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Abstract: Exploratory model selection was used to find a response
model that accounted for the spatial variability present in the exper-
imental results from four examples of spatially designed field exper-
iments. It was found that the class of differential gradients within
incomplete blocks was useful for finding a response model that ac-
counted for the spatial variability present in the first example. The
class of orthogonal polynomial regressions of response on row and
column position and interactions of the regressions was useful for
discovering an appropriate response model for the data of examples
two, three, and four. The results obtained from the selected response
model were compared with standard textbook analyses. Consider-
able differences in residual mean squares, coefficients of variation,
and F-values for treatment to residual mean squares were found.
The increase in replication for the selected response model over the
textbook response model is demonstrated. The increase can be many
fold.

Key words: Computer code, differential gradients, fixed effect anal-
ysis, functions of row and column effects, interaction, orthogonal
polynomial regression, random effect analysis, replication.

1. Introduction

Data from four different examples involving field experiments were ex-
amined to determine an appropriate response model that accounted for the
variability present in the experimental results. An experimenter selects an
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experiment design plan that is thought appropriate for a forthcoming field
experiment. Then the experiment is laid out in a field. It should be noted
that the selected experiment design and the actual field layout determine
the design for an experiment as far as spatial variation in an experiment
is concerned. Also, events that occur during the conduct of an experiment
need to be taken into account when analyzing the data. The direction of
the spatial variation may not coincide with blocking pattern used for the
experiment. Several types of events can occur during the course of an ex-
periment that determines the pattern of variation. Since an experimenter
is not blessed with the knowledge of the spatial variation patterns in an
experiment, it is necessary to attempt to find a response model that ac-
counts for the variability present in an experiment. In exploratory model
selection, the data analyst sets up a class of plausible response models and
then selects one that best accounts for the spatial variation present in the
experiment. This needs to be done for each characteristic measured in an
experiment as a different response model may be appropriate for each one.

The first example is an incomplete block experiment design arrangement
with the incomplete blocks laid one below the other to form an 8-row by
15-column layout within each complete block (replicate). Examples two
and three were laid out in a 15-row by 12-column arrangement. The fourth
example was designed as a randomized complete block experiment design
but laid out in an 8-row by 7-column arrangement. In the first example two
classes of response models were examined for the character weight of grain.
These were differential gradients within incomplete blocks and orthogonal
polynomial regression of response on row and column position and interac-
tion of row and column regressions. Since the latter did not account for the
variation in grain weight, the differential regression method was used for the
other six characters measured in this experiment. The class of orthogonal
polynomial regressions for rows, columns, and interactions was appropriate
for finding a response model for the data of examples two, three, and four.

A standard textbook model and analysis takes the blocking in the se-
lected experiment design into account. To illustrate, for a Latin square ex-
periment design, the model is row effect plus column effect plus treatment
effect plus error (residual). For an incomplete block experiment design, the
model is replicate (complete block) effect plus treatment effect plus incom-
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plete block within replicate effect plus error. The differential regression
method for an incomplete block, say, considers the model to be replicate
effect plus treatment effect plus incomplete block within replicate effect plus
regression for trend within each incomplete block. That is, the trend regres-
sions of response on position in the incomplete blocks are considered to vary
from incomplete block to incomplete block. There is no basis to consider
that the regressions are the same over an entire experiment or even over each
replicate. Spatial variation is seldom that patterned in field experiments,
especially those on farmers’ fields. The orthogonal polynomial regression
method replaces a row effect with polynomial regressions of response (de-
pendent variable) on position (independent variable) of the response, i. e.,
functions of row effects. Fitting a row effect with r rows is equivalent to
fitting an r−1-th regression model, hence any comments about fitting high
ordered polynomials are not well conceived in the context of explaining spa-
tial variation. The procedure is to compute all r − 1 regressions and select
a subset to take account of the variation present. Those not selected are
relegated to the residual (error).

