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Abstract: The estimation of parameters of lagged multilevel mod-
els is considered. This type of model is used in many application
areas, including psychology and education, where changes in test re-
sults over time can be modelled. Standard estimation techniques are
shown to give inconsistent results for this formulation of the multi-
level model. For two simple assumptions concerning the nature of the
model covariate a first and second difference instrument methods for
consistent estimation are developed. Simulations are used to demon-
strate their success in obtaining consistent parameter estimates. Use
of the instrument methods with more complex multilevel models is
considered.
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1. Introduction

Repeated measures data are common in many areas of application in-
cluding cognitive growth, educational testing, medical research and envi-
ronmental pollution. The number of occasions for which data are available
can range from just 2 (e.g. Goldstein and Thomas, 1996) to sometimes
considerably larger numbers (e.g. 8 in Williamson et al, 1991; 12 in Rutter
and Elashoff, 1994; 416 in Chock et al, 1975).

Multilevel modelling is often seen as an appropriate strategy to use
when the data to be analysed has a hierarchical structure. This is the
case when, for instance, students are grouped in classes which are grouped
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within schools. A modelling strategy which does not allow for these group-
ings effectively assumes that all the students are independent of each other.
This is evidently not a safe assumption to make as there may be factors
that influence the response variable being measured that work at the class
or school level. For example, a test mark obtained by a student in one school
may be considered independent of that obtained by a student in a different
school. However, test marks obtained by two students in the same class
cannot be assumed to be independent of each other as both students have
experienced the same standard of teaching, the same group dynamics in the
class, etc. Indeed, test marks obtained by two students in different classes
but in the same school cannot be assumed to be independent of each other
because both students have experienced the same school resources, school
atmosphere, etc. Proceeding with a standard regression analysis under the
false assumption of independent observations leads to standard errors for
estimates that are too small, giving false impressions of the importance of
regressors. This also has a major potential impact on model building.

Random effects modelling, and more generally, multilevel modelling al-
lows for the grouping in the data by means of partitioning the error accord-
ing to the different levels that exist in the data. There are a number of books
devoted to the subject of multilevel modelling (e.g. Bryk and Raudenbush
(1992), Goldstein (1995), Hox (2002), Kreft and de Leeuw (1998), Longford
(1993), Snijders and Bosker (1999). Good articles introducing multilevel
modelling have been written by Paterson (1991), Paterson and Goldstein
(1991), Gilthorpe et al (2000).

The commonplace use of multilevel modelling, however, did not start
until the 1980s and the development of algorithms that could be applied
to a wide range of formulations of the multilevel model, e.g. Mason et al
(1984), Goldstein (1986), Raudenbush and Bryk (1986), Longford (1987).
Computer packages that implement these algorithms (e.g. HLM, MLwiN,
VARCL) are now widely used to model hierarchically structured data.

In the field of multilevel modelling, repeated measures data are usually
modelled in one of two ways: (i) using growth curves and (ii) creating
models where data collected at earlier measurement occasions are used as
covariates (see Plewis, 1996, for a review). Examples of analyses employing
growth curves include Williamson et al (1991), Rutter and Elashoff (1994).
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The use of data from previous occasions as covariates in models is also
widespread. Examples where the covariate is a pre-test variable or some
previous measurement include papers by Aitkin et al (1981), Aitkin and
Longford (1986), Goldstein and Thomas (1996). A further set of examples
include papers by Milionis and Davies (1994) and Plewis (1991). These two
sets of examples differ in that the dependent variables and covariates in
the former set do not result from the use of the same testing instrument,
whereas in the latter set they do result from the same testing instrument.
In this paper, the type of models considered are of the latter type although
the estimation techniques discussed here can be adapted to models of the
former type (Fielding and Spencer, 1997; Spencer and Fielding, 2002).

The choice of analysing with growth curves or lagged covariates often
depends on the aims of the analysis, and also, if the number of occasions
for which data are available is small, analysis using growth curves can be
difficult. The estimation techniques shown in this paper only need a mini-
mum of 3 or 4 occasions, and can be adapted to cope with just 2 occasions
(Fielding and Spencer, 1997; Spencer and Fielding, 2002). In this paper,
it is shown that the standard multilevel estimation techniques generally
used for models containing a lagged regressor may not produce consistent
parameter estimates. Alternative estimation strategies are proposed.

In section 2 of this paper we introduce the model of interest, and the issue
of conventional estimation procedures producing inconsistent results for this
type of model is discussed in section 3. In section 4 we develop procedures
for consistent estimation and demonstrate them on simulated datasets. The
procedures are applicable for two different assumptions about the nature of
the covariates in the model. Extensions to the class of models eligible for
this treatment are considered in section 5 and some summary conclusions
are given in section 6.

2. The model of interest

The model of interest is

yit = β0 + δ0i + β1yi(t−1) + (β2 + α2i)xit + eit

δ0i
iid∼ N(0, σ2

δ ) α2i
iid∼ N(0, σ2

α2
) eit

iid∼ N(0, σ2
e) (1)
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cov(δ0i, α2i) = σδα2 cov(δ0i, eit) = 0 cov(α2i, eit) = 0

where yit is an observation on subject i at occasion t, the intercept of the
model is β0 + δ0i, allowing it to vary randomly between subjects, and β1 is
the coefficient of the lagged regressor, constant over subjects. The (β2 +
α2i) coefficient of the xit is allowed to vary randomly between subjects and
eit is the subject-occasion specific error term. The δ0i are independently,
identically distributed as are the α2i and eit.

