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Imputation Allowing Standard Variance Formulas

Michael P. Cohen
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Abstract: Although deletion of cases is still a common method of
dealing with item nonresponse, imputation is a major alternative.
With traditional methods of imputation, though, the usual variance
formulas understate the variance of estimates. This paper proposes
that items be imputed from distributions more diffuse than those of
the real data, thereby compensating for the underestimation of vari-
ance by the usual formulas. The impact on covariances is considered
in the design of the method. The method is intended for use by data
analysts applying techniques based on functions of first and second
moments of means only.
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1. Introduction

1.1 Item nonresponse

Most surveys have item nonresponse no matter how well planned they
may be. These missing data become a problem when it comes time to
analyze the dataset. There are three main methods for dealing with item-
level missing data: (i) delete complete cases whenever there are missing
data for any variable being analyzed, (ii) delete cases but only as necessary
for a particular family of estimates, and (iii) impute (“fill in values for”)
the missing data. Methods (i) and (ii) are still widely used in the social
and behavioral sciences. Method (iii), though, has been demonstrated to
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be superior in previous research (Chan and Dunn, 1972; Beale and Little,
1975; Kim and Curry, 1977; Little, 1988; and Bello, 1995).

The problems with methods (i) and (ii) are not hard to ascertain. Method
(i) may result in a substantial loss of cases, especially when many variables
are being analyzed. The cases retained, moreover, may not be representa-
tive of those deleted, resulting in a bias. Method (ii) has the problems of
method (i) but to a lesser degree. It has the serious additional problem of
inconsistencies in the values of estimates. For instance, if x is being ana-
lyzed in conjunction with y, then the estimated mean of x will be based
on cases where neither x nor y is missing. If, in another analysis, x is ana-
lyzed in conjunction with z instead, the estimated mean of x will in general
be based on different cases so we get two different estimates of the same
quantity. These inconsistencies can be very confusing to careful readers,
resulting in a loss of confidence in the research.

Method (iii), called the imputation technique, solves the problems al-
luded to above. After imputation, one can use complete data methods of
analysis without any need to discard cases. Another advantage is that the
data can be imputed “in house,” thus bringing the additional knowledge
of the data collection people to bear on the missing data problem. This is
not to say that imputation does not have its own drawbacks. Chief among
these is the underestimation of standard errors (if standard variance formu-
las are used) — this happens essentially because the amount of “real” data
is less than it appears to be. Although the reason is less obvious, covari-
ance estimates undergo shrinkage toward zero (that is, attenuation). For
general discussion of imputation, we recommend Kalton (1983), Kalton and
Kasprzyk (1986), and Rubin (1987).

1.2 Standard formulas

The objective of this paper is to explore methods of imputation that
permit the use of standard variance formulas. The results apply to estimates
based on functions of first and second moments of means only. The question
naturally arises, is this a direction worth pursuing? Survey methodologists,
in particular, may regard this work as a step backward to the time when
some recent developments (see the latter part of Subsection 2.1 were not
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yet available. But for social science data, one must consider the tremendous
investment of training and experience that the social science analyst has
in working with certain statistical analysis software systems, particularly
SPSS and SAS. Quantitative methods courses in universities typically focus
on the use of these software products. Thus it is common to treat item
nonresponse by deleting cases and to estimate variances by adjusting by a
design effect, by no adjustment at all, or by some ad hoc technique (e.g.
use of a significance level of .01 instead of .05 in hypothesis testing with no
variance adjustment).

Throughout this article, we assume that there is an indicator (“imputa-
tion flag”) to show whether the item was a response or imputed.

The outline of this paper is as follows: Section 1 is this introduction. In
Section 2 we discuss the one-variable case. The section consists of a subsec-
tion on the problems with the traditional approach followed by a subsection
on the alternative approach. Section 3 expands the coverage to the multi-
variate case and, in particular, to the difficult problem of covariances. In
the last section we make some final remarks.