2. Incomplete block experiment design example

An incomplete block design experiment design example was obtained
from Dr. Matthew Reynolds, International Center for Maize and Wheat
Improvement (CIMMYT). There were v = 120 wheat genotypes arranged
in b = 15 incomplete blocks of size k = 8 in each of r = 2 replicates. Seven
different responses were obtained for each of the wheat genotypes. They
were weight of grain (grainwt), rust infection index, grain weight per meter
squared (grm2), maturity, anthesis, total green weight (TGW), and CTD
X. Two types of response models for accounting for the spatial variation
present in the experiment were examined. These were trend analyses using
orthogonal polynomial regression coefficients for response on position in row
and in column and interactions of these regressions (regression method)
and differential orthogonal polynomial regressions on position within the
incomplete blocks (differential gradient method). The first method was
used only for weight of grain owing to the fact that the differential gradient
method was so much more effective in accounting for the spatial variation
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present in the experiment. This means that there were spatial trends within
each of the incomplete blocks and that the trends varied from incomplete
block to incomplete block.

For the response weight of grain per plot (experimental unit), the stan-
dard textbook analysis for an incomplete block design (IBD) resulted in a
residual (error) mean square of 52, 395 and a coefficient of variation of 10.9%.
The residual mean square was associated with 91 = 240− 1 (correction for
mean) −1 (replicate) −119 (genotype or treatment) −28 (incomplete block
within replicate) degrees of freedom. Since the experiment was laid out
in a 15-row (block) by 8-column arrangement within each complete block
(replicate), orthogonal polynomial regression coefficients of grain weight on
position in row and in column were obtained. Also, the interactions of row
and column regressions were examined. The Bozivich, Bancroft , and Hart-
ley (1956) rule used by Federer, Crossa, and Franco (1998) to select those
regressions to retain as blocking variables, was used to determine which
regressions in the examples are to be selected. The rule is to keep the re-
gressions whose F -value exceeds the 25% level and relegate the others to
the residual effect. This resulted in the following response model

Grainwt = mean + replicate + genotype + C2 + R1 + R3

+R6 + R10 + R12 + C1 ∗ R12 + C1 ∗ R14 + C2 ∗ R2

+C2 ∗ R6 + C2 ∗ R10 + C3 ∗ R3 + C3 ∗ R4 + C3 ∗ R5

+C3 ∗ R7 + C3 ∗ R13 + C4 ∗ R4 + C4 ∗ R6 + C4 ∗ R7

+C4 ∗ R8 + C5 ∗ R1 + C5 ∗ R4 + C5 ∗ R5 + C5 ∗ R8

+C5 ∗ R9 + C6 ∗ R10 + C6 ∗ R13 + C6 ∗ R14

+C7 ∗ R6 + C7 ∗ R7 + C7 ∗ R13 + error

where Ri is the i-th orthogonal polynomial regression coefficient of grain
weight on row position and Cj is the j-th orthogonal polynomial regression
coefficient of grain weight on column position. The asterisk denotes an
interaction as used in SAS codes. The residual mean square for the above
response model was 54,678 with 88 = 240 − 1 − 1 − 119 − 31 (one for each
of the 31 regressions or interaction of regressions) degrees of freedom and a
coefficient of variation of 11.2%. Thus the best regression model using the
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selection rule resulted in a residual mean that was larger than the textbook
analysis for an incomplete block experiment design.

The differential regression method was effective in accounting for more
of the spatial variation than the above as shown below. Using the response
model for weight of grain

grainwt = mean + replicate + genotype + block (replicate)

+ Cj ∗ block (replicate) + error,

the following results (with the minimum listed in bold type) for j = 1, · · · , 7
were obtained

C1 C2 C3 C4 C5 C6 C7

41,604 50,477 53,058 65,257 54,811 52,640 48,207
9.7% 10.7% 11.0% 12.2% 11.2% 11.0% 10.5%

where the first row is Cj, the second row is residual mean square, and the
third row is the coefficient of variation. Adding the term C1*block (repli-
cate) to the incomplete block response model was effective in accounting
for a sizeable portion of the residual variation. These residual mean squares
are associated with 61 = 91− 30 (one for each of the 30 regressions in each
of the 30 incomplete blocks) degrees of freedom. Since there are sufficient
degrees of freedom to search further, a second term of Ch*block (replicate)
for h not equal to j, is added to the above response model equation. All
possible pairs were investigated. The residual mean square results with the
associated coefficient of variation obtained are the minimum listed in bold
type as given below on the next page.

