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Abstract: A kappa-like classification statistic is proposed for as-
sessing the fit of GEE regression models with a categorical response.
The proposed statistic is a summary measure depicting how well
categorical responses are predicted from the fitted GEE model. The
statistic takes on a value of 1 if prediction is perfect and a value of
0 if the fitted model fares no better than random chance, i.e., fitting
the repeated categorical responses with an intercept-only model. To
demonstrate the usefulness of the classification statistic, we present
simulation results as well as two examples from biomedical studies.
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1. Introduction

Data analysts are often confronted with the problem of modeling a re-
sponse variable with various covariates. It is then of crucial importance
to assess how well the final model fits the data. For normally distributed
outcomes, numerous approaches are available for assessing model fit (Neter,
Wasserman, and Kutner, 1985, chap. 4). However, in the biomedical and so-
cial sciences the response of interest is often a categorical variable, whether
binary, nominal, or ordinal. Assessing the aptness of a categorical regres-
sion model is difficult because the residuals are not normally distributed, as
is true of linear regression. In logistic regression, for example, the residuals
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are of only two forms, −π̂ and 1 − π̂, in which π̂ is the fitted probability,
further complicating model fit.

Often the categorical responses will be correlated in clusters, e.g., in
repeated measure studies. The observations within a cluster will often be
positively correlated, i.e., the observations will tend to be more like each
other than like observations from other clusters. This correlation must be
taken into account when analyzing clustered studies for proper inference
and valid hypothesis testing.

Generalized estimating equations (GEE) are useful for analyzing such
correlated data with categorical or continuous responses (Liang and Zeger,
1986; Zeger and Liang, 1986). Parameter estimation is conducted through
estimating equations which converge to a sum of mean zero random variables
if the mean structure is correctly specified. There is no need to specify a
joint distribution for the responses. However, assessing model fit is further
complicated with GEE than for models assuming independence because no
likelihood is available and the residuals are correlated within a cluster.

Some methods are available for assessing the fit of GEE regression mod-
els with binary responses. Horton, Bebchuck, Jones, Lipsitz, Catalano,
Zahner, and Fitzmaurice (1999) developed a goodness-of-fit test for assess-
ing such model fit by extending Hosmer and Lemeshow’s (1989) goodness-
of-fit statistic for ordinary logistic regression. Their proposed test statistic
has an approximate chi-squared distribution when the model is specified
correctly. Barnhart and Williamson (1998) also propose a goodness-of-fit
statistic for assessing the fit of GEE binary regression models. They extend
Tsiatis’ method (1980) for assessing the fit of ordinary logistic regression
models. This approach involves partitioning the space of covariates into
distinct regions and forming score statistics that are asymptotically dis-
tributed as chi-square random variables with the appropriate degrees of
freedom. Barnhart and Williamson’s approach is best employed in the sit-
uation when there are only discrete covariates available because then there
is no need to partition the covariates. Pan (2002) has proposed goodness-
of-fit tests for GEE with correlated binary data. Pan’s two tests result in
the Pearson chi-square and an unweighted sum of residual squares, both of
which are based on the residuals. These two tests can only be used when
there is at least one continuous covariate available.
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If the possibility of influential observations is of concern to the data
analyst, Preisser and Qaqish (1996) have proposed deletion diagnostics for
generalized estimating equations. The diagnostics consider leverage and
residuals to measure the influence of a subset of observations on the fit-
ted regression parameters. Preisser and Qaqish (1999) also generalize the
GEE procedure to produce parameter estimates and fitted values that are
resistant to influential data.

Here, the concern is assessing the fit of GEE categorical response models
by determining how well the covariates predict the subject’s responses. In
Section 2, we present the proposed kappa-like classification statistic, which
indicates how well the proposed model predicts the categorical response.
Simulation results are presented in Section 3 to demonstrate the usefulness
of the proposed classification statistic. Analyses of two biomedical studies
are used to illustrate the proposed statistic in Section 4, and we conclude
with a short discussion.

2. Classification statistic

Lipsitz, Kim, and Zhao (1994) extend the GEE approach of Liang and
Zeger (1986) to the analysis of correlated categorical response data. They
propose models for the correlation between repeated nominal or ordinal
categorical responses and their methods reduce to Liang and Zeger’s method
when the repeated responses are binary. The repeated categorical responses
can arise from a longitudinal study or from other correlated data settings,
such as familial or ophthalmologic studies.

