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Abstract: Supersaturated designs are very cost-effective with respect
to the number of runs and as such are highly desirable in many
preliminary studies in industrial experimentation. Variable selection
plays an important role in analyzing data from the supersaturated
designs. Traditional approaches, such as the best subset variable
selection and stepwise regression, may not be appropriate in this sit-
uation. In this paper, we introduce a variable selection procedure
to screen active effects in the SSDs via nonconvex penalized least
squares approach. Empirical comparison with Bayesian variable se-
lection approaches is conducted. Our simulation shows that the non-
convex penalized least squares method compares very favorably with
the Bayesian variable selection approach proposed in Beattie, Fong
and Lin (2001).

Key words: Bayesian variable selection, penalized least squares,
SCAD.

1. Introduction

Supersaturated designs (SSD) are useful in many preliminary studies in
industry in the presence of a large number of potentially relevant factors,
of which actual active effects are believed to be sparse. The SSD was intro-
duced by Satterthwaite (1959) and has again received increasing attention
since the appearance of Lin (1993), evidenced by the growth of the liter-
ature. Lin (1993) provided a new class of supersaturated designs based
on half-fractions of Hadamard matrices. Wu (1993) augmented Hadamard

249



Runze Li and Dennis K. J. Lin

matrices by adding interaction columns. Algorithms for constructing SSD
have been studied by many authors, for instance, Lin (1991, 1995), Nguyen
(1996), Li and Wu (1997), Tang and Wu (1997), Yamada and Lin (1997),
Deng, Lin and Wang (1999) and Fang, Lin and Ma (2000). Since the num-
ber of experiments is less than the number of candidate factors in SSD, the
analysis is very challenging.

To find the sparse active effects, variable selection becomes fundamental
in the analysis stage of such screening experiments. While stepwise vari-
able selection may not be appropriate (see, for example, Westfall, Young
and Lin, 1998), some traditional approaches, such as the best subset vari-
able selection, are known to be infeasible. Beattie, Fong and Lin (2001)
discuss how to implement Bayesian variable selection for data analysis of
SSDs. They first employed the stochastic search variable selection (SSVS)
approach, proposed by George and McMulloch (1993) then applied the in-
trinsic Bayesian factor (IBF), proposed by Berger and Pericchi (1996), to
select active effects from the remaining factors in the first stage. In this
paper, we introduce an alternative approach via nonconvex penalized least
squares. The theory behind our approach is different from the Bayesian
variable selection approaches.

Fan and Li (2001) proposed a class of variable selection procedures by
nonconcave penalized likelihood approaches. Extending the idea of the non-
concave penalized likelihood, Li and Lin (2002) suggested the use of non-
convex penalized least squares to screen active effects for supersaturated
design. From their comparison, the penalized least squares performs much
better than than the stepwise procedures using various variable selection
criteria. In this paper, the performance of the penalized least squares is
compared with that of Bayesian variable selection procedures. Our simu-
lation shows that the procedure, proposed by Li and Lin (2002), compares
very favorably with Bayesian variable selection approaches.

This paper is organized as follows. In Section 2, we introduce nonconvex
penalized least squares, and discuss how to implement the nonconvex penal-
ized least squares approach in practice. Section 3 proposes a new approach
to screening active effects via penalized least squares. A real example and
empirical comparison are given in Section 4. Final conclusions are given in
Section 5.
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2. Nonconvex penalized least squares

Suppose that observations yi,---,¥, are an independent sample from
the linear regression model

yi=xTB + (2.1)

with E(g;) = 0, and var(e;) = o2, where x; corresponds to a fixed experiment
design. Denotey = (y1,--,y,)%, and X = (x1,-+,x%,)’. Following Fan
and Li (2001), define penalized least squares as

n d

QB) = 3= > (V= X8 + > pall5) 22)

i=1 j=1

where ||-|| is the Ly-norm, d is the dimension of 3, p,(+) is a penalty function,
and A is a tuning parameter which controls model complexity. Note that A
may depend on the sample size n and can be selected by some data-driven
methods, such as generalized cross validation (GCV, Craven and Wahba,
1979).

Some existing variable selection criteria are closely related to the pe-
nalized least squares criterion (2.2). Take the penalty function to be the
entropy penalty, namely, px(|6]) = $A?I(|] # 0), which is also referred to
as Lo-penalty in the literature, where I(-) is an indicator function. Note
that the dimension or the size of a model equals to the number of nonzero
regression coefficients in the model. This actually equals 3, I(|8;] # 0). In
other words, the PLS (2.2) with the entropy penalty can be rewritten as

n

1

2n 4
=1

1
(yi — x:8)° + 5/\i|M|7 (2.3)

where |M| = . I(|3;] # 0) is the size of the underlying candidate model.
Hence, many popular variable selection criteria can be derived from the PLS
(2.3) by choosing different values of A,,. For instance, the AIC (Akaike, 1974)
and BIC (Schwarz, 1978) correspond to A, = 2(c/+/n) and /2logn(o/y/n),
respectively, although these criteria were motivated from different princi-
ples. The L; penalty px(|3]) = A|5] results in LASSO (Tibshirani, 1996),
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and the L, penalty in general leads to a bridge regression (see Frank and
Friedman, 1993). Furthermore, the L, penalty can provide the resulting
solution a Bayesian interpretation.