Adding the term C7*block (replicate) to the response model resulted in
a residual mean square of 31,546 (listed in bold type) and a coefficient of
variation of 8.5%. The ratio of this mean square to the IBD mean square is
31, 546/52, 395 = 0.602, which is 40% smaller than the standard textbook
incomplete block analysis residual mean square. The addition of this term
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C2 C3 C4 C5 C6 C7

C1 42,504 38,645 54,444 36,558 43,316 31,546
9.8% 9.4% 11.1% 9.1% 9.9% 8.5%

C2 – 52,368 69,244 56,841 42,918 43,292
– 10.9% 12.6% 11.4% 9.9% 9.9%

C3 – – 72,965 61,546 55,971 43,834
– – 12.9% 11.8% 11.3% 10.0%

C4 – – – 72,202 71,772 68,543
– – – 12.8% 12.8% 12.5%

C5 – – – – 57,240 58,136
– – – – 11.4% 11.5%

C6 – – – – – 46,811
– – – – – 10.3%

over the C1*block (replicate) term is sizeable, i.e., 31, 546/41, 604 = 0.758,
or a 24% reduction. Using the textbook analysis for the incomplete block
design (IBD) would require 52, 395/31, 546 = 1.66 times more replication
than the differential gradient model with two terms in the response model.
Also, even with allocating an additional 30 degrees of freedom to spatial
variation, there are still 31 degrees of freedom associated with the residual
mean square.

For the response rust index, the IBD response model gave a residual
mean square of 0.239664 and a coefficient of variation of 24.6%. Adding
Cj*block (replicate) to the IBD response model resulted in the following
mean squares and coefficients of variation.

C1 C2 C3 C4 C5 C6 C7

0.1817 0.2276 0.1998 0.3106 0.2413 0.2575 0.2681
21.4% 24.0% 22.4% 28.0% 24.7% 25.5% 26.0%

From all possible pairs for rust index, adding the pair of the C1*block
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(replicate) and C3*block (replicate) terms to the IBD response model for
resulted in a residual mean square of 0.128184 and a coefficient of variation
of 18.0%. This resulted in a 100(1 − 0.128184/0.239664) = 46.5% decrease
in the residual mean square. The additional term of C3*block (replicate)
resulted in a decrease of 100(1−0.128184/0.181704) = 29.5%. Using the two
terms C3*block (replicate) and C7*block (replicate) and the IBD response
model resulted in approximately the same residual mean square as C1*block
(replicate) and C3*block (replicate).

The IBD response model for total green weight, TGW, was 2.63540 and
the coefficient of variation was 6.5%. Adding Cj*block (replicate) to the
IBD response model resulted in the following:

C1 C2 C3 C4 C5 C6 C7

1.99125 2.30948 2.83428 3.03865 2.68701 2.36558 2.48401
5.6% 6.1% 6.7% 7.0% 6.5% 6.1% 6.3%

Adding the term C1*block (replicate) reduced the residual mean square
from 2.63540 for the IBD response model to 1.99125 for a 24.4% reduction.
Adding the terms C2*block (replicate) and C7*block (replicate) to the IBD
model reduced the residual mean square to 1.55874 for a 40.9% reduction
over that for the IBD residual mean square.

The residual mean square for grain weight per meter squared, grm2,
using the IBD response model was 802,741 and the coefficient of variation
was 10.8%. Adding the term Cj*block (replicate) to this response model
resulted in the following residual mean squares and coefficients of variation:

C1 C2 C3 C4 C5 C6 C7

666,921 719,217 865,894 960,822 848,408 834,343 652,584
9.8% 10.2% 11.2% 11.8% 11.1% 11.0% 9.7%

Adding the two terms C1*block (replicate) and C7*block (replicate) to

237



Walter T. Federer

the IBD response model for grm2 resulted in a decrease in the residual
mean square of 100(1 − 518, 515/802, 741) = 35.4%. The term C7*block
(replicate) resulted in a decrease in the residual mean square of 100(1 −
518, 515/666, 921) = 22.3%.