We outline Lipsitz, Kim, and Zhao’s (1994) method as follows. Assume
the response of interest is a categorical outcome with K categories denoted
Zit = k if the tth subunit from the ith cluster falls in the kth category, for
i = 1, · · · , N ; t = 1, · · · , Ti (T = max(Ti) ∀ i = 1, · · · , N); and k = 1, · · · , K.
For example, in an ophthalmologic study the subunit will be either the left
or right eye and the cluster will be the subject under observation. For
simplicity, we will assume that the data are balanced, i.e., Ti = T for
i = 1, . . . , N . The following method will still be applicable in the case
of unbalanced data. The T (K − 1) × 1 response vector Yi for cluster i
consists of the binary random variables Yitk, where Yitk = 1 if Zit = k.
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Typically one models the marginal cumulative probabilities of response,
ϑitk = Pr(Zit ≤ k) for k = 1, · · · , K − 1. The marginal probabilities are
denoted by πitk = Pr(Zit = k) = Pr(Yitk = 1) = E(Yitk) = ϑitk−ϑit,k−1 and
will comprise the T (K−1)×1 vector πi. The vectors Yi and πi require only
T (K−1) elements instead of TK elements because

∑K
k=1 Yitk =

∑K
k=1 πitk =

1, for i = 1, · · · , N and t = 1, · · · , T . Let Xit be the p × 1 covariate vector
for the tth subunit of the ith cluster.

The cumulative marginal response probabilities will be related to the
covariates via the link function g, the kth intercept λk, and the p×1 marginal
parameter vector β,

g(ϑitk) = λk + X′
itβ.

The intercepts are in increasing order: λ1 ≤ λ2 ≤ · · · ≤ λK−1. For an
ordinal response, the function g may be any link function such as the logit
function, probit function (Φ−1), or the complementary log-log function. For
a nominal response, one may model the marginal probabilities directly using
the polytomous link function. Lipsitz, Kim, and Zhao (1994) suggest that
one estimates β with the following set of generalized estimating equations:

ν1(β) =

N∑
i=1

D′
iV

−1
i (Yi − πi) = 0,

where Di = Di(β) = d πi(β)/dβ, Vi = Vi(β, α) ≈ var(Yi) is a “working”
covariance matrix of Yi (Liang and Zeger, 1986; Zeger and Liang, 1986)
and α is a q × 1 vector of correlation parameters. The parameters α are
associated with the correlation between the elements of the vectors Yis and
Yit. For example, if one chooses an exchangeable correlation matrix as the
“working” correlation matrix, then α is comprised of just one parameter
(α) which represents the correlation between any two responses in a cluster,
which are all assumed equal. See Lipsitz, Kim, and Zhao (1994) for further
details and for other choices of Vi.

We propose a kappa-like statistic to assess model fit for GEE categor-
ical response models. Historically, the kappa coefficient has been used to
determine the agreement of binary (Cohen, 1960) and categorical (Fleiss,
1971) outcomes between raters. Kappa corrects the percentage of agree-
ment between raters by taking into account the proportion of agreement
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expected by chance. Kappa has been used as a measure of reproducibility
in many epidemiologic settings, such as studies involving twin similarity
(Klar, Lipsitz, and Ibrahim, 2000) and control-informant agreement col-
lected from case-control studies (Korten, Jorm, Henderson, McCusker, and
Creasey, 1992). The general expression for the kappa statistic is

κ =
Po − Pe

1 − Pe
,

where Po is the observed proportion of agreement and Pe is the proportion
of agreement expected by chance alone (Fleiss, 1971). A value of 0 for κ
indicates no agreement beyond chance and a value of 1 indicates perfect
agreement, among many of κ’s desirable properties (Fleiss, 1981). Thus,
larger values of κ indicate greater agreement between the outcomes.

