sj mean the distance sums of the
vertices Vi and Vj; q = ne/(µ + 1), in which
ne is the number of edges and µ is the cycle
number.

Bond flexibility index (Lieth
et al. 1996)

ρKB = ΣΦi − Φ + 1,

in which Φi corresponds to the fragment flexi-
bilities; and Φ denotes the whole molecule flex-
ibilities.

Centric indices (Balaban
1979, and Hu et al. 2003a)

B =
∑

i δ2
i C = 1/2(B − 2n + U),

where δi is the vertices at each step; and U is
the Kronecker delta depending on the parity of
the number of vertices n.

CI =
n∑

i=1

BFi, in which BFi =
n∑

j=i

Ij ∗ Vj ∗ Dij

where Ij is the intrinsic state of atoms j, Vj

is the vertex degree of atom j, and Dij is the
distance between atoms i and j.

Detour index (Lukovits 1996,
Razinger 1997)

ω = (1/2)
∑

i

∑

j

(∆)ij ,

where ∆ij is an element in the detour matrix.
Edge connectivity index
(Estrada 1995)

ε =
∑

r

((δ(ei)(δ(ej)))−0.5
r ,

where δ(ei) and δ(ej) are the degree of edges
ei and ej.
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Table 2 (continued): Topological indices and their definitions∗

Name of index (reference) Definition
Electropy index (Yee et al.
1977)

ε = log2
N !

ΠNi!
,

where N is the total number of atoms in the
molecule. Ni means the number of one kind of
atoms.

(E-state) index (Kier and Hall
1990)

Si = Ii +
∑

j

∆Iij,

where Ii is the intrinsic state value of atom i;
∆Iij is the perturbation of Ij on Ii with the
form as ∆Iij = (Ii − Ij)/D2

ij .

Extended ECI (Estrada et al.
1998)

mεt(G) =
∑

s

∏

i

[δ(ei)]−0.5
s ,

where δ(ei) is the degree of edge ei.

Extended WI (Estrada et al.
1988)

kW =
l∑

i=k−1

i(i − 1)(i − 2) · · · (i − (k − 1))ηi,

in which ηi is the number of pairs of vertices at
distance i.

Flexibility index (Kier 1989) Φ = 1κα
2κα/A,

where A is the number of atoms; 1κα and 2κα

are the first and second order of Kappa index.

Fragment WI (Mekenyan et
al. 1988)

W. EFTI (G) =
N∑

i=1

W. EFTI(vi),

the index is to reflect the interaction between
the excised fragment F and the remainder of
the molecular graph (G − F ).

GSI (Gordon and Scantlebury
1964)

2N2 =
n∑

i,j

(Vi + Vj) − 2,

where Vi and Vj are the vertex degrees of atoms
i and j.
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Table 2 (continued): Topological indices and their definitions∗

Name of index (reference) Definition

Harary index (Plavsic et al.
1993)

H = (1/2)
N∑

i=1

N∑

j=1

(Dr)ij .

Hosoya index (Hosoya 1971) Z(G) =
n/2∑

K=0

P (G,K),

where p(G,K) is the number of ways in which
k edges of the graph may be chosen so that no
two of them are adjacent.

Hyper-Wiener index (Klein et
al. 1995)

WW (G) =
1
2

∑

i<j

([D]2ij + [D]ij).

Identification numbers
(Randić 1977)

ID =
1
2
[N +

T∑

i=1

Wi].

Kappa index (Kier 1985,
1986)

1κ = 21Pmax1Pmin/(1Pi)2,

2κ = 22Pmax2Pmin/(2Pi)2,

32κ = 43Pmax3Pmin/(3Pi)2,

where 1Pi,
2 Pi, and 3Pi are the numbers of one,

two, and three paths; 1Pmin, and 1Pmax are the
number of one-bond path of linear and com-
plete graph; 2Pmin, and 2Pmax are the num-
ber of two-bond paths of linear and star graph;
3Pmax, and 3Pmax are the number of three-bond
paths of linear and twin star graph.

Kirchoff index (number)
(Klein and Randić 1993)

Kf =
1
2

∑

i

∑

j

Ωij,

where Ωij is the (i, j) element of resistance ma-
trix.
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Table 2 (continued): Topological indices and their definitions∗

Name of index (reference) Definition
Molecular connectivity index
(Randić 1975, and Kier and
Hall 1976)

χ =
∑

(ViVj)−1/2,

kχp =
∑

all edges

(ViVj · · ·Vk)−1/2,

where Vi, Vj , and Vk are the vertex degrees of
atoms i, j, and k.