For the character anthesis, the IBD response model resulted in a resid-
ual mean square of 10.55307 and a coefficient of variation of 5.6%. When
the term Cj*block (replicate) was added to the IBD response model, the
following residual mean squares and coefficients of variation were obtained:

C1 C2 C3 C4 C5 C6 C7

2.74642 11.76045 11.25254 11.39026 11.95179 13.41503 11.95456
2.8% 5.9% 5.8% 5.8% 5.9% 6.3% 5.9%

A comparison of all possible pairs added to the IBD response model
resulted in selecting C1*block (replicate) plus C2*block (replicate) as the
response model. Despite the small coefficient of variation, 5.6%, for the IBD
model, the addition of the two terms C1*block (replicate) and C2*block
(replicate) to the IBD response model resulted in a decrease in the resid-
ual mean square of 100(1 − 1.39405/10.55307) = 86.8%. The addition of
C2*block (replicate) resulted in a decrease of 100(1 − 1.39405/2.74642) =
49.2% in the residual mean square.

The IBD response model for the character maturity resulted in a residual
mean square of 0.746855 and a coefficient of variation of 4.2%. Adding
the term Cj*block (replicate) to the IBD response model resulted in the
following residual mean squares and coefficients of variation:

C1 C2 C3 C4 C5 C6 C7

0.776706 0.642376 0.759444 0.826918 0.845985 0.684042 0.764738
4.3% 3.9% 4.2% 4.4% 4.4% 4.0% 4.2%

Comparing all possible pairs of Cj*block (replicate) to the IBD response
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model resulted in adding C3*block (replicate) and C6*block (replicate) to
the IBD model. Adding the term C2*block (replicate) to the IBD response
model reduced the residual mean square to 0.642376 from 0.746855, or a re-
duction of 14.0%. Adding the two terms C3*block (replicate) and C6*block
(replicate) further reduced the residual mean square to 0.607233, or a re-
duction of 18.7% over that obtained for the IBD response model.

The IBD response model for the character CTD X resulted in a residual
mean square of 0.146648 and a coefficient of variation of 13.8%. Adding
Cj*block (replicate) to the IBD response model resulted in the following
residual mean squares and coefficients of variation:

C1 C2 C3 C4 C5 C6 C7

0.119556 0.096373 0.177238 0.162421 0.170596 0.155586 0.163766
12.4% 11.2% 15.1% 14.5% 14.8% 14.2% 14.5%

Adding C2*block (replicate) decreases the residual mean square by 100(1−
0.096373/0.146648) = 34.3%. Adding the pair C2*block (replicate) and
C4*block (replicate) decreased the residual mean square by 100(1−0.068188/0.146648) =
53.5% with the C4*block (replicate) term accounting for 100(1−0.068188/0.096373) =
29.2% of the decrease.

The response models resulting in minimum residual mean squares for
each of the seven characteristics reported in this experiment are given below:

Grainwt = replicate + genotype + block (replicate)

+C1 ∗ block (replicate) + C7 ∗ block (replicate) + error

Rust = replicate + genotype + block (replicate)

+C1 ∗ block (replicate) + C3 ∗ block (replicate) + error

TGW = replicate + genotype + block (replicate)

+C2 ∗ block (replicate) + C7 ∗ block (replicate) + error

grm2 = replicate + genotype + block (replicate)

+C1 ∗ block (replicate) + C7 ∗ block (replicate) + error
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anthesis = replicate + genotype + block (replicate)

+C1 ∗ block (replicate) + C2 ∗ block (replicate) + error

maturity = replicate + genotype + block (replicate)

+C3 ∗ block (replicate) + C6 ∗ block (replicate) + error

CTDX = replicate + genotype + block (replicate)

+C2 ∗ block (replicate) + C4 ∗ block (replicate) + error

The above demonstrates that the response model that best explains the
spatial variation present in an experiment must be determined for each
characteristic measured. One size may not fit all! The same response model
was obtained for weight of grain and for grain weight per meter squared as it
should be since they are essentially the same. It also demonstrates that there
is no ordering of polynomial regressions when it comes to explaining spatial
variation in experiments. The so-called “hierarchical principle” discussed
by Federer (2000) used in this context is misguided and inappropriate.

The data for the above example are available upon request. A SAS GLM
code for the final models of the above example is described by Federer and
Wolfinger (1998, 2002). If the blocking variables in the model are considered
to be random effects and inter-effect information is to be recovered (and it
should be), this is easily accomplished using the SAS codes.