2. The one variable case

2.1 Problems with the traditional approach

We begin by assuming the sample has been divided into groups of ob-
servations called imputation classes (Kalton, 1983, p. 67). Within each
imputation class, we assume for now that the responding units for item y
are a random subsample of all sampled units. Let the sample size in im-
putation class k be nk with rk responding and mk = nk − rk missing. We
can number the units so that units i = 1, 2, . . . , rk responded to item y and
units i = rk + 1, . . . , nk did not. At this point we shall for simplicity drop
the subscript k, denoting the imputation class, from the notation; however,
it should be borne in mind that all calculations are within the imputation
class. The best estimate (in many respects) of the mean of y within the
imputation class is ȳr = 1

r

∑r
i=1 yi and the best estimate of the variance of

the mean is s2
ȳr

= 1
r(r−1)

∑r
i=1(yi − ȳ)2. For simplicity we are ignoring the
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sample weights in this discussion, but they could be incorporated. A finite
population correction could also be included.

It is tempting to impute the missing values by ȳr. In fact, this choice has
good “first order” properties in that 1

n

∑n
i=1 yi = ȳr. On the other hand,

1

n(n − 1)

n∑
i=1

(yi − ȳr)
2 =

1

n(n − 1)

r∑
i=1

(yi − ȳr)
2 =

r(r − 1)

n(n − 1)
s2

ȳr
,

so the variance of the mean will be underestimated. This perhaps should
not be surprising in that we have chosen to impute the value that minimizes
the variance expression. Here, as elsewhere in the paper, yr+1, . . . , yn refers
to the imputed values (not the “true” values) of the missing y-values for
units r + 1, . . . , n.

To combat the problem of underestimation of variances, imputation
methods have been proposed that attempt to impute values drawn from
the distribution of the observed y’s. Although an improvement on mean
imputation, this approach is also doomed to failure when it comes to es-
timation of variances (by standard formulas) as we shall see. If the im-
puted yr+1, . . . , yn are chosen to have about the same mean and devia-
tions about the mean as the observed y1, . . . , yr, then 1

n−r

∑n
i=r+1 yi ≈ ȳr so

that ȳ ≈ ȳr where ≈ denotes “approximately equal” and ȳ ≡ 1
n

∑n
i=1 yi is

the overall sample mean (in the imputation class). So, like mean imputa-
tion, the “first order” properties of these methods are good. Furthermore,

1
r−1

∑r
i=1(yi − ȳr)

2 ≈ 1
n−1

∑n
i=1(yi − ȳ)2. The variance of the mean is esti-

mated by

1

n(n − 1)

n∑
i=1

(yi − ȳ)2 ≈ 1

n(n − 1)

n − 1

r − 1

r∑
i=1

(yi − ȳr)
2 =

r

n
s2

ȳr
.

The variance of the mean is still underestimated although not so badly
as with mean imputation. The problem is that the variance formulas are
designed for n “real” observations, not r < n observations and m = n − r
imputed values.

What, then, can be done? One promising approach is to alter the vari-
ance formula used (Rao and Shao, 1992; Särndal, 1992; Fay, 1996b; and Rao,
1996) but impute only once. Another idea, multiple imputation, makes use
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of several imputations to capture the missing variance component in vari-
ance estimates when missing data are present (Rubin, 1978, 1996; and Fay,
1992). Fay (1996a) and Kaufman (1996) investigate methods that are mix-
tures of these two approaches. The challenge is to find a method that is
reasonably appealing to social science analysts who are inclined to delete
cases to avoid the complications caused by missing data.

We consider in this paper single (as opposed to multiple) imputation
methods that are intended for use with the standard variance formulas. The
imputed values will be more dispersed than the observed values. Clearly
this method will not work for estimating all features of the distribution; for
example, it is not suited for estimating percentiles or histograms. But many
statistical procedures depend on only the first two moments of means (and
functions thereof), and it is for these procedures the imputation method is
intended.

2.2 The alternative approach

Let us try to find imputed values yr+1, . . . , yn so that

ȳ = ȳr (2.1)

and

1

n(n − 1)

n∑
i=1

(yi − ȳ)2 =
1

r(r − 1)

r∑
i=1

(yi − ȳ)2. (2.2)

Let D2
r = 1

r

∑r
i=1(yi − ȳ)2 and D2

m = 1
m

∑n
i=r+1(yi − ȳ)2. Then D2

r and D2
m

are respectively the average squared deviation of the observed and imputed
values about their (common) mean. Rewriting (2.2) in terms of D2

r and
D2

m, we have
1

n(n − 1)
(rD2

r + mD2
m) =

1

r − 1
D2

r . (2.3)

Simplifying (2.3), we get

D2
m =

n + r − 1

r − 1
D2

r . (2.4)