To achieve the purpose of variable selection, some conditions on py(] - |)
are needed. Fan and Li (2001) suggested the use of the smoothly clipped
absolute deviation (SCAD), whose first order derivative is defined by

%[(ﬁ>)\)}, for some a > 2 and 3 > 0,

0 =2 {15 <0 +
with px(0) = 0. For simplicity of presentation, we will use the name of
SCAD for all procedures using the SCAD penalty. The SCAD involves two
unknown parameters A and a. Fan and Li (2001) suggested using a = 3.7
from a Bayesian point of view. They found via Monte Carlo simulation that
the performance of SCAD is not sensitive to the choice of a provided that
a € (2,10). They also found that the empirical performances of the SCAD
with a = 3.7 is as good as those of the SCAD with the value of a chosen by
the GCV. Hence, this value will be used throughout the entire paper.

It is challenging to find solutions of the nonconvex penalized least squares
with the SCAD penalty, because the target function is nonconvex and could
be high-dimensional. Furthermore, the SCAD penalty function may not
have the second order derivative at some points. In order to apply the
Newton Raphson algorithm to the penalized least squares, Fan and Li (2001)
suggested to locally approximate the SCAD penalty function by a quadratic
function as follows.

Given an initial value B(O) that is close to the true value of 3, when ﬁj(»o)
is not very close to 0, the penalty p,(]3;]) can be locally approximated by
the quadratic function as

(B DY = PA(8;sen(8)) = {pA (18”1 /15," 1} 5. (2.4)

otherwise, set Bj = 0. With the local quadratic approximation, the solution
for the penalized least squares can be found by iteratively computing the
following ridge regression with an initial value B,

BY = {XTX 4+ n¥\ (B} X Ty, (2.5)
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where $,(8%) = diag{p}(18\")/I8",- - p5(18."1)/185"1}. A standard
error formula can be derived from the iterative ridge regression algorithm
(2.5); specifically,

ov(B) = {X"X +nZ\(B)} X XXX + 0y ()}
This formula only applies for non-vanished components of B

3. The proposed procedure

We now propose a screening active effect procedure for the SSD. For
a given value of A and an initial value of 3, we iteratively compute the
ridge regression (2.5) with updating local quadratic approximation (2.4) at
each iteration. This can be easily implemented in many statistical pack-
ages. Some components of the resulting estimate will exactly be 0. These
components correspond to the coefficient of inactive effects. In other words,
nonzero components of the resulting estimate correspond to the active ef-
fects in the SSD. Following Li and Lin (2002), we choose A by minimizing
the corresponding GCV scores.

Compared with stepwise regression, the proposed procedure is actually
an estimation procedure rather than a variable selection procedure. Stochas-
tic errors may be ignored during the course of selecting variables. Compared
with the best subset variable selection, our procedure significantly reduces
the computational burden. Our procedure simultaneously excludes inactive
factors and estimates the regression coefficients of active effects. Assume
observations are taken from the model y = X3, + X33, + . Without loss
of generality, further assume that all components of the first portion (X;)
are active, while the second portion (X3z) is not active. An ideal estimator
is the oracle estimator:

B, = (X{X;) Xy, and B8, = 0.

The oracle estimator correctly specifies the true model and efficiently esti-
mates the regression coefficients of the significant part. This is a desired
property in variable selection. It has been shown in Li and Lin (2002) that
the SCAD yields an estimate possessing the oracle property in asymptotic
sense.
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4. Numerical comparison and example

The goal of this section is to compare the performance of the penal-
ized least squares approach with the SCAD penalty and the two Bayesian
variable selection procedures, SSVS, proposed by George and McMulloch
(1993) and extended for SSD by Chipman, Hamada and Wu (1993), denoted
by CHW for short, and the two stage procedure (SSVS/IBF) by Beattie,
Fong and Lin (2001), denoted by BFL. We assess the performance of these
variable selection procedures in terms of their ability to identify the true
model, i.e., their ability of identifying the smallest active effect and the size
of selected model. In the following examples, we set the level of significance
to be 0.1 for both F-enter and F-remove in the stepwise variable selection
procedure for choosing an initial value for the penalized least squares ap-
proaches. All simulations are conducted using MATLAB codes.