Molecular topological index
(Schultz 1989)

MTI =
n∑

i=1

Ei,

in which Ei is the row matrix consisting of
v(A+D) where v is the vertex degree.

Overall connectivity
(Bonchev 1997)

TC(G) =
K∑

k=1

Ak(Gk ∈ G) =
K∑

k=1

Nk∑

i=1

ai.

Quasi-Wiener index (Mohar
et al. 1993)

W ∗(G) = N
N−1∑

i=1

1
Sp(L)i

,

where Sp(L) is the spectrum of the Laplace ma-
trix.

Szeged index (Khadikar et al.
1995)

Sz(G) =
∑

eij∈E(G)

ninj .

Wiener index (Wiener 1947) W(G)=1/2(sum(sum(dij)).

Zagred group indices (Gut-
man et al. 1975)

M1 =
n∑

i=1

V 2
1 M2 =

∑

all edges

ViVj,

where Vi, and Vj are the vertex degrees of
atoms i, and j.

*: The meaning of the symbols can be found in the reference listed.

Trinajstic 1980, Hosoya 1971, 1988, 1990, Hosoya and Murakami 1975, and
Harray 1969) to discuss determinants and spectra. The commonly used
characteristic determinants are: Ch(A, G) = det(xI − A) (Graovac et al.

369



Q.-N. Hu, Y.-Z. Liang, and K.-T. Fang

1977, Gutman and Polansky 1986, Harary 1969, Cvetkovic et al. 1995),
Ch(D, G) = det(xI − D) (Hosoya et al. 1973, Graham et al. 1977, and
Graham and Lovasz 1978), Ch(RD, G) = det(xI − RD) (Diudea et al.
1997), and Ch(L, G) = det(xI − L) (Gutman et al. 1994, Trinajstic et al.
1994).

2.2 Topological index

There have been more than 400 kinds of topological indices available,
since the birth of the first one. Topological index can be used to evaluate
structural similarity and diversity. Its main role is to work as a numerical
molecular descriptor in QSAR/QSPR model (Ivanciuc et al. 1999). Some
important indices are listed in Table 2.

2.3 Atomic attribute

Nowadays, in addition to data on molecular connectivity, the informa-
tion encoded by topological indices also includes the nature of atoms and
the bond multiplicity. In topological description, another important as-
pect is to describe atoms and bonds, especially in weighted graph. Ivan-
ciuc et al. has written a review (Ivanciuc and Balaban 1999) on the main
schemes for computing vertex- and edge-weighted graph parameters, and
the related structural descriptors. Ivanciuc et al. (1998) proposed to apply
atomic electronegativity and covalent radius to obtain descriptors dealing
with weighted graph.

The methods to describe nature of atoms and bond multiplicity first
introduced some chemical parameters, such as atomic order (Z), relative
eletronegativity (X), length of covalent radius (Y), atomic mass (A), atomic
and adjacent hydrogen mass (AH), atomic polarity (P), atomic radius (R),
and atomic eletronegativity (E). Based on these parameters, some topolog-
ical invariants or indices were proposed (Nikolic et al. 1993, Balaban 1986).
These descriptors were further applied to QSAR/QSPR researches (Medic
et al. 1992, Balaban et al. 1990, 1992, Ivanciuc et al. 2000, Ivanciuc 2000,
and Estrada 1997). The methods are summarized in Table 3 in detail.
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Table 3: Schemes for describing weighted graph
Attribute
Schemes

Definition for atoms and bonds Reference

A V (A)i = 1 − Ac/Ai,

E(A)ij = AcAc/BoijAiAj ,

where Ac is the atomic mass of carbon atom; Ai, and
Aj are the atomic masses of atom i and j. Boij is
the topological bond order of the edge between atom
i and j.

Ivanciuc
and Bala-
ban 1999

AH V (AH)i = 1 − Ac/(Ai + NoHiAH), E(AH)ij =
AcAc/Boij(Ai + NoHiAH)(Aj + NoHjAH) , where
NoHi is the number of hydrogen atoms bonded to
the heavy atom i.

Ivanciuc
and Bala-
ban 1999

Z V (Z)i = 1 − Zc/Zi = 1 − 6/Zi, E(Z)ij =
ZcZc/BoijZiZj , where Zc is the atomic order of car-
bon atom; Zi, and Zj are the atomic orders of atom i

and j. Boij is the topological bond order of the edge
between atom i and j.