279



Michael P. Cohen

There are many solutions to (2.1) and (2.4), but, if m = n− r is even, there
is one particularly simple solution:

yi = ȳ ±
√

n + r − 1

r − 1
Dr for i = r + 1, . . . , n, (2.5)

where m/2 imputed values have the + sign and m/2 have the − sign. Note
that if m is small so that r ≈ n then (2.5) reduces to yi ≈ ȳ ± 21/2Dr

for i = r + 1, . . . , n; that is, the distance of an imputed value from the
mean is about 21/2 times the root mean squared deviation of the observed
values. If m ≈ r ≈ n/2, representing a large amount of imputation, we have
yi ≈ ȳ ± 31/2Dr for i = r + 1, . . . , n; in this case the distance of an imputed
value from the mean is about 31/2 times the root mean squared deviation of
the observed values. Certainly the imputed values are much more dispersed
than the observed values.

A result like (2.5), but with a finite population correction, was obtained
by Lanke (1983) and discussed by Sedransk (1985).

If m > 1 is odd, a solution is available that is almost as simple as the
one for m even. Set yr+1 = ȳ and

yi = ȳ ±
√

(n − r)(n + r − 1)

(n − r − 1)(r − 1)
Dr for i = r + 2, . . . , n, (2.6)

where half the values imputed by (2.6) have the + sign and half have the
− sign.

It ought to be mentioned that the imputed values will not generally
satisfy the edit checks that the observed values had to satisfy, nor even
necessarily be feasible values. But if the signs of the deviations from the
mean of the imputed values are assigned randomly (or according to an
appropriate pattern), the chance an estimated mean over a reasonably large
domain will be outside the variables’s range will be very small.

2.3 Example I

For illustrative purposes, a sample was selected from the 1994 Academic
Library Survey of the U.S. National Center for Education Statistics. The
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Table 1: Example for the One Variable Case:
Academic Library Transactions

T ∗ T̄D T̄O T̄IC T̂
Imp. Class 1

mean est. 13281 13771 15046 13771 13771
std. err. est. 1598 1778 1381 1304 1778

Imp. Class 2
mean est. 19914 21174 20902 21174 21174
std. err. est. 2008 2099 1874 1869 2099

Overall
mean est. 17371 18657 18657 18336 18336
std. err. est. 1435 1582 1316 1333 1526

sample of 60 institutions was selected by simple random sampling from the
population of community colleges with academic libraries and where the
number of faculty was in the range 25–124. In order to facilitate compar-
isons, only institutions with non-missing values for certain items (such as
academic library transactions considered here) were included in the popu-
lation.

The 60 institutions in the sample were divided into two imputation
classes: Imputation Class 1 consists of 23 institutions with 25–49 faculty.
Imputation Class 2 consists of 37 institutions with 50–124 faculty. For the
variable academic library transactions, the values for 6 institutions in Impu-
tation Class 1 and 4 institutions in Imputation Class 2, randomly selected,
were set to missing.

Suppose we want to estimate the mean number of academic library trans-
actions. The estimator T̄D (“deletion”) of Table 1 uses the non-missing cases
only. The estimators T̄O and T̄IC both impute a mean value for the missing
cases: T̄O uses the overall mean whereas T̄IC uses the mean within the impu-
tation class. The estimator T̂ is based on the imputations defined by (2.5).
The mean using the true values for the missing cases is denoted by T ∗. It
is not really an estimator because the true values would not ordinarily be
known, but it is included for comparison purposes.

Let rk and nk denote respectively the number of respondents and the
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sample size in Imputation Class k, k = 1, 2. Note that T̄D and T̄IC give the
same mean estimates for each imputation class, but different mean estimates
overall (that is, for the two imputation classes combined). This occurs
because T̄D is based on rk values in Imputation Class k whereas T̄IC is
based on nk values, some imputed. A problem with T̄D is that it does not
give each imputation class its proper weight.

In terms of estimating the mean at the imputation class level, T̄D, T̄IC ,
and T̂ all do well. At the overall level, T̄D and T̄O do not account for having
a sample size in each imputation class of nk rather than rk. As expected, the
two mean imputation estimators T̄O and T̄IC underestimate the standard
errors. The estimator T̂ does well for both means and standard errors.