We can regard this as being a multilevel model because we have two levels
of observation. At the lowest level we have time and we have a number of
observations nested within our second level: student.

The model is of interest in educational and cognitive research, as it allows
researchers to investigate the effect that a factor has on the change in a test
mark from, say, year to year. Without the lagged regressor, the model
would be investigating the effect that the other factor has on the mark at
a particular time, and not on the change. As one of the basic purposes of
education is to bring about change, this distinction is vital. In addition,
if no allowance is made for previous educational or cognitive attainment,
then the factor (possibly relating to the current year’s education) faces the
burden of explaining all the attainment of the preceding years as well as the
increased attainment in the current year.

The model we are considering thus has two types of covariate, the lagged
regressor (yi(t−1)) and xit. We consider two assumptions: (1) that the xit are
independently, identically distributed and (2) xit = xi(t−1)+γ+vit where the
vit are independently, identically distributed, E(vit) = 0, cov(vit, δ0i) = 0,
cov(vit, α2i) = 0, cov(vit, eit) = 0. In both cases, we additionally assume
that xit is uncorrelated with eit. If γ = 0 for assumption 2 then the variable
xit has a random walk over time. If γ �= 0, xit has a trend over time. These
very general assumptions preclude few variables that might be of interest
to researchers. The use of more than one covariate is considered in section
5.

Examining the parts of the model more closely, we may have a series
of test scores yit on student i at various time points, denoted by t. The
covariate xit may be a variable such as exact age at testing occasion t. The
intercept (β0) and slope (β1) have the usual regression interpretations. The
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δ0i may be regarded as a measure of innate student ability, relative to the
overall average ability. Students who are innately better at the test and test
material will have positive values for δ0i and those who are innately worse
than average will have negative values. The δ0i may also allow for constant
student characteristics not accounted for in the model covariates. The α2i

allows the slope associated with the covariate xit to vary between students.
Students who innately have more positive slopes for the covariate will have
positive values for α2i and those who innately have less positive slopes will
have negative values for α2i. The eit is simple random error.

Because δ0i and α2i are not time-dependent, we have (for both assump-
tion 1 and assumption 2) that cov(δ0i, xit) = cov(δ0i, xi(t−1)) and cov(α2i, xit) =
cov(α2i, xi(t−1)) for all t and thus cov(δ0i, xit) = σδx and cov(α2i, xit) = σα2x

for all t. Also, we have cov(α2i, xitxi(t−k)) = cov(α2i, xitxi(t−k−m)) for all t,
k, m and thus cov(α2i, xitxi(t−k)) = σα2x2 for all t, k.

3. Estimation and the problem of inconsistency

Parameter estimation for multilevel models can be carried out using
maximum likelihood methods. There are three algorithms that are com-
monly used to accomplish this estimation. Goldstein (1986) uses Iterative
Generalised Least Squares (IGLS) to obtain maximum likelihood estimates
for the parameters in the random part of the model (the variances and co-
variances). These estimates are then used to obtain estimates of parameters
from the fixed part of the model (the intercept and coefficients for the regres-
sors) using Least Squares methods. The IGLS algorithm is implemented in
the software MLwiN. Longford (1987) uses a Fisher Scoring algorithm that
is equivalent to IGLS. The software VARCL is based on Longford’s work.
An empirical Bayes estimation method that utilises the EM algorithm has
been developed by Raudenbush and Bryk (1986). It is implemented in the
software HLM.

All these estimation algorithms incorporate Least Squares methods, and
it is this fact that leads to the problem of inconsistency for the model de-
scribed above. IGLS (and effectively the equivalent Fisher Scoring) uses
Least Square methods explicitly to obtain estimates of the fixed part co-
efficients. The empirical Bayes method also explicitly incorporates Least
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Squares estimates into its estimation process.

To demonstrate the problem of inconsistency, let us start by looking at
Ordinary Least Squares (OLS) theory which operates by assuming inde-
pendence of regressors and error. Applying (XTX)−1XT to both sides of
y = Xβ + u and solving for β, we obtain

β = (XT X)−1XT y − (XTX)−1XT u

The OLS estimator β̂ = (XTX)−1XT y will thus converge to the true
value β if the expected value of (XT X)−1XTu is equal to zero. That is, the
OLS estimator will be a consistent estimator of β if E((XT X)−1XT u) = 0
or equivalently (as (XT X)−1 cannot be zero), E(XT u) = 0.

As the algorithms that carry out the maximum likelihood estimation rely
on Least Squares methods, they too require E(XT u) = 0 to yield consistent
parameter estimates.

Thus considering our model of interest (1), for the estimates of β0, β1

and β2 to be consistent when the parameters are estimated, E(XTu) must
be zero where for y = Xβ + u, we have:

y = {yit}, X = {1 , yi(t−1) , xit},
β = {β0, β1, β2}T

u = {δ0i + α2ixit + eit}.