Here we use κ as a measure of agreement between the predicted and
observed categorical responses to assess the fit of the GEE model. We es-
timate κ in a second set of estimating equations, similar to Lipsitz, Laird,
and Brennan (1994); Klar, Lipsitz, and Ibrahim (2000); and Williamson,
Manatunga, and Lipsitz (2000). With Lipsitz, Kim, and Zhao’s (1994)
method, we estimate the probability of the response falling in each of the K
categories. Denote this estimated probability for the kth category, tth sub-
unit, of the ith cluster as π̂itk. We do not have a straightforward predicted
response as with linear regression. However, if we did have a predicted re-
sponse for the tth subunit of the ith cluster, denoted Ẑit, it is natural to
assume that Ẑit would equal k (k = 1, · · · , K) with probability π̂itk. Let
Poit denote the probability that the predicted response from the model is
equal to the observed response, i.e., Ẑit = Zit. A natural estimate of Poit

is obtained by using π̂itZit
, the estimated probability from the fitted model

that the response falls into the observed category for the tth subunit of
the ith cluster. We define κit as the agreement between the predicted and
observed responses for the tth subunit of the ith cluster as follows:

κit =
Poit − Pe

1 − Pe
,

where Poit is defined above and Pe is the probability of correct prediction
expected by chance alone.
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As an estimate of Pe, we suggest fitting an intercept-only model. Cox
and Snell (1989, pp. 208-209) and Nagelkerke (1991) proposed using an
intercept-only model as a baseline model when generalizing the coefficient
of determination for assessing the fit of a logistic regression model. Thus,
we will fit a model with just the intercepts, the λk parameters for k =
1, · · · , K − 1, and no covariates. This “baseline” model will provide a good
starting point from which to compare the proposed model. The estimated
category probabilities from the intercept-only model will be the same for all
clusters and subunits, and will be denoted

p̂itk = p̂k =
N∑

i=1

T∑
t=1

I(Zit = k)/NT =
N∑

i=1

T∑
t=1

Yitk/NT = nk/NT,

where nk is the sum of observations in category k, i.e., nk =
∑N

i=1

∑T
t=1 Yitk

for k = 1, . . . , K. All nk observations with response category k will each
be correctly predicted with probability p̂k; accordingly, the estimate of Pe

is

P̂e =

K∑
k=1

N∑
i=1

T∑
t=1

I(Ẑit = Zit = k)/NT =

K∑
k=1

nkp̂k/NT =

K∑
k=1

p̂2
k.

The agreement between two raters for assessing a categorical outcome
with K categories can be depicted in a K × K contingency table (Fleiss,
1981, p. 219). The row and column total probabilities for the kth out-
come category are pk. and p.k, the marginal probabilities that the two raters
assess the outcome in the kth category. The estimate of the probability
expected by chance is calculated assuming independence between the rows
and columns in the contingency table and is P̂e =

∑K
k=1 pk.p.k, which is

similar to the estimate above.
We will estimate an overall κ to ascertain the fit of the model (κ = κit

for i = 1, . . . , N and t = 1, . . . , T ). By noting that Poit = Pe + κ(1.0 − Pe),
we propose a second set of estimating equations as follows. Let Poi and
Ui denote the T × 1 vectors [Poi1, . . . , PoiT ]′ and [π̂i1Zi1

, . . . , π̂iTZiT
]′. The

second set of estimating equations are, thus,

ν2(κ, β) =

N∑
i=1

C
′
i W−1

i {Ui(β) − Poi(κ)} = 0,
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where Ci = dPoi/dκ = [1− P̂e, · · · , 1− P̂e]
′ and Wi ≈ var(Ui) is the T × T

working covariance matrix of Ui. To compute (β̂, κ̂), one can use a Fisher-
scoring-type algorithm such as

β̂
(m+1)

= β̂
(m) −

[ N∑
i=1

D̂
′
i V̂−1

i D̂i

]−1[ N∑
i=1

D̂
′
i V̂

−1
i {Yi − π̂i( β̂

(m)
)}

]

and

κ̂(m+1) = κ̂(m) −
[ N∑

i=1

Ĉ
′
i Ŵ

−1
i Ĉi

]−1[ N∑
i=1

Ĉ
′
i Ŵ

−1
i {Ui(β̂

(m+1)
) − Poi(κ̂

(m))}
]
,

where m denotes the iteration. We use Liang and Zeger’s (1986) empirically

corrected variance estimate of β̂ and Prentice’s (1988) empirically corrected
variance estimate of κ̂.

The second set of estimating equations can be solved non-iteratively if
we choose the T × T identity matrix for Wi:

κ̂ =

∑N
i=1

∑T
t=1 π̂itZit

/NT − P̂e

1 − P̂e

.

The term
∑N

i=1

∑T
t=1 π̂itZit

/NT is the average predicted probability corre-
sponding to the observed responses. If the fitted model predicts the cat-
egorical response perfectly, i.e., π̂itZi

= 1.0, then κ̂ = 1.0. If the fitted
model predicts the responses no better than an intercept-only model, then
κ̂ = 0.0. This kappa-like classification statistic should be interpreted as the
average probability of predicting the observed responses above and beyond
the prediction by the intercept-only model.