3. A 15-row by 12-column experiment design example

At another site, the 120 wheat genotypes in the preceding example were
included in a 15-row by 12-column design along with two check genotypes
each replicated 30 times. The 120 genotypes occurred once in the exper-
iment. The experiment design was an augmented row-column experiment
design. The polynomial regression method described above is appropriate
for this type of layout. For the 60 responses from the two checks, not all
row, column, and check effects have non-zero solutions. The rank of the
design matrix is three less than required for solution of these effects, i. e.,
three of the effects of a variable are set equal to zero in order to obtain
a fixed effects solution. It is possible to obtain an analysis of variance,
ANOVA, using SAS PROC GLM but not least squares means. Performing
this operation resulted in
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Source of variation Degrees of freedom Mean square

Type I: Row 14 35,559
Column 11 58,885

Genotype 119 18,630
Residual 35 14,820

Type III: Row 12 18,171
Column 9 18,839

Genotype 119 18,630

Note that the degrees of freedom for genotype in the Type I (nested
analysis where confounding effects are eliminated for all effects above a given
one) and Type III (confounding effects eliminated for all other variables)
ANOVAs should have been 121 for genotype as there were 122 genotypes in
the experiment. Owing to the fact that the rank was three less than needed
for solutions for all effects, this shows up in the Type III ANOVA as well
as in the last line of a Type I analysis. The coefficient of variation for this
analysis is 12.8% and the F -value for genotype to residual mean squares is
1.26.

To obtain genotype means, some functions of row and column effects are
required. Use is made of polynomial regression of responses on position, R1
to R12, and of column responses on position, C1 to C10, and interactions
of these regression coefficients. Federer, Reynolds, and Crossa (2001) con-
sidered only interactions through quartic regressions. The response model
given by them is

Grain weight = C1 + C4 + C10 + R2 + C1 ∗ R1 + C1 ∗ R3

+C2 ∗ R2 + C2 ∗ R4 + C3 ∗ R2 + C3 ∗ R4

+C4 ∗ R3 + C4 ∗ R4 + genotype + error

This response model resulted in a residual mean square of 6,088 with
46 = 180− 1− 121− 12 (12 regressions) degrees of freedom. The coefficient
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of variation is 8.2% and the F -statistic for genotype to residual mean squares
is 3.34.

However, if the entire range of row regression by column regression in-
teractions is examined, considerably more of the spatial variability in this
experiment can be taken into account. Using the response model

Grain weight = C1 + C4 + C10 + R2 + C1 ∗ R1 + C1 ∗ R3

+C1 ∗ R9 + C2 ∗ R2 + C2 ∗ R4 + C2 ∗ R11

+C3 ∗ R2 + C4 ∗ R4 + C4 ∗ R3 + C3 ∗ R4

+C4 ∗ R6 + C5 ∗ R5 + C5 ∗ R10 + C5 ∗ R12

+C6 ∗ R5 + C6 ∗ R7 + C8 ∗ R5 + C8 ∗ R11

+C9 ∗ R12 + C10 ∗ R6 + genotype + error,

resulted in a residual mean square of 1,810 with 34 = 180 − 1 − 121 − 24
(24 regressions) degrees of freedom. Interactions of high degree polynomi-
als are required to account for the spatial variation in this experiment. The
coefficient of variation is 4.5% and the F -value for genotype over resid-
ual mean squares is 11.5, a considerable change over the previous two
response models. The selection of the above response model resulted in
14, 820/1, 810 = 8.2 times more replication to obtain the same standard
error of a mean than would have been obtained using the textbook row-
column-genotype response model. Federer, Reynolds, and Crossa (2001)
should have considered higher than fourth degree polynomial regression in-
teractions. The above model resulted in 6, 088/1810 = 3.4 times more
replication than limiting interactions to fourth degree. A SAS PROC GLM
and MIXED code for the above response models is given by Federer and
Wolfinger (2002a).