With yi(t−1) and xit both being correlated with δ0i and α2i, the require-
ment for X and u to be independent will not be satisfied and the estimate
of β will, in general, be inconsistent.

This problem comes from two sources. One source is the correlations that
exist between the xit and the δ0i, α2i. The other source is the correlation
between the lagged regressor, yi(t−1) and δ0i, α2i.

If the lagged regressor were not present and we assumed that δ0i and α2i

were not correlated with the xit, then the expectations would be zero. The
least squares estimates would then be consistent, as in the models considered
by Goldstein (1995) and Longford (1987). The model we consider here is
thus of a more complex form than that considered by these two authors.
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4. First and second difference instrument methods

Solutions to this problem of inconsistency caused by a lagged regressor
under assumption 1 or 2 have been proposed by Kiviet (1995) and Rice et
al (1999). Kiviet uses a bias corrected version of the least squares dummy
variable estimator and Rice et al use conditioned iterative generalised least
squares. The first of these approaches suffers from a problem in that some-
times the bias correction applied actually increases the bias, and neither of
them are capable of being extended to cope with cases where a level one
random effect is correlated with a regressor. Here, we follow an approach
suggested by Anderson and Hsiao (1981) and take differences so that model
(1) becomes:

yit − yi(t−1)

= β1(yi(t−1) − yi(t−2)) + (β2 + α2i)(xit − xi(t−1)) + eit − ei(t−1) (2)

or y = Xβ+u where y = {yit−yi(t−1)}, X = {yi(t−1)−yi(t−2) , xit−xi(t−1)},
β = {β1, β2}T , and u = {α2i(xit − xi(t−1)) + eit − ei(t−1)}.

Now it can be shown that xit − xi(t−1) is independent of the error, u,
but yit − yi(t−1) is still not independent of u. We thus have a non-zero
E(XT u) and we will still not obtain a consistent estimator of β despite the
differencing. Now, however, the inconsistency is only due to the presence of
the lagged regressor yi(t−1)−yi(t−2) in the model and its correlation with α2i,
xit − xi(t−1) and eit − ei(t−1). By differencing, we have solved the problem
of our xit regressor being correlated with the δ0i and α2i. Thus, if a lagged
regressor did not exist then we would be obtaining consistent estimates using
standard procedures. This was not the case for the undifferenced model (1)
in section 2 when we have δ0i, α2i correlated with the xit.

At this stage we turn to instrumental variable estimation. This method
of estimation is frequently used in the field of econometrics to overcome
problems of endogeneity, such as are presented here, and its use in connec-
tion with multilevel models is briefly discussed by Mason (1995). The essen-
tials of the method are that as it is the relationship between the set of regres-
sors, X, and the error u that is causing difficulties because E(XT u) �= 0, we
use another set of variables, Z, which is closely related to the original set of
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regressors, X, but has the property E(ZT u) = 0. Applying now (ZTX)−1ZT

to both sides of y = Xβ + u, we obtain β = (ZT X)−1ZT y − (ZT X)−1ZT u.

The instrumental variable estimator β∗ = (ZT X)−1ZT y will thus con-
verge to the true value β if the expected value of (ZT X)−1ZT u is equal
to zero. That is, the instrumental variable estimator will be a consistent
estimator of β if E((ZT X)−1ZT u) = 0 or equivalently (as (ZT X)−1 will not
be zero if Z is related to X), E(ZT u) = 0. Bowden and Turkington (1984)
provide further details.

For our instrument set, we will choose xit − xi(t−1) as an instrument for
itself as it does not cause the inconsistency problems, and we are left to
choose an instrument for yit − yi(t−1). It is this action of choosing an instru-
ment which is one of the most problematic parts of instrumental variable
estimation. It may be hypothesised that a variable which is highly corre-
lated with the problematic regressor is influenced by similar processes as
the regressor. If this is the case then the assumption that the variable is
uncorrelated with the model error may be hard to sustain. Here, however,
we choose an instrument for the lagged regressor that actually comes from
the data itself and no extra variables are considered. That is, the repeated
measurements data provide “naturally occurring” instruments. We thus ob-
tain an instrument that is correlated with the lagged regressor, and below
we show that it is uncorrelated with the model error.

An intuitive choice of instrument for the regressor yit−yi(t−1) will be one
that at least avoids a correlation with the eit − ei(t−1) in the model error.
Taking a previous lag, we get Z1 = {yi(t−2) −yi(t−3) , xit −xi(t−1)}. Another
possible candidate is Z2 = {yi(t−2) , xit − xi(t−1)}. Examining the first line
of E(ZT

1 u), we have

E
[
(yi(t−2) − yi(t−3))(α2i(xit − xi(t−1)) + eit − ei(t−1))

]
=
[
E
(
α2i(yi(t−2) − yi(t−3))(xit − xi(t−1))

)]
+
[
E
(
(yi(t−2) − yi(t−3))(eit − ei(t−1))

)]
=
[
E
(
α2i(yi(t−2) − yi(t−3))(γ + vit)

)]
+
[
E
(
(yi(t−2) − yi(t−3))(eit − ei(t−1))

)]
=
[
E
(
α2i(yi(t−2) − yi(t−3))γ

)]
+
[
E
(
α2i(yi(t−2) − yi(t−3))E(vit)

)]
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+
[
E
(
(yi(t−2) − yi(t−3))(eit − ei(t−1))

)]
= γE

(
α2i(yi(t−2) − yi(t−3))

)
as α2i and yi(t−2) − yi(t−3) are independent of eit − ei(t−1) and of xit − xi(t−1)

(and thus vit) under assumptions 1 and 2. Also E(vit) = 0 under assumption
2 and E(eit − ei(t−1)) = 0. Under assumption 1, E(xit − xi(t−1)) = 0, so the
whole of the above expectation resolves to zero.