3 The multivariate case

Of course, in major surveys we almost always have many variables avail-
able to use as covariates but themselves possibly having missing values. Let
us begin with the simplest such case.

3.1 Two variables, same units with missing values

We assume again the sample has been divided into imputation classes.
Within the imputation class, suppose the responding units for items x and
y are a random subsample of all sampled units. We further suppose in this
subsection that x and y are observed for the same units and missing for the
same units. Let the sample size in the imputation class be n with r units
responding to the two items and m = n − r missing the two items. We
number the units so that units i = 1, 2, . . . , r responded to items x and y
whereas units i = r + 1, . . . , n did not.

We seek to impute so that the means of x and y within the imputation
class are x̄r = 1

r

∑r
i=1 xi and ȳr = 1

r

∑r
i=1 yi. We also want

s2
x̄ ≡ 1

n(n − 1)

n∑
i=1

(xi − x̄)2 =
1

r(r − 1)

r∑
i=1

(xi − x̄)2 and

s2
ȳ ≡ 1

n(n − 1)

n∑
i=1

(yi − ȳ)2 =
1

r(r − 1)

r∑
i=1

(yi − ȳ)2.
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Lastly, we would like to preserve the correlation of the means:

ρx̄,ȳ ≡ 1

n(n − 1)

∑n
i=1(xi − x̄)(yi − ȳ)

sx̄sȳ

=
1

r(r − 1)

∑r
i=1(xi − x̄)(yi − ȳ)

sx̄sȳ

.

Let

D2
x,r =

1

r

r∑
i=1

(xi − x̄)2

D2
y,r =

1

r

r∑
i=1

(yi − ȳ)2, and

Cx,y,r =
1

r

r∑
i=1

(xi − x̄)(yi − ȳ).

We concentrate first on the case m = 4, that is, four pairs of missing values.
Let ẋj = xr+j − x̄ and ẏj = yr+j − ȳ for j = 1, 2, 3, 4 denote the differences
of the imputed values from the appropriate mean. Then, by the argument
used to get (2.4), we have

ẋ1 + ẋ2 + ẋ3 + ẋ4 = 0,

ẏ1 + ẏ2 + ẏ3 + ẏ4 = 0,

ẋ2
1 + ẋ2

2 + ẋ2
3 + ẋ2

4 =
4(n + r − 1)

r − 1
D2

x,r,

ẏ2
1 + ẏ2

2 + ẏ2
3 + ẏ2

4 =
4(n + r − 1)

r − 1
D2

y,r, and

ẋ1ẏ1 + ẋ2ẏ2 + ẋ3ẏ3 + ẋ4ẏ4 =
4(n + r − 1)

r − 1
Cx,y,r.

To solve, let’s try the trigonometric substitutions

ẋ1 = −ẋ3 =

√
2(n + r − 1)

r − 1
Dx,r sin θ,

ẋ2 = −ẋ4 =

√
2(n + r − 1)

r − 1
Dx,r cos θ,

ẏ1 = −ẏ3 =

√
2(n + r − 1)

r − 1
Dy,r cos φ, and
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ẏ2 = −ẏ4 =

√
2(n + r − 1)

r − 1
Dy,r sin φ.

One can verify that all equations are satisfied provided that

Dx,rDy,r (sin θ cos φ + cos θ sin φ) = Dx,rDy,r sin(θ + φ) = Cx,y,r.

So

θ + φ = arcsin

(
Cx,y,r

Dx,rDy,r

)
.

It is easy to check that the argument of the arcsin function is at most 1 in
absolute value so θ + φ is well defined. So long as the constraint on their
sum is satisfied, θ and φ may take on a range of values, each corresponding
to a solution to the original equations.

This family of solutions provides the convenience of being expressible in
closed form. To choose an approximate “best” solution within the family,
one could impose an additional desirable constraint.

Now let’s turn to the harder case (because it is less symmetric): m = 3.
The equations for this case are

ẋ1 + ẋ2 + ẋ3 = 0,

ẏ1 + ẏ2 + ẏ3 = 0,

ẋ2
1 + ẋ2

2 + ẋ2
3 =

3(n + r − 1)

r − 1
D2

x,r,

ẏ2
1 + ẏ2

2 + ẏ2
3 =

3(n + r − 1)

r − 1
D2

y,r, and

ẋ1ẏ1 + ẋ2ẏ2 + ẋ3ẏ3 =
3(n + r − 1)

r − 1
Cx,y,r.