4. A Second 15-row by 12-column experiment design example

The 120 wheat genotypes discussed in the above two examples were
grown in a 15-row by 12-column experiment design at a third site. The
weight of grain for this example has been given in Federer (1998). As in the
preceding example the experiment design was such that not all row, column,
and genotype effects have solutions as the rank is three less than required.
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If two row or two column contrasts such as R13 and R14 or C10 and C11
are set equal to zero (eliminated from the model), then solutions for effects
may be obtained. However, as pointed out above, the SAS PROC GLM
code will do this automatically for an ANOVA. Doing this the residual
mean square was 5,630.7 with 35 degrees of freedom and a coefficient of
variation of 8.5%. The F -ratio of genotype to residual mean squares was
1.47. Limiting consideration to row-column interaction regressions to fourth
degree polynomials as Federer, Crossa, and Franco (1998) did, the residual
mean square was 3,449.1 with 44 degrees of freedom and a coefficient of
variation of 6.7%. The F-statistic for genotypes was 2.44. Their response
model was

grainwt = C1 + C2 + C3 + C4 + C6 + C8

+ R1 + R2 + R4 + R10 + C1 ∗ R1 + C2 ∗ R1

+ C3 ∗ R1 + genotype + error,

where Cj is the j-th polynomial regression coefficient of grain weight on
column position and Ri is the i-th polynomial regression of grain weight on
row position. If interactions of all column regressions by row regressions are
screened by the rule used above, the resulting response model equation is

grainwt = C1 + C2 + C3 + C6 + C8 + R1 + R8 + R10

+C1 ∗ R1 + C2 ∗ R1 + C3 ∗ R1 + C2 ∗ R5 + C3 ∗ R7

+C4 ∗ R9 + C5 ∗ R10 + C6 ∗ R12 + C7 ∗ R3 + C7 ∗ R11

+C8 ∗ R2 + C9 ∗ R1 + genotype + error

Using this response model resulted in a residual mean square of 1,081.4
with 38 degrees of freedom and a coefficient of variation of 3.7%. The geno-
type F -ratio increased to 8.04. Thus, the preceding response model resulted
in a residual mean square with 38 degrees of freedom and 5, 630.7/1, 081.4 =
5.2 times more replication than the textbook row-column-genotype response
model and 3, 449.1/1, 081.4 = 3.2 times more replication than the Federer,
Crossa, and Franco (1998) response model. It is to be noted that the more
patchy the spatial variation, the higher will be the degree of the polynomial
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regression interactions required to account for this. The above response
model used fewer degrees of freedom, 20, for blocking variables than did the
row-column-genotype response model, 23.

5. An 8-row by 7-columu experiment design

An experiment described in Federer and Schlottfeldt (1954) was designed
as a randomized complete block experiment design (RCBD) with v = 7
treatments and r = 8 complete blocks. However, the experiment was laid
out in an 8-row by 7-column arrangement, RCD. Owing to several sandy
patches in the experimental area and to unfavorable moisture conditions,
there was considerable spatial variation present in the experiment. The
RCBD ANOVA resulted in a residual man square of 30,228.2 with 42 =
56 − 1 − 7 − 6 degrees of freedom, a coefficient of variation of 17.2%, and
an F -value for treatments of 1.51. The RCD ANOVA produced a residual
mean square of 7,351.8 with 36 degrees of freedom, a coefficient of variation
of 8.5%, and an F -value for treatments of 2.71. The response model

Y = C1 + C2 + C3 + C5 + R1 + R2 + R3

+R5 + R6 + R7 + C1 ∗ R1 + C2 ∗ R1 + C2 ∗ R3

+C3 ∗ R4 + C4 ∗ R1 + C4 ∗ R2 + treatment + error

as used by Federer, Crossa, and Franco (1998) and limiting the investiga-
tions to interactions of fourth degree row and column regressions, produced
a residual mean square of 4,204.5 with 33 degrees of freedom, a coefficient of
variation of 6.4%, and an F -value for treatments of 6.36. Considering inter-
actions of all polynomials resulted in the following response model equation:

Y = C1 + C2 + C3 + C5 + R1 + R2 + R3 + R5

+R6 + R7 + C1 ∗ R1 + C2 ∗ R1 + C2 ∗ R3

+C3 ∗ R4 + C4 ∗ R1 + C4 ∗ R2 + C1 ∗ R5 + C3 ∗ R5

+C3 ∗ R7 + C4 ∗ R5 + C4 ∗ R7 + C5 ∗ R4 + C5 ∗ R7

+C6 ∗ R2 + C6 ∗ R7 + treatment + error.