The second line of E(ZT
1 u) is

E
(
(xit − xi(t−1))(α2i(xit − xi(t−1)) + eit − ei(t−1))

)
=
[
E
(
α2i(xit − xi(t−1))

2
)]

+
[
E
(
(xit − xi(t−1))(eit − ei(t−1))

)]
= 0

as α2i and eit)−ei(t−1) are both independent of xit−xi(t−1) under assumptions
1 and 2.

By a similar line of argument, the first line of E(ZT
2 u) = γE

(
α2iyi(t−2)

)
for assumption 2 and equals zero under assumption 1. The expectation in
the second line of E(ZT

2 u) equals zero again as it is identical to the second
line of E(ZT

1 u).
Thus, if we additionally assume that γ = 0, the expectations E(ZT

1 u)
and E(ZT

2 u) are zero under either assumption 1 or assumption 2, and the
instrumental variable estimators will be consistent estimators of β. What
we have effectively done here is to cause the regressors and errors to be
independent of each other, and so this first difference instrument method
automatically satisfies this assumption made in multilevel modelling.

If we cannot assume that γ = 0 in assumption 2, we proceed by again
differencing the first differenced model (2).

yit − 2yi(t−1) + yi(t−2)

= β1(yi(t−1) − 2yi(t−2) + yi(t−3)) + (β2 + α2i)(xit − 2xi(t−1)

+ xi(t−2)) + eit − 2ei(t−1) + ei(t−2) (3)

For normal regression techniques to yield consistent parameter estimates
for this model, we require independence of regressors and error. It can be
shown that this does not occur.
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As before, we use instrumental variable estimation and require E(ZT u) =
0 for consistency. Taking Z = {yi(t−3) − 2yi(t−4) + yi(t−5) , xit − 2xi(t−1) +
xi(t−2)} (yi(t−3) − 2yi(t−4) + yi(t−5) being a second difference instrument),
Z = {yi(t−3) , xit − 2xi(t−1) + xi(t−2)} or Z = {yi(t−3) − yi(t−4) , xit −
2xi(t−1) + xi(t−2)}, we do obtain E(ZT u) = 0 (see Appendix) and thus this
second difference instrument method produces consistent estimates for the
case when γ �= 0.

4.1 Implementation of first difference instrument method

The first difference instrument method was implemented as part of the
VARCL package. VARCL is based on the estimation procedure suggested
by Longford (1987). Part of its algorithm involves estimating the fixed
parameters of the model, given estimates of the random parameters. To
implement the first difference instrument method, VARCL’s usual method
of estimating the fixed parameters is replaced by the procedure for instru-
mental variable estimation outlined above. That is, we will use instrumental
variable methods to estimate the parameters β1 and β2 from the first differ-
enced model (2). This model does not contain β0, so this is then estimated
from model (1), using overall means and the instrumental variable estimates
of β1 and β2:

β∗
0 = (Mean of yit) − [β∗

1 × (Mean of yt−1)] − [β∗
2 × (Mean of xit)]

This complete set of estimates for the fixed parameters is then used in
VARCL to estimate the random parameters of model (1).

4.2 Simulated datasets for the first difference
instrument method

To demonstrate the use of the first difference instrument method above,
we created two groups of simulated datasets, both based on model (1) with
the xit defined as in assumption 1. The parameters that group A of the sim-
ulated datasets was based on came from an analysis of the National Foun-
dation for Educational Research’s ”Streaming Longitudinal Study”. See
Barker Lunn (1970) for more details. The parameters used were β0= 3·35,
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β1 = 0·87, β2 = 0·06, σ2
δ = 0·13, σ2

α2
= 0·01, σ2

e = 14·31, and σ2
δα2

=−0·02.
For group B of the simulated datasets, the same parameters, but with β1 =
0·2, σ2

δ = 1·13, σ2
α2

= 1·01 was used. Each group consisted of 50 datasets,
each containing a number of “results” for each of 500 “pupils”. An arbitrary
start point yi0 = 0 was defined and yi1 was simulated. The reading yi2 was
then created using yi1 as the lagged reading and so on, until a plot of the
yit revealed that the effect of the arbitrary start point had worn off. The
subsequent simulated yit were used as the readings for the dataset.

Although many simulated readings could be taken for each pupil, here we
will focus on an analysis with 3 responses per pupil, yit, yi(t−1) and yi(t−2),
with associated lagged regressors yi(t−1), yi(t−2) and yi(t−3) and covariates
xit, xi(t−1) and xi(t−2) respectively. As can be seen in subsequent sections,
although we are primarily interested in analyses involving these readings,
previous readings of the y variable can be utilised to aid the estimation
process.