Example 1. In this example, we apply SCAD to the supersaturated design
demonstrated first in Lin (1993) and listed in Table 1. Table 2 depicts the
five models with the highest posterior probability obtained in CHW, using
the SSVS approach. From Table 2, the first two models have very close
posterior probability. A question arising here is whether Factor 10 is active.
In fact, this is a very challenging example for various approaches. Most of
the existing approaches have difficulty in determining whether or not Factor
10 is active. See BFL for more detailed discussions.

We now apply SCAD for this data set. The tuning parameter A is
selected by GCV, resulting A=6.5673. The final selected models, including
estimated coefficients and their standard errors, are shown in Table 3. The
SCAD identifies X5, X192, Xoo and X, as active effects. This is consistent
with the model concluded in Williams (1968), in which 28 rather than 14
experiments are included in the analysis.

Example 2. The design matrix X is displayed in Table 1. We generate
data from the linear model

Y =xIB+e¢,

where the random error ¢ is N(0,1). We consider three cases for 3:
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Table 1: Supersaturated Design: Half Fraction of Willaims (1968) Data

Run

11 12 13 14
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1
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1
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1
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-1 -1 -1
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1
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1
-1

1 -1 -1
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1 -1 —1
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1 -1 -1
133 62 45 52 56 47 88 193 32 53 276 145 130 127

3
4
5
6

10
11

12
13
14
15
17
18
19
20
21

22
23
24

The first column is for the factors, the last row is the responses
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Table 2: Posterior Model Probabilities in Example 1

Model Prob. R?

41215 20 0.0266 0.955
410121520 0.0259 0.973
41011121520 | 0.0158 0.987
412152021 0.1200 0.969
411121520 0.0082 0.966

Table 3: The Final model selected by SCAD in Example 1

Factor | Intercept X4 X12 X15 X20
16} 102.7857 20.1084 -25.3946 -69.5738 -28.7967

A

SE(B) | 4.5377 4.6965  4.6557 5.1075 4.6965

Case I: One active factor, 8; = 10 and other components of 3 are equal
to zero;

Case II: Three active factors, (; = —15, 85 = 8, B9 = —2, and other
components of B equal 0;

Case III: Five active factors, 0, = —15, 85 = 12, [y = —8, 13 = 6 and
(17 = —2, and other components of 3 equal 0.

Cases I and IT were used in BFL, while Case III was studied by Beattie
(1999). Simulation results for SCAD based on 1000 replicates are sum-
marized in Table 4. For convenience, we also present simulation results
of Bayesian variable selection approaches obtained in BFL and Beattie
(1999). In Table 4, SSVS stands for the Bayesian variable selection ap-
proach, proposed by George and McMulloch (1993) and extended to the
context of screening variables by CHW. See BFL for the meaning of the
hyper-parameters, shown in parentheses. SSVS/IBF refers to the two stages
of Bayesian model selection strategy proposed by BFL, retaining good fea-
tures of the SSVS approach and IBF approach.

There is only a single strong effect among the factors in Case 1. All three
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approaches perform well in terms of the rate of identifying the single active
effect. SSVS and SSVS/IBF tend to incorrectly identify inactive effects as
active effects. This leads to a low rate of identifying the true model. In this
case, SCAD performs the best.

The factors in Case II contain a very strong effect, a medium effect and
a relatively small effect. This is challenging for various existing variable
selection procedures. The two Bayesian variable selection approaches fre-
quently fail to identify the smallest effect Xy as active effect and suffer very
low identification rate of the true model. The performance of the SCAD is
similar to that of Case I, and outperforms the other two approaches.

In Case III, there are 5 active effects, two factors have very strong effects,
two have moderate effects, and one has a small effect. In this case, the
SSVS/IBF cannot take its advantage in identifying the smallest active effect,
compared with SSVS. Again, the SCAD performs the best.

Table 4: Summary of Simulation Results in Example 2

True Model  Smallest Effect Avg. Size

Method Identified Rate Identified Rate Median Mean
Case I: One Active Effects

SSVS(1/10,500) 40.5% 99% 2 3.1
SSVS(1/10,500)/IBF 61% 98% 1 2.5
SCAD 75.6% 100% 1 1.7
Case II: Three Active Effects

SSVS(1/10, 500) 8.6% 30% 3 4.7
SSVS(1/10,500)/1IBF 8.0% 28% 3 4.2
SCAD 74.7% 98.5% 3 3.3
Case III: Five Active Effects

SSVS(1/10, 500) 36.4% 84% 6 8.0
SSVS(1/10,500)/1BF 40.7% 5% 5 5.6
SCAD 69.7% 99.4% 5 5.4
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5. Conclusion

In this paper, we have introduced the SCAD for analyzing data in SSD.
The popular William’s data were used for illustration. Although we don’t
know the true answer from William’s data, the results from the proposed
method is rather consistent with other approachs. Empirical performance of
the nonconvex penalized least squares based on heavy simulations are also
compared with that of Bayesian variable selection procedures for the SSD.
The comparison shows that the SCAD performs better than the proposals
in CHW and BFL.
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