Ivanciuc et
al. 1998,
and Barysz
et al. 1983

X V (X)i = 1 − 1/Xi, E(X)ij = 1/BoijXiXj , where
Xi, and Xj are the relative eletronegativity of atom i

and j. Boij is the topological bond order of the edge
between atom i and j.

Balaban
1986, and
Ivanciuc et
al. 1998

Y V (Y )i = 1 − 1/Yi, E(Y )ij = 1/BoijYiYj , where Yi

and Yj are the length of covalent radius of atom i

and j. Boij is the topological bond order of the edge
between atom i and j.

Sanderson
1983,
Ivanciuc
1999

P V (P )i = 1 − αC/αi = 1 − 1.76/αi, E(P )ij =
αCαC/Boijαiαj , where αC is the atomic polarity
of carbon atom; αi, and αj are the atomic polarity
of atom i and j. Boij is the topological bond order of
the edge between atom i and j.

Ivanciuc et
al. 1998,
and Nagle
1990
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Table 3 (continued): Schemes for describing weighted graph
Attribute
Schemes

Definition for atoms and bonds Reference

R V (R)i = 1 − rC/ri = 1 − 1.21/ri,
E(P )ij = rCrC/Boijrirj , where rC is the atomic
radius of carbon atom; ri, and rj are the atomic
radius of atom i and j. Boij is the topological bond
order of the edge between atom i and j.

Ivanciuc et
al. 1998,
and Nagle
1990

2.4 An example

In order to make it easier for readers to understand how to obtain the
numerical molecular descriptor, an example is given on a saturated hydro-
carbon named lipC4, together with its hydrogen-depressed graph as shown
in Figure 1. The numbers, say 1, 2, · · ·, 7, are the labels of the atoms in
the graph.

H2C

H2C CH2

CH

CH

H3C

CH3

12

3 4

5

6

7

Figure 1. Molecular structure and the corresponding topological graph
(hydrogen-depressed) of 1ipC4

With the help of the labeled hydrogen-depressed graph, one could easily
get its adjacent, distance and detour matrices (longest path) of the molecule
according to their definitions (see Table 1). The labeled numbers in the
graph correspond to the number of the row or the column in the matrix.
Take the adjacent matrix as an example, if i �= j and eij ∈ E(G), then
[A]ij = 1; and if i = j or eij /∈ E(G), then [A]ij = 0. In this way, the
adjacent matrix can be easily obtained as shown in Table 4. Distance matrix
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can be achieved in the same way. If i �= j, then [D]ij = dij , that is, the
distance between these two vertexes, and if i = j, then [D]ij = 0. Similarly,
the detour matrix (its elements are the longest distances between pairs of
atoms) is also shown in the Table 4. From the Distance matrix in Table 4,
we can see that the element at column 5 and row 3 is 3, which means that
the distance between the vertex 5 and vertex 3 is 3.

Table 4: The adjacent, distance and detour matrices of molecule 1ipC4
Adjacent matrix Distance matrix Detour matrix

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7
1 0 1 0 1 1 0 0 0 1 2 1 1 2 2 0 3 2 3 1 2 2
2 1 0 1 0 0 0 0 1 0 1 2 2 3 3 3 0 3 2 4 5 5
3 0 1 0 1 0 0 0 2 1 0 1 3 4 4 2 3 0 3 3 4 4
4 1 0 1 0 0 0 0 1 2 1 0 2 3 3 3 2 3 0 4 5 5
5 1 0 0 0 0 1 1 1 2 3 2 0 1 1 1 4 3 4 0 1 1
6 0 0 0 0 1 0 0 2 3 4 3 1 0 2 2 5 4 5 1 0 2
7 0 0 0 0 1 0 0 2 3 4 3 1 2 0 2 5 4 5 1 2 0

With the adjacent and distance matrices at hand, some topological in-
dices (see Table 2) can be obtained directly from them, such as W (Wiener
index). One can simply sum up all the distances between the vertexes to get
it (see Table 5). However, some others need some complicated operations.
Table 5 lists some examples for the molecule 1ipC4 shown in Figure 1.