4.3 Simulation examples for the first difference
instrument method

The first simulation that we carry out looks at the implementation of the
first difference instrument method using group A of the simulated datasets.
With three responses, yit, yi(t−1) and yi(t−2), taking first differences leaves
us with two equations:

yit − yi(t−1)

= β1(yi(t−1) − yi(t−2)) + (β2 + α2i)(xit − xi(t−1)) + eit − ei(t−1) (4)

yi(t−1) − yi(t−2)

= β1(yi(t−2) − yi(t−3)) + (β2 + α2i)(xi(t−1) − xi(t−2)) + ei(t−2) − ei(t−2)

The instrument set that is used to implement the first difference instru-
ment method for these equations consists of the first difference instruments
yi(t−2) − yi(t−3), xit − xi(t−1) for the first equation and the same with just
the previous lag (yi(t−3) − yi(t−4), xi(t−1) − xi(t−2)) for the second. Thus, in
addition to the data whose simulation is described in section 4.2, we use a
previous lag of the response variable, yi(t−4).
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Table 1 shows the results of using the standard VARCL estimation pro-
cedure to estimate the model parameters for the datasets in group A, along-
side the results produced by using the first difference instrument method
with the instruments described above. We see that the first difference in-
strument method is evidently struggling to carry out the estimation. The
efficiency of the estimates is very poor and they are of little use. This is
because some extreme parameter estimates are being obtained for some of
the simulations by VARCL. Table 2 shows the results obtained when group
B of the simulated datasets is used.

Table 1: 1st Difference Instrument Method: Group A, 1st Difference In-
strument

Target Estimates obtained Estimates using
Values using standard VARCLa instrument methoda

β0 3·35 2·71 (0·27) 61·67 (183·62)
β1 0·87 0·90 (0·01) −1·93 (8·84)
β2 0·06 0·05 (0·02) 0·27 (0·79)
σ2

e 14·31 14·47 (0·60) 853·9 (4070·0)
σ2

δ 0·13 0·16 (0·17) 4287·8 (18919·9)
σ2

α2
0·01 0·01 (0·005) 30·10 (142·14)

σδα2 −0·02 −0·01 (0·03) −31·40 (135·32)

aEstimates are means from 50 simulations. The se in brackets are em-
pirical standard deviations for the 50 simulations.

Looking at the question of consistency, both tables 1 and 2 provide
evidence that the standard estimation procedure produces inconsistent re-
sults, but for the first difference instrument method, the mean parameter
estimates now fall well within two standard deviations of the “target” values
that the data were simulated from. Thus we have some evidence that consis-
tent results are being obtained with the first difference instrument method,
as we would expect, although the evidence from Group A is not too con-
vincing given the large standard errors involved. Group B, with the lower
standard errors in table 2, provides rather more evidence of consistency.
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Table 2: 1st Difference Instrument Method: Group B, 1st Difference Instru-
ment

Target Estimates obtained Estimates using
Values using standard VARCLa instrument methoda

β0 3·35 1·08 (0·49) 3·20 (0·48)
β1 0·20 0·74 (0·12) 0·23 (0·11)
β2 0·06 0·01 (0·03) 0·02 (0·17)
σ2

e 14·31 22·24 (2·60) 14·75 (1·34)
σ2

δ 1·13 0·02 (0·03) 1·10 (1·40)
σ2

α2
1·01 0·12 (0·23) 1·01 (0·29)

σδα2 −0·02 0·0002 (0·05) 0·06 (0·22)

aEstimates are means from 50 simulations. The se in brackets are em-
pirical standard deviations for the 50 simulations.

4.4 Regarding the efficiency of instrumental variable methods

Bowden and Turkington (1984, pp. 29-32) show that in instrumental
variable estimation, greater efficiency is obtained when the canonical corre-
lations between Z and X are increased. Here, Z and X both always contain
xit − xi(t−1), so one of the canonical correlations will always be exactly one.
This means that the second (and last, given that the dimension of Z and
X is two) canonical correlation will give us an indication of the efficiency
we can expect. These canonical correlations have been calculated for each
dataset. For group A of the simulated datasets, the mean second canonical
correlation over the fifty datasets is 0·03, whereas for group B it is 0·37.
Thus, we would expect group B to give the much more efficient results that
it does.

Robertson and Symons (1992) deal with the issue of the regressor and
instrument having different correlations depending on the true parameter
values. These results show that the efficiency of the estimation procedure
depends heavily on the size of β1. Looking at the figures in table 1 which
result from using the first difference instrument method with group A of the
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simulated datasets, we see that although we are obtaining consistent esti-
mates, the relatively large associated standard errors make any meaningful
interpretation of the parameter estimates virtually impossible. Indeed, it
could be argued that as the biases involved are not excessive, the inconsis-
tent parameter estimates are preferable to the consistent estimates as their
precision is substantially better.

However, with a different value for β1 and, as a result, a higher second
canonical correlation between the design matrix and the instrument set,
we see that the standard errors in table 2, when group B of the simulated
datasets is used, are not excessive, and the results obtained show evidence
of the consistency and are interpretable.

