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Abstract: This paper investigates statistical procedures for analyzing
microarray gene expression data obtained from studies with an un-
balanced experimental design. We demonstrate the methods using
microarray data from a study of opioid dependence in mice. The
experiment was designed to investigate how morphine dependence
alters gene expression in spinal cord mRNA. The aim was to identify
genes that characterize the tolerance, withdrawal and two abstinence
stages of dependence and to describe how gene expression is altered in
moving from one stage to the next. The study design was unbalanced
in several respects. First, for mice receiving morphine, arrays were
made for four dependence stages, while for mice receiving placebo,
arrays were made for only three stages. Second, administrative error
led to an omitted replication for one treatment combination. Third,
some expression readings were missing.

Extending the two-stage ANOVA model of Lee et al (2000, 2002a)
this paper first uses a chi-square statistic to identify a small set of
genes that exhibit differential expression over one or more treatment
combinations. This gene set is then examined further using cluster
analysis and novel inference methods to uncover specific genes and
gene clusters that play a role at different stages of opioid dependence
and, in particular, a role in the persistence of effect into the late ab-
stinence stage. The latter effect implies that morphine dependence
has a long-term genetic impact. The statistical power of the study
to uncover differentially expressed genes is calculated as a prelude to
further investigation. The analytical results proved useful to scien-
tists in understanding the link between opioid dependence and gene
function.
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1. Introduction

Linear statistical models, such as the methods of analysis of variance
(ANOVA) as discussed by Kerr, Martin, et al (2000), Kerr and Churchill
(2001), Lee et al (2000, 2002a), and mixed-effects statistical models dis-
cussed by Wolfinger, Gibson, et al (2001), have been widely used for an-
alyzing microarray gene expression data. These investigations, however,
have tended to focus on complete and balanced designs. A complete and
balanced design is an ideal that is not always achieved in practice. The cost
of conducting a microarray experiment, in terms of labor, time and money,
sometimes makes it impractical to use a balanced design. Also, some studies
set out with a balanced design but become unbalanced during implementa-
tion because of technical and administrative problems. Finally, it is common
for scientists to embark on a study prior to consulting a statistician and the
chosen design may be unbalanced. In recognition of this reality, this paper
presents methods for analyzing microarray data from unbalanced designs.
We illustrate the methods using data from a study of opioid dependence in
mice.

This article extends the two-stage ANOVA model considered in Lee et al
(2000, 2002a) to unbalanced designs. First, we use a chi-square statistic to
identify a small set of genes that exhibit differential expression over one or
more treatment combinations. This gene set is then examined further using
cluster analysis and novel inference methods to uncover specific genes and
gene clusters that play a role at different stages of opioid dependence and,
in particular, a role in the persistence of effect into the late abstinence stage.
The latter effect implies that morphine dependence has a long-term genetic
impact. We calculate the statistical power of the study to uncover differen-
tially expressed genes as an aid to planning the scale of future studies in this
series of investigations. Finally, we show how the analytical results proved
useful to scientists in understanding the link between opioid dependence
and gene function.
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2. Experimental method and design

The impact of opioid dependence on the genetic makeup of spinal cord
and brain tissue is medically and scientifically important and has attracted
the attention of a number of researchers – see Loguinov et al. (2001) and
references therein. The experiment reported here was designed to investi-
gate how morphine dependence in mice alters gene expression in spinal cord
mRNA. The study design involved two treatments, morphine and placebo,
and four time points corresponding to consecutive stages of opioid depen-
dence, classified as tolerance, withdrawal, early abstinence and late absti-
nence. The aim of the study was to identify genes that characterize the
tolerance, withdrawal and two abstinence stages and to describe how gene
expression is altered in moving from one stage to the next.

Pellets containing 75 mg of morphine base (treatment) or placebo (con-
trol) were implanted subcutaneously in eight-week old male mice. Treat-
ment mice were sacrificed sequentially at four time points corresponding to
the four dependence stages. Control mice were sacrificed at the same time
points, with the exception of the withdrawal stage which was omitted on
the assumption that the tolerance and withdrawal stages are identical in
placebo group. Thus, four arrays were made for mice given the morphine
treatment, one for each dependence stage, while only three arrays were made
for mice given the placebo treatment.