Here we will take molecular connectivity index as an example to illustrate
the calculation procedure. The molecular connectivity index is to describe
the molecular connectivity (see its definition in Table 2). For instance, if
we want to get χ1, we need to get the vertex degree (Vi), which is the
sum of i row of A matrix for atom i, for every vertex in the molecular
graph. From Figure 1, one can easily obtain such information, that is,
V1 = 3, V2 = 2, V3 = 2, V4 = 2, V5 = 3, V6 = 1, and V7 = 1. Then, we can
use the equation, say χ1 =

∑
(ViVj)

−1/2, to do the calculation first for every
two adjacent vertexes and then sum them up to get χ1 as shown in Table
5. In general, the topological indices offer a simple way of coding molecular
structure information into numerical values.
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Table 5: Some topological indices of molecule 1ipC4

Index name Definition Value

W W (G) = 1/2(
∑

(
∑

(dij))) 44
ω = (1/2)

∑
i

∑
j(∆ij)

Detour Index 64
χ0 χ0 =

∑
(Vi)

−1/2 5.2760
χ1 χ1 =

∑
(ViVj)

−1/2 3.3045
χ2 χ2 =

∑
(ViVjVk)

−1/2 2.9350
Kappa1 1κ = 21Pmax1Pmin/(1Pi)

2 5.1429
Kappa2 2κ = 22Pmax2Pmin/(2Pi)

2 1.8519
Kappa3 3κ = 43Pmax3Pmin/(3Pi)

2 0.9600

3. Some Directions in Developing Topological Index

Although the topological indices have wide applications in QSAR/QSPR,
there exit some shortcomings:

a. Compared with other parameters, the physical-chemical meaning of
topological index is not explicit (Devillers et al. 1997).

b. The degree of redundancy and degeneracy of certain topological in-
dices can be very high. In that case, it is impossible to interpret the QSAR
and QSPR models derived from these descriptors (Devillers 1999), which
is worthy to study the problem under these kinds of situations and the
topological indices should be employed only in contexts for which they are
suitable.

c. Topological index usually neglects the stereochemical information or
the three-dimensional structure of the molecule (Ivanciuc et al. 1999).

To deal with these shortcomings, different methods are proposed to im-
prove the topological index. The main directions of topological index are
mainly following points:

(1) Description of local information

Recent enrichments in these areas include topological indices for molec-
ular fragments, some stereochemical features and electronic parame-
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ters associated with various atoms. The introduction of local infor-
mation is helpful to explain the physical or chemical meaning of topo-
logical index. Local descriptors can be geometric, steric, hydrophobic,
hydrophilic constants, or atomic electron density. Estrada thinks that
the topological index is successful if the index has direct structural or
physical meaning and at same time obtains similar results of original
QSAR/QSPR model (Estrada 1999). A developing direction is to in-
clude not only topological but geometric characteristics to deal with
three-dimensional space of stereochemistry. Another direction is to
utilize atomic property to develop new index or improve the original
index.

(2) Studies on inter-correlation of topological index

Estrada thinks the resolution of practical problems should include as
many descriptors as possible and the built QSAR/QSPR model should
select as few descriptors as possible (Estrada 1999). The problem of
reducing number of variables makes the study on correlation between
topological indices important.

In QSAR research, a very important problem is how to reduce the
number of variables to improve the stability of the model. On one side,
the information of many topological indices is duplicated. On another
side, how to select the required variables from the lots of topological
indices is still unsolved. The solution of the problems requires the
study on correlation between variables and there are some primary
studies (Motoc and Balaban 1981, Motoc et al. 1982, Plavsic et al.
1996, 2000, Randić 2001, Rücker and Rücker 1994, and Chan et al.
1998).

(3) Variable index

The simple index should be modified if the molecules contain het-
eroatoms. The variable index is regarded as a novel way to describe
the heteroatoms. The optimal value is computed through the regres-
sion procedure. The variable index is a flexible function, which makes
the standard error of regression minimum and then find the optimal
number (Randić and Pompe 2001b). There are many prior studies
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(Randić and Basak 2001, Randić and Pompe 2001a, Randić et al.
2001) on the variable index and the authors also proposed one new
variable index (Hu et al. 2003b).
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Randić, M. (1975). On characterization of molecular branching. J. Am. Chem.
Soc., 97, 6609-6013.

386



Topological Index of Molecular Structure
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Randić, M. and Pompe, M. (2001a). The variable connectivity index 1χf versus
the traditional molecular descriptors: a comparative study of 1χf against
descriptors of CODESSA. J. Chem. Inf. Comput. Sci., 41, 631-638.
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