This ability to look at the canonical correlations and obtain a measure of
the efficiency of parameter estimation is of great practical use. Not only can
we decide which instrument to use (see section 4.6), but before any work
has been done, we can have some idea of the efficiency of the parameter
estimation and thus if it is worth using the methods detailed here.

Instead of using first differenced instruments, we now look at the effects
of using undifferenced instruments. For the first differenced model equations
(4) in section 4.3, using undifferenced instruments means using yi(t−2) for
the first equation and yi(t−3) for the second. We thus obtain the parameter
estimates for groups A and B of the simulated datasets shown in table 3.

Once again, the estimates obtained for group A are extremely inefficient,
as we would expect given that the mean second canonical correlation here
is 0·08, but are slightly better than when the first difference instrument was
used in table 1 and the mean second canonical correlation was 0·03. For
group B, the mean second canonical correlation is 0·22 and the results are
more efficient than for group A, although they are not as efficient as when
the first difference instrument was used and the mean second canonical
correlation was 0·37. Again, these results for group B provide some evidence
of the consistency we expect. The extremely large mean estimate of σ2

e is
caused by a few “rogue” simulations giving very large estimates.

4.5. Simulated datasets for the second difference
instrument method
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Table 3: 1st Difference Instrument Method: Groups A/B, Undifferenced
Instrument

Group A of Simulated Datasets Group B of Simulated Datasets
Target Estimates using Target Estimates using
Values instrument methoda Values instrument methoda

β0 3·35 −0·24 (13·53) 3·35 3·29 (0·56)
β1 0·87 1·04 (0·65) 0·20 0·21 (0·13)
β2 0·06 0·02 (0·20) 0·06 0·02 (0·17)
σ2

e 14·31 32·55 (83·17) 14·31 207965·5 (1446779·3)
σ2

δ 0·13 42·61 (153·6) 1·31 1·72 (1·97)
σ2

α2
0·01 0·21 (0·44) 1·01 1·07 (0·48)

σδα2 −0·02 −0·31 (0·82) −0·02 0·20 (0·61)

aEstimates are means from 50 simulations. The se in brackets are em-
pirical standard deviations for the 50 simulations.

In order to demonstrate the success of the second difference instrument
method, we create two more groups of simulated datasets. Group C is the
same as group A of section 4.2, except that now we define the covariate xit

by xit = xi(t−1) + γ + vit, vit ∼ N(0·0,1·0), γ = 1 with the vit independently,
identically distributed. This creates a trend over time in the xit. The
parameter values we use to simulate these datasets are the same as we use
for group A. Group D of the simulated datasets is created in the same
manner as group B of section 4.2, with the addition of a trend over time in
the xit as above for group C.

4.6 Simulation examples for the second difference
instrument method

With the three responses yit, yi(t−1) and yi(t−2) of our simulated datasets,
taking second differences leaves us with just equation (3).

The instrument sets that can be used to implement the second difference
instrument method are as described in section 4. All three contain the
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second difference in the covariate (xit −2xi(t−1) +xi(t−2)) and involve yi(t−3),
but to examine the first differenced and second differenced instruments, we
also use the previous lags yi(t−4) and yi(t−5). As described in section 4.4,
the decision as to which instrument to use can be made by looking at the
canonical correlations between the original regressors in the model and the
proposed instrument set. For group C of the simulated datasets, the second
canonical correlations are 0·033, 0·039 and 0·036 for the undifferenced, first
difference and second difference instruments respectively. For group D of the
simulated datasets, the second canonical correlations are 0·098, 0·163 and
0·084 respectively. Thus, as the first difference instrument gives the highest
canonical correlation for both groups of simulated datasets, we choose it for
use in the analysis.

The second difference instrument method was implemented as part of the
VARCL package in the same way as the first difference instrument method.

Estimating the parameters of the simulated datasets in groups C and D
with VARCL and using the second difference instrument method with the
first difference instrument yields table 4 for group C and table 5 for group
D. Also shown are the results of using the standard VARCL estimation
method to obtain the parameter estimates.

In both tables 4 and 5, we see evidence that the standard estimation
procedure gives inconsistent estimates, whereas the second difference instru-
ment method produces estimates that do not point towards inconsistency.
As with the first difference method, we see that where β1 has a target value
of 0·87 (group C), the efficiency of the estimates produced for the instru-
ment method (table 4) is poor. The empirical standard deviations are very
large, and due to this, little can be deduced about the consistency of the
parameter estimates. In table 5, we see much smaller empirical standard
deviations, as we would expect with the higher canonical correlation, and
have more evidence of consistency.

5. Extension to more non-lagged regressors and levels

Typically in an analysis, more than one non-lagged regressor would be
required in the model. Also, more than two levels in the model hierarchy
would be required. This would allow us to take account of, for instance, the
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Table 4: 2nd Difference Instrument Method: Group C, 1st Difference In-
strument

Target Estimates obtained Estimates using
Values using standard VARCLa instrument methoda

β0 3·35 2·92 (0·29) 87·15 (257·1)
β1 0·87 0·89 (0·01) −3·10 (12·26)
β2 0·06 0·05 (0·02) 0·05 (1·03)
σ2

e 14·31 14·42 (0·60) 1653·5 (6381·5)
σ2

δ 0·13 0·30 (0·26) 9473·2 (36703·9)
σ2

α2
0·01 0·01 (0·005) 66·83 (249·3)

σδα2 −0·02 0·03 (0·03) −45·92 (179·5)

aEstimates are means from 50 simulations. The se in brackets are em-
pirical standard deviations for the 50 simulations.

grouping of pupils into classes and then into schools.