That is, nine interaction terms were added to the previous model. The
resulting residual mean square is 1,320.4 with 24 degrees of freedom. The
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coefficient of variation is 3.6% and the F -value for treatments is 20.49. As
may be observed, tremendous differences exist between the analyses for the
different response models. A standard textbook approach would use the
RCBD analysis, and consideration of the spatial layout of the experiment
would use the RCD analysis. Consideration of differential gradients would
result in the response model

Y = row + treatment + C2 ∗ row + C3 ∗ row + C4 ∗ row + error.

The residual mean square for this model was 11,309.9 with 18 degrees
of freedom, a coefficient of variation of 10.5%, and an F -value for treat-
ments of 3.78. This model used 31 = 7 + 3(8) degrees of freedom for
blocking variables, leaving only 18 for the residual. Furthermore, it was
not as effective as the row-column-treatment model for controlling spatial
variation. Using the next to last model above, was quite effective in ac-
counting for the spatial variation in this experiment and effectively resulted
in 30, 228.2/1, 320.4 = 22.9 times more replication than the RCBD analysis
and 7, 351.8/1, 320.4 = 5.6 times more replication than the RCD analysis.
A SAS PROC GLM and PROC MIXED code for the above models is given
by Federer and Wolfinger (2002b).

6. Discussion

The above examples utilized a fixed effects approach to exploratory
model selection. Federer and Wolfinger (2000) have presented two random
effects procedures for model selection. A comparison of resulting models
using the three procedures with above examples could be made. It is fairly
certain that the resulting models would differ. Until the properties of the
random effects selection procedures are known, this will not be done. It
is known that the Bozivich, Bancroft, and Hartley (1956) procedure has
only a small effect on the Type I error. It is possible that F at the 25%
level is not optimal for reducing the effect on Type I errors. With present
computing power, this could be investigated.

The model selection procedure utilized the fixed effects analyses. When
obtaining treatment means, one should recover the information from the
random blocking effects. As noted from remarks by several anonymous
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referees, they have a difficult time thinking of regression and gradient coef-
ficients as random blocking effects. They appear to have no difficulty with
considering row, column, and block effects as random, but they appear to
fail to appreciate the fact that the regressions and gradients are merely func-
tions of row and column effects that are random effects. Hence, in obtaining
adjusted treatment means, all blocking effects should be considered as ran-
dom effects and the information contained in them needs to be recovered in
order to utilize efficient procedures.

Different models were obtained for each of the characters analyzed in the
first example. This means that an experimenter should perform exploratory
model selection for each characteristic being analyzed. Use of computer
programs such as those given in the references, make this is relatively simple
matter.

The fixed methods of regression and gradients used in this investigation
have known degrees of freedom for the various parameters used in a re-
sponse model. Several other procedures such as smoothing, Kriging, nearest
neighbor, and autoregression have been proposed for spatial analyses (See
Federer, Newton, and Altman, 1997, e.g.). The degrees of freedom for each
of the parameters used in these methods are usually unknown. Hence, it is
difficult to compare their ability to explain spatial variation in comparison
to regression and gradient procedures.

Orthogonal polynomial regression was used in the above analyses. This
involves using centered values for the independent (covariate) variable, posi-
tion. It should be noted that interactions of non-centered covariates will not
be the same as those from centered covariates. Also, instead of using orthog-
onal polynomial regressions, Fourier regression may be more appropriate in
some situations, i.e., when the spatial variation is cyclical in nature.

Some statisticians, e.g., Gilmour (2000), appear to believe that the above
exploratory model investigation is “post blocking that has gone too far.”
If the variation can be accounted for and if there are sufficient degrees of
freedom, say 20-30, associated with the residual mean square, there should
be no reason why a data analyst should not use procedures such as those
described herein. Others believe that regression coefficients and gradients
should always be considered as fixed effects. They appear to fail to realize
that as used herein, they are functions of random variable effects and hence
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should be considered to be random effects. In field layouts, there are no
valid reasons to consider that there will be a single regression and that
all variation follows an orderly and systematical pattern. Even though an
experimenter may try to select a uniform area in which to conduct the
experiment, this is not always possible, e.g., conducting experiments on
farmer’s fields.
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