3. Simulations

To assess the performance of the proposed classification statistic, we
conducted analyses by using simulated data with known distributions. The
goal of a first set of simulations was to use the proposed statistic to evaluate
GEE regression models with correlated binary responses when significant
and nonsignificant predictors were added to the model used to analyze the
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data. We generated 500 data sets, each containing 100 clusters of three
binary responses, Yit = 0, 1 for i = 1, · · · , 100 and t = 1, 2, 3. We generated
multivariate normally distributed data with an exchangeable correlation
structure (correlation equal to 0.3) and collapsed each of the three normally
distributed random variables into a binary variable. The marginal model
generating the data was probit{Pr(Yit = 1)} = α+β1x1i +β2x2i +β3x3it for
i = 1, · · · , 100 and t = 1, 2, 3, with x1i = −0.5 for i ≤ 50 and 0.5 otherwise,
x2i distributed as a uniform(−0.5, 0.5) random variable, and x3it = 1.0 for
t = 3 and 0.0 for t = 1, 2. Thus, we have two cluster-specific covariates and a
time-varying covariate indicating the third occasion. The parameter values
were β1 = 2.0, β2 = 1.0, β3 = 0.0, and α = 0.0. In essence, the responses
were generated with only the covariates x1 and x2 because β3 = 0.0. The
data were analyzed with four GEE models using a marginal probit link
function: (1) with just x1 as a covariate, (2) with x1 and x3, (3) with
x1 and x2, and (4) with all three variables as predictors. The kappa-like
statistic (κ̂) and its standard error (sê(κ̂)) were calculated for each data
set.

Table 1: Simulation results of GEE model with binary response

Model κ̂ sê(κ̂)

probit{Pr(Yit = 1)} = α + β1x1 0.376 0.052
probit{Pr(Yit = 1)} = α + β1x1it + β3x3it 0.378 0.052
probit{Pr(Yit = 1)} = α + β1x1it + β2x2it 0.459 0.055
probit{Pr(Yit = 1)} = α + β1x1it + β2x2it + β3x3it 0.461 0.055

Values shown are the means of 500 simulations. The third model gen-
erated the data: β1 = 2.1, β2 = 1.0 and β3 = 0.0.

Table 1 is a summary of these simulations. The average value over the
500 data sets of κ̂ is 0.376 for the model with only x1 as a predictor. The
average value of κ̂ increased only minimally to 0.378 when x3 was added
to the model, which was expected because the data were generated with
β3 = 0.0. When a covariate (x2) with a moderate parameter value (β2 = 1.0)
was added to the model with x1 and x3, the average values of κ̂ increased
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substantially to 0.461. For the model with only the covariates x1 and x2,
the average estimate κ is 0.459, slightly smaller than the corresponding
value from the full model. It is obvious from these simulation results that
the estimated value of κ will increase when extra significant covariates are
entered into the model and the inclusion of nonsignificant covariates will
have little or no impact on κ.

A second set of simulations were conducted with an ordered categori-
cal response (K = 4 categories) generated for three occasions. We again
generated multivariate normally distributed data with an exchangeable cor-
relation structure (correlation equal to 0.3) and collapsed the three normally
distributed random variables into 4 categories. Two sets of 500 data sets
were randomly generated with a person-specific binary covariate and a sec-
ond time-varying covariate distributed as a Uniform(−1, 1) random variable.
In each data set, half of the observations were generated for each binary co-
variate value (x1i = −0.5 or 0.5). The first set of simulations contained
data sets of sample size of 100, and the second set of simulations contained
data sets of sample size of 1000 to demonstrate the effect of sample size
on the classification statistic. Thus, the model that generated the data is
probit{Pr(Yit ≤ k)} = αk + β1x1i +β2x2it, for k = 1, 2, 3; i = 1, · · · , 100 and
1000; and t = 1, 2, 3. The parameter values were α1 = −1.250, α2 = 0.0,
α3 = 1.250, and β2 = 2.0, corresponding to the uniformly distributed time-
varying continuous covariate. Simulations were conducted on data gener-
ated randomly as β1 (the binary covariate) ranged from 0.0 to 5.0 in incre-
ments of 1.0. The goal of this was to evaluate the performance of the pro-
posed classification statistic when the model increases its predictive strength
(as β1 increases). The data sets were analyzed with GEE using the same
model that generated the data.