If we allow there to be m levels and p non-lagged regressors, we get:

random effects: δ0I1, δ0I2, . . . , δ0Im, eIt

regressors: yI(t−1), xIt1, . . . , xItp

coefficients: β1, β21 + α2I11 + α2I21 + . . . + α2Il1, . . . ,

β2p + α2I1p + α2I2p + . . . + α2Ilp

where the suffix I represents a combination of suffixes to indicate the various
levels.
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Table 5: 2nd Difference Instrument Method: Group D, 1st Difference In-
strument

Target Estimates obtained Estimates using
Values using standard VARCLa instrument methoda

β0 3·35 0·35 (0·14) 2·83 (2·72)
β1 0·20 0·93 (0·02) 0·30 (0·37)
β2 0·06 0·01 (0·02) 0·06 (0·32)
σ2

e 14·31 26·67 (1·14) 322·3 (1451·1)
σ2

δ 1·13 0·76 (0·13) 52·60 (45·03)
σ2

α2
1·01 0·01 (0·003) 1·43 (1·17)

σδα2 −0·02 0·09 (0·02) 7·85 (6·47)

aEstimates are means from 50 simulations. The se in brackets are em-
pirical standard deviations for the 50 simulations.

Then:

E(XT u) = E




(
m∑

j=1

δ0Ij

)
+

(
m∑

j=1

p∑
k=1

α2IjkxItk

)
+ eIt

yI(t−1)

[(
m∑

j=1

δ0Ij

)
+

(
m∑

j=1

p∑
k=1

α2IjkxItk

)
+ eIt

]

xIt1

[(
m∑

j=1

δ0Ij

)
+

(
m∑

j=1

p∑
k=1

α2IjkxItk

)
+ eIt

]
...

xItp

[(
m∑

j=1

δ0Ij

)
+

(
m∑

j=1

p∑
k=1

α2IjkxItk

)
+ eIt

]




The relationship between E(XTu) and E(ZT u) in this case of arbitrary
numbers of non-lagged regressors and levels is of the same form as when we
have one non-lagged regressor and two levels.

Each row of the expectation can, as before, be broken down into sums of
expectations of combinations of regressors and random parts. Each expec-
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tation will, as before, be only linear in the random parts, and thus identical
methods can be used to evaluate the expectation and obtain the first and
second difference instrument methods.

6. Conclusions

In this paper we have looked in detail at the issue of consistency when one
of the regressors in a multilevel model is a previous value of the response
variable. The reason for inconsistency, and thus biased results, has been
identified.

A new estimation procedure for the fixed parameters has been developed
and implemented alongside commercially written software. This first differ-
ence instrument method has been shown to be successful in obtaining consis-
tent parameter estimates in theory for two different assumptions about the
non-lagged regressors, and evidence of this success has been demonstrated
with the use of simulated data. For non-lagged regressors containing a
trend (our third assumption), a second difference instrument method has
been developed. It has been implemented in software and again evidence of
its success in obtaining consistent estimates has been demonstrated using
simulated data. The three assumptions made cover a wide range of possible
regressors.

The methods used here solve both the problems caused by a lagged
regressor and those caused by any correlations existing between the random
components of the model and the regressors.

The “success” of the first and second difference instrument methods
is tempered by the lack of efficiency that sometimes accompanies them.
The usefulness of the estimates is dependent on the canonical correlations
between the regressors and instruments used. These canonical correlations
can be evaluated before the methods are used, and thus the best set of
instruments can be chosen. In addition some idea of the efficiency with
which the parameters will be estimated can be gained before using the
methods. Decisions can then be made as to whether the results that will
be obtained are likely to be meaningful.

Extensions to the first and second difference instrument methods to deal
with more than one non-lagged regressor and more than two levels in the
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model have been discussed.
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Appendix

If we take Z = {yi(t−3) − 2yi(t−4) + yi(t−5) , xit − 2xi(t−1) + xi(t−2)}, we
get:

E(ZT u) = E

(
A
B

)
where

A = (yi(t−3) − 2yi(t−4) + yi(t−5)) ×
(α2i(xit − 2xi(t−1) + xi(t−2)) + eit − 2ei(t−1) + ei(t−2))

B = (xit − 2xi(t−1) + xi(t−2)) ×
(α2i(xit − 2xi(t−1) + xi(t−2)) + eit − 2ei(t−1) + ei(t−2))

The first line of E(ZT u) is:

E(A)

=
[
E
(
(yi(t−3) − 2yi(t−4) + yi(t−5))(α2i(xit − 2xi(t−1) + xi(t−2)))

)]
+
[
E
(
(yi(t−3) − 2yi(t−4) + yi(t−5))(eit − 2ei(t−1) + ei(t−2))

)]
=
[
E
(
(yi(t−3) − 2yi(t−4) + yi(t−5))(α2i(vit − vi(t−1)))

)]
+
[
E
(
(yi(t−3) − 2yi(t−4) + yi(t−5))(eit − 2ei(t−1) + ei(t−2))