The microarray data we consider resulted from hybridization of the dor-
sal part of the mouse spinal cord samples to a custom-designed cDNA array.
The cDNA array contains 1667 cDNA fragments and 61 control spots. At
each time point (i.e., at each stage), in both the treatment and control
groups, three mice were sacrificed, for a total of 21 mice. The paucity of
spinal column mRNA in any single mouse required that the mRNA of the
three mice sacrificed together be combined and blended into a single sample.
The treatment and control samples were labeled with Cy-5 dye and read on
the red channel. Other control samples, derived from mouse brain tissue,
were labeled with the Cy-3 (green) dye. As the purpose of this investiga-
tion is to learn how morphine dependence alters gene expression in spinal
cord mRNA, the Cy-3 readings from mouse brain tissue ( a different tissue
type) are not used in the analysis reported here. See Lee et al (2000) for
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another illustration of the use of single-channel microarray readings. DNA
microarray analysis of gene expression was done essentially as described by
Eisen and Brown (1999) with some modifications (Loguinov et al. 2001).

For each gene g, fluorescent expressions were measured for treatment
group (1= placebo, 2= morphine), and time stage t (1= tolerance, 2= with-
drawal, 3= early abstinence, 4= late abstinence), except for the placebo-
withdrawal combination where no array was created. The placebo-withdrawal
combination was not implemented on the assumption that it would be iden-
tical to the placebo-tolerance combination. The original study plan called
for each spinal column sample to be placed on two spots of the same slide,
yielding a replicated expression reading. This plan was not carried through
perfectly, however, as the spot replicate for the morphine-tolerance combi-
nation was omitted by mistake.

Finally, as often happens in microarray experiments, it was found that
the array for the morphine-late abstinence combination had a large number
of defective spots and several dozen spots on other arrays were faulty. The
final microarray data set contains readings for only 1722 genes out of the
original set of 1728 (=1667+61). Six genes were dropped because they had
defective readings for the morphine-tolerance combination, the unreplicated
treatment combination in the design. We did not choose to employ imputa-
tion to replace missing values. It was felt that any imputation assumption
would be too speculative to be justified.

In summary, therefore, we find three elements of imbalance in this design:
(1) an omitted treatment combination, (2) an omitted replicate and (3)
several missing expression readings.

3. Analytical framework

As the design is not a complete factorial design (one cell is not complete),
we shall initially view the K = 7 cells as seven individual experimental con-
ditions, indexed by k = k1, . . . , k7. The reading Ygkr represents the natural
logarithm of the raw Cy-5 gene expression reading, without background
correction, for gene g, treatment combination k and spot replicate r. Ta-
ble 1 shows the correspondence of the treatment combinations to the index
values.
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Table 1. The experimental design for the study involves seven treat-
ment combinations of time stage and morphine treatment. The
placebo-withdrawal treatment combination was not implemented on
the assumption it would be identical to the placebo-tolerance combi-
nation. All treatment combinations involved replicated spots except
the morphine-tolerance combination which had no replicate because
of administrative error.

Dependence Time Stage
t = 1 t = 2 t = 3 t = 4

Treatment Tolerance Withdrawal Early Abstinence Late Abstinence

Placebo k1 * k2 k3

Morphine k4 k5 k6 k7

As shown by Lee et al (2002a), the following two-stage ANOVA model
is appropriate for this kind of data set.

Ygkr = µ + τk + Wgkr (3.1)

Wgkr = γg + (γτ)gk + εgkr (3.2)

In equation (3.1), µ represents the overall population mean log-expression
intensity, τk is the main effect for the array corresponding to experimental
condition k, and Wgkr is a normalized (centered) quantity that captures
all the gene-specific effects of the experimental condition. In (3.2), γg is
the main effect for gene g, (γτ)gk is the interaction effect for experimental
condition k and gene g, and εgkr is an error term. Interaction (γτ)gk reflects
the differential expression of gene g in condition k. We assume that the
error terms εgkr have mean 0, have a common variance and are mutually
independent. We make no assumption about their distribution form.

Recall that the original study design called for two spot replicates per
treatment combination. The replication in the design ensures ample de-
grees of freedom for estimating all parameters. We note for clarity that
the notation in models (3.1) and (3.2) does not take explicit account of the
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omitted spot replicate in treatment combination k4 or the missing readings
for defective spots.

The estimation of the parameters in equations (3.1) and (3.2) proceeds
in two stages. The residuals from fitting the first model are estimates of
the Wgkr. The estimates τ̂k are normalizing constants for the arrays. As
there are G = 1722 genes in our microarray data set and the design is
unbalanced, fitting the second model involves substantial calculation. In
essence