Table 2 is a summary of these simulations. The average value over 500
data sets of κ̂ increased from 0.222 to 0.608 as β1 increased from 0.0 to 5.0
for the data sets of a sample of size 100. The corresponding value of κ̂ for
the data sets of a sample of size 1000 are very similar to the respective values
for the data sets of a sample of size 100. The simulation results indicate
that κ is not overly dependent on sample size; larger data sets do not result
in assessments of poorer model fit.
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Table 2: Simulation results of GEE model with ordinal response

β1
a 0.0 1.0 2.0 3.0 4.0 5.0

n = 100 κ̂ .222 .255 .331 .426 .517 .608
(.018) (.018) (0.20) (.025) (.031) (.034)

n = 1000 κ̂ .218 .248 .326 .420 .511 .062
(.005) (.005) (.006) (.008) (.010) (.011)

Values shown are the means of 500 simulations. Standard errors are
shown below in parentheses.
a The data were generated by probit{Pr(Yit ≤ k)} = αk +β1x1i+β2x2it,
where β1 is the parameter associated with the binary covariate and β2 =
2.0.

4. Examples

4.1 Wisconsin epidemiologic study of diabetic retinopathy

A total of 996 insulin-taking younger-onset diabetics in southern Wiscon-
sin were examined for severity of diabetic retinopathy. The goal of the study
was to determine the risk factors for diabetic retinopathy. The severity of
diabetic retinopathy was originally graded on a 10-point scale. For the pur-
pose of illustration, the 10-point scale was combined to form two categories:
absence and presence of diabetic retinopathy. The cross-classification of
diabetic retinopathy in left and right eyes for the 720 individuals with com-
plete information is presented in Table 3. In this example, the cluster is
the individual with correlated binary responses and the subunits are the
left and right eyes. For more details concerning the study, see Klein, Klein,
Moss, Davis, and Demets (1984).

First we fit a GEE logistic regression model with main effects terms
only. The resulting kappa-like classification index had a value of 0.397
(se = 0.046). This model fit the data poorly according to the goodness-of-
fit test statistic (p < 0.001) proposed by Barnhart and Williamson (1998).
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Table 3: Frequency of diabetic retinopathy

Right eye \ Left eye Absence Presence Total

Absence 237 38 275
Presence 31 414 445

Total 268 452 720

We then examined various interaction and quadratic variables for entry into
the regression model at the significance level of 0.05. The quadratic terms
for duration of diabetes and body mass index were significant and entered
into the final model. The kappa-like classification index for this final model
increased to 0.453 (se = 0.039) indicating a better fit. With the inclusion
of the two quadratic terms, the model fit the data quite well (p = 0.37)
according to Barnhart and Williamson’s (1998) test. Results of these GEE
regression analyses are presented in Table 4.

4.2 Arthritis clinical trial

We now illustrate the proposed classification statistic with a GEE ordinal
logistic regression analysis of an arthritis clinical trial (Bombardier, Ware,
and Russell; 1986). The trial compared the drug auranofin and placebo
therapy for the treatment of rheumatoid arthritis. The response of interest
is the self-assessment of arthritis, classified as 1 =poor, 2 =fair, 3 =good.
Patients were randomized into either the auranofin treatment group or the
placebo group after baseline self-assessment of arthritis, and then observed
at one-, three- and five-month examinations. In this example, the cluster is
the individual and the subunits are the three examinations. Table 5 presents
the occasion-specific distribution of self-assessment of arthritis by treatment
group. For more details of this GEE analysis, see Lipsitz, Kim, and Zhao
(1994).

We first fit a GEE ordinal logistic regression model with the covari-
ates Time2, Time3 (indicator variables for the second and third examina-
tions), Sex (1 =male, 0 =female), Age (in years), and Auranofin (1 =yes,
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Table 4: GEE logistic regression models for diabetic retinopathy study

(a) (b)
Covariates Estimate SE Estimate SE

Intercept -6.46 0.88 -14.58 2.02
Duration of diabetes (years) 0.23 0.03 0.44 0.03
Glycosylated hemoglobin level 0.13 0.03 0.15 0.03
Diastolic blood pressure 0.03 0.01 0.03 0.01
Body mass index 0.16 0.17 4.19 1.03
(Duration of diabetes)2 -0.007 0.0007
(Body mass index)2 -0.55 0.14

κ 0.397 0.046 0.453 0.039

(a)= model without quadratic terms, (b)= final model. All p-values
are less then 0.001 except for the case of body mass index without the
quadratic term, which is 0.35.