)]
=
[
E
(
α2i(yi(t−3) − 2yi(t−4) + yi(t−5))

)
E
(
vit − vi(t−1)

)]
+
[
E
(
yi(t−3) − 2yi(t−4) + yi(t−5)

)
E
(
eit − 2ei(t−1) + ei(t−2)

)]
= 0

as α2i and yi(t−3) − 2yi(t−4) + yi(t−5) are independent of xit − 2xi(t−1) +xi(t−2)

(and thus vit − vi(t−1)) and of eit − 2ei(t−1) + ei(t−2). Also E(vit − vi(t−1)) = 0
under assumption 3 and E(eit − 2ei(t−1) + ei(t−2)) = 0.
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The second line of E(ZT u) is:

E(B)

= E(α2ix
2
it − 4α2ixitxi(t−1) + 2α2ixitx

2
i(t−2) + 4α2ix

2
i(t−1)

− 4α2ixi(t−1)xi(t−2) + α2ix
2
i(t−2) + xiteit − 2xitei(t−1) + xitei(t−2)

− 2xi(t−1)eit + 4xi(t−1)ei(t−1) − 2xi(t−1)ei(t−2)

+ xi(t−2)eit − 2xi(t−2)ei(t−1) + xi(t−2)ei(t−2))

= σα2x2 − 4σα2x2 + 2σα2x2 + 4σα2x2 − 4σα2x2 + σα2x2

+ 0 − 0 + 0 − 0 + 0 − 0 + 0 − 0 + 0

= 0

given that cov(α2i, xitxit′) = σα2x2 , cov(xit, eit′) = 0 for all t, t′.
Thus, using this form of Z with the second differenced model, we should

obtain consistent estimates. This comes about because now, the vit−vi(t−1)

are not correlated with the y terms and can be separated out of the expec-
tation, and also our choice of instrument means what correlations with the
e no longer occur. When we take Z = {yi(t−3) , xit − 2xi(t−1) + xi(t−2)}, we
get:

E(ZT u)

= E

(
yi(t−3)(α2i(xit − 2xi(t−1) + xi(t−2)) + eit − 2ei(t−1) + ei(t−2))

B

)

=

(
E
(
yi(t−3)(α2i(xit − 2xi(t−1) + xi(t−2)) + eit − 2ei(t−1) + ei(t−2))

)
0

)

given the above result for the second line.
The expectation left is now:

E
(
yi(t−3)(α2i(xit − 2xi(t−1) + xi(t−2)) + eit − 2ei(t−1) + ei(t−2))

)
=
[
E
(
yi(t−3)(α2i(xit − 2xi(t−1) + xi(t−2)))

)]
+
[
E
(
yi(t−3)(eit − 2ei(t−1) + ei(t−2))

)]
=
[
E
(
yi(t−3)(α2i(vit − vi(t−1)))

)]
+
[
E
(
yi(t−3)(eit − 2ei(t−1) + ei(t−2))

)]
=
[
E
(
α2iyi(t−3)

)
E
(
vit − vi(t−1)

)]
143



Neil H. Spencer

+
[
E
(
yi(t−3)

)
E
(
eit − 2ei(t−1) + ei(t−2)

)]
= 0

as α2i and yi(t−3) are independent of vit −vi(t−1) and of eit −2ei(t−1) + ei(t−2).
Also E(vit−vi(t−1)) = 0 under assumption 3 and E(eit−2ei(t−1)+ei(t−2)) = 0.

Again, the consistency occurs because our instrument is sufficiently
lagged not to be correlated with the vit − vi(t−1) or the e.

When Z = {yi(t−3) − yi(t−4) , xit − 2xi(t−1) + xi(t−2)}:

E(ZT u) = E

(
A1

B

)
=

(
E(A1)

0

)

where

A1

= (yi(t−3) − yi(t−4))(α2i(xit − 2xi(t−1) + xi(t−2)) + eit − 2ei(t−1) + ei(t−2))

given the above result for the second line.
The expectation left is now:

E(A1)

=
[
E
(
(yi(t−3) − yi(t−4))(α2i(xit − 2xi(t−1) + xi(t−2)))

)]
+
[
E
(
(yi(t−3) − yi(t−4))(eit − 2ei(t−1) + ei(t−2))

)]
=
[
E
(
(yi(t−3) − yi(t−4))(α2i(vit − vi(t−1)))

)]
+
[
E
(
(yi(t−3) − yi(t−4))(eit − 2ei(t−1) + ei(t−2))

)]
=
[
E
(
α2i(yi(t−3) − yi(t−4))

)
E
(
vit − vi(t−1)

)]
+
[
E
(
yi(t−3) − yi(t−4)

)
E
(
eit − 2ei(t−1) + ei(t−2)

)]
= 0

as α2i and yi(t−3)−yi(t−4) are independent of vit−vi(t−1) and of eit−2ei(t−1) +
ei(t−2). Also E(vit − vi(t−1)) = 0 under assumption 3 and E(eit − 2ei(t−1) +
ei(t−2)) = 0.

Again we expect to obtain consistent results due to our choosing a suit-
able instrument which avoids correlations with vit − vi(t−1) and the e.
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