A particular solution, obtained through the use of substitutions and a careful
examination of the solution to certain quadratic equations, is given by

ẋ1 = −
√

n + r − 1

2(r − 1)
Dx,r,

ẋ2 =

√
2
n + r − 1

r − 1
Dx,r,
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ẋ3 = −ẋ1 − ẋ2,

ẏ1 = −
√

n + r − 1

2(r − 1)

(
Cx,y,r

Dx,r

)

+

√
3(n + r − 1)

2(r − 1)

(
1 − C2

x,y,r

D2
x,rD

2
y,r

)
Dy,r,

ẏ2 =

√
2(n + r − 1)

r − 1

(
Cx,y,r

Dx,r

)
, and

ẏ3 = −ẏ1 − ẏ2.

We have obtained, in fact, a family of six solutions, one for each permutation
of the subscripts 1, 2, 3. As for the m = 4 case, one could select among the
closed form solutions here by imposing another constraint.

The cases m > 4 are easier (because the constraints are less restrictive)
and can be handled in a variety of ways. For example, one way to treat
m = 5, although probably not the best way, is to set ẋ5 = ẏ5 = 0 and then
apply the solution for m = 4.

For m = 1 and m = 2, no exact solutions can be obtained. If the
correlation between x̄ and ȳ is important, we recommend dealing with m = 1
or m = 2 by making a random choice among the solutions for m = 3 or
m = 4.

3.2 Example II

The is a continuation of Example I from Subsection 2.3. We now fo-
cus on two variables: academic library transactions and total expenditures
(more precisely, total operating expenditures of the academic library). The
variable academic library transactions is missing for the same cases as in
Subsection 2.3, and for exactly these cases the variable total expenditures
is also missing.

In Table 2, the estimators T̄D, T̄O, and T̄IC are the same as before, and
ĒD, ĒO, and ĒIC are the analogous estimators for total expenditures. The
estimators T̂ and Ê are defined as for m = 4 in the previous subsection. For
Imputation Class I (with six missing values), the final two missing values
were imputed at the mean, and the first four were expanded away from the
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mean by a factor of
√

3/2. The estimators C̄D, C̄O, C̄IC , and Ĉ are the
corresponding estimators of the covariance of the means. The means T ∗

and E∗ and the covariance of the means C∗ are computed with no missing
values for purposes of comparison.

The estimators T̂ and Ê do well as in the one variable situation, and the
covariance estimate Ĉ is not attenuated.

3.3 Two variables, only one variable missing

Within each imputation class, suppose now that item x is observed for
all n units. Item y, on the other hand, is missing for m ≥ 1 units and
observed for the other r = n − m units. We assume the missing y’s are
missing at random but not necessarily missing completely at random; that
is, the missingness may depend on the observed x’s and y’s. The units are
numbered so that units i = 1, 2, . . . , r responded to item y whereas units
i = r + 1, . . . , n did not. The objective in this subsection is to impute the
missing y’s.

This situation introduces an important new feature: It is no longer ap-
propriate to assume that ȳr is the “best” estimate of the population mean
of the y’s. We can do better by making use of the x’s corresponding to the
missing y’s.

Consider
ei =

yi

xi
, i = 1, . . . , n.

We shall explore the assumption that the ei can be modelled as independent,
identically distributed, and independent of the x’s, within the imputation
class. This assumption is reasonable in many circumstances and the rea-
soning can be extended to other situations.

We can apply the results of Subsection 2.2 to impute the “missing”
ei (i = r + 1, . . . , n) to satisfy:

ē = ēr ≡ 1

r

r∑
i=1

ei, and

s2
ē = s2

ēr
≡ 1

r(r − 1)

r∑
i=1

(ei − ē)2.
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Table 2: Example for the Two Variable Case:
Academic Library Transactions and Total Expenditures

Academic Library Transactions

T ∗ T̄D T̄O T̄IC T̂
Imp. Class 1

mean est. 13281 13771 15046 13771 13771
std. err. est. 1598 1778 1381 1304 1778

Imp. Class 2
mean est. 19914 21174 20902 21174 21174
std. err. est. 2008 2099 1874 1869 2099

Overall
mean est. 17371 18657 18657 18336 18336
std. err. est. 1435 1582 1316 1333 1526