0 =placebo). The resulting estimate of κ was 0.012. Next we added
Baseline (baseline self-assessment of arthritis, treated as continuous) to the
model. The estimate of κ increased to 0.084 indicating a better, although
still poor, fit. Results of these GEE analyses are presented in Table 6.

5. Discussion

The proposed kappa-like classification statistic is a more appropriate in-
dicator of how well the model predicts the observed responses at the cluster
level (e.g., an individual) as opposed to how well the model fits the data
at the group level (e.g., treatment category). Often a model can fit the
data well in terms of predicting the proportion of positive responses for a
group of individuals, but is not necessarily useful for predicting a particu-
lar individual’s response. The kappa-like classification index is an intuitive
measure for assessing model fit in that it estimates the probability of an
observation being correctly predicted by the fitted model. Then, this prob-
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Table 5: Marginal distributions of self-assessment of arthritis

Occation
Treatment Response Baseline 1 month 3 months 5 months

Poor 50 18 30 22
Auranofin Fair 69 77 52 51

Good 34 56 66 73
Total 153 151 148 146

Poor 46 44 41 37
Placebo Fair 70 50 63 52

Good 33 54 44 58
Total 149 148 148 147

ability is corrected for chance by comparing it to the probability that an
intercept-only model would have correctly predicted the observation. The
kappa-like statistic takes on a value of 0.0 for the intercept-only model and a
value of 1.0 for the saturated model (NT parameters for N observations and
T subunits per cluster, i.e., π̂itZit

= 1.0 for i = 1, · · · , N and t = 1, . . . , T ).
An advantage of the proposed statistic is that no decisions need be made
when calculating it, unlike methods based on covariate partitioning (where
to partition, how many partitioned categories), Hosmer and Lemeshow’s
approach (how many groups, what to do when predicted probabilities are
tied), rank correlation methods and classification tables (what the cutoff
probability should be).

However, interpretation of the kappa statistic is not always straightfor-
ward; see Fleiss (1971) and Landis and Koch (1977) for details. In this
context, we use kappa to compare the agreement between predicted proba-
bilities and a categorical response. Therefore, Poit for any observation will
not obtain a maximum of 1.0 and, accordingly, high values of kappa from a
fitted model will be unlikely. Also, Maclure and Willett (1987) noted that
kappa is dependent upon the number of categories and that kappa will tend
to be smaller for categorical responses with a greater number of categories.
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Table 6: GEE ordinal logistic regression models for arthritis clinical trial

Baseline Excluded Baseline Included
Covariates Estimate SE p-value Estimate SE p-value

Intercept1 -1.489 0.465 0.001 0.667 0.537 0.214
Intercept2 0.260 0.464 0.575 2.617 0.555 < 0.001
Time2 0.040 0.114 0.728 0.046 0.125 0.715
Time3 -0.246 0.105 0.019 -0.266 0.118 0.024
Sex (1 =male) -0.108 0.197 0.584 -0.133 0.184 0.470
Age (years) 0.011 0.008 0.175 0.006 0.008 0.477
Auranofin -0.479 0.177 0.007 -0.548 0.176 0.002
Baseline arthritis -1.035 0.137 < 0.001
(continuous)
κ 0.012 0.022 0.084 0.019

However, there is no formula relating how kappa decreases as the number
of categories of the outcome increases. Therefore, we suggest that data an-
alysts interpret lower kappa values more favorably than would be the case
in a traditional agreement study, especially for a categorical response with
more than 2 categories. Similar to Landis and Koch’s labeling of kappa val-
ues, we suggest interpreting the values of kappa for this classification index
as follows:

Kappa Statistic Fit of Model
0.00−0.20 Poor
0.21−0.40 Fair
0.41−0.60 Good
0.61−1.00 Excellent

For the diabetic retinopathy study, we would recommend that the kappa
value (0.453) for the final model indicated good prediction, but the kappa
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value (0.084) for the final model of the arthritis study indicated poor pre-
diction. If some disagreement is acceptable when predicting a categorical
response, then a weighted kappa approach may be formulated (Cohen, 1968;
Gonin, Lipsitz, Fitzmaurice, and Molenberghs, 2000).
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