Total Expenditures

E∗ ĒD ĒO ĒIC Ê
Imp. Class 1

mean est. 222482 245393 186245 184970 245393
std. err. est. 17062 19830 25729 26107 19830

Imp. Class 2
mean est. 419627 424144 380307 380579 424144
std. err. est. 35277 38028 39835 39767 38028

Overall
mean est. 344054 363368 305917 305596 355623
std. err. est. 25799 28518 29027 29082 26988

Covariance

C∗ C̄D C̄O C̄IC Ĉ
Imp. Class 1

covariance est. -628 -679 -790 -565 -679
Imp. Class 2

covariance est. -686 -709 -644 -676 -709
Overall

covariance est. -436 -472 -440 -422 -462
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Table 3: Estimating Total Expenditures with Number
of Staff as Auxiliary Variable

E∗ ĒD ĒO ĒIC Ê ÊAUX

Imp. Class 1
mean est. 222482 245393 276169 245393 245393 233817
std. err. est. 17062 19830 18258 14539 19830 17797

Imp. Class 2
mean est. 419627 424144 417573 424144 424144 423022
std. err. est. 35277 38028 34005 33860 38028 38640

Overall
mean est. 344054 363368 363368 355623 355623 350494
std. err. est. 25799 28518 23725 24282 26988 27395

From the imputed ei, we get imputed yi by yi = xiei.

3.4 Example III

This example treats the estimation of total expenditures introduced in
Example II of Subsection 3.2, but now we add an auxiliary variable number
of staff (number of full-time equivalent academic library staff). The values of
number of staff are available for all institutions. We shall form an estimator
of total expenditures (ÊAUX ) that uses the number of staff as an auxiliary
variable in the manner described in Subsection 3.3. A rough plot of total
expenditures versus number of staff revealed an intercept at around 100000.
For this reason, 100000 was subtracted from the total expenditures before
forming ratios and added back later. No attempt was made to fine-tune the
model. In Table 3, ÊAUX is the new estimator; the others were defined in
Subsection 3.2.

Although the improvement is not dramatic, ÊAUX seems to outperform
the deletion estimator ĒD without having distorted standard errors.

3.5 More general situations
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We have discussed but a small subset of the multitude of missing data
situations that arise in practice. In this subsection we shall just briefly
touch upon three aspects needing more serious investigation.

1. We have only considered imputing one or two variables, but there will
almost always be more than that, often hundreds. If there are k vari-
ables to be imputed, the number of pairwise correlations to consider is
k(k − 1)/2. Clearly we will reach a point where the equations for the
correlations cannot be solved exactly. At least two ways of treating
this problem come to mind.

(a) The variables can be divided into blocks of variables thought to
be closely related. We can then try to control only for the correla-
tions between variables within the same block. The presumption
is that this will account for most of the correlation.

(b) As an alternative to trying to control certain correlations exactly,
we might only seek to control them on average by randomizing
among solutions to the equations for the correlations. A related
idea would be to seek approximate solutions that minimize the
distance (based on some distance function) to the solutions of
the individual equations.

2. Even for two variables, we have only considered the two simplest pat-
terns of missingness for the data: either only one of two variables has
missing values, or the two variables have missing values for the same
units. The hope, of course, is that we can solve more general prob-
lems by an iterative procedure, perhaps first imputing values when
one variable is missing but not the other, then the reverse, and finally
when both are missing.

3. We have treated imputation within imputation classes, implicitly as-
suming that the imputation will have good properties for means and
variances and correlations of means across imputation classes. If the
data for each imputation class are (at least approximately) indepen-
dent from each other, then the assumption is justified. Otherwise, the
results presented here can be extended, but only if we know what the
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variances and correlations of the means of the observed values across
imputation classes should be.

4. Final comment

Deletion of cases still seems to be the most common way that data
analysts in the social and behavioral sciences cope with item nonresponse.
There is therefore value in searching for techniques for handling missing
data that are easy to use yet have desirable statistical properties.

This paper is just a beginning exploration of an approach to imputation
that makes use of imputed values distributed more diffusely than the ob-
served data. The approach is not intended for all statistical applications,
only those based on functions of the first two moments of means. For many
problems we hope it will develop into a reliable technique not requiring
multiple imputations or special variance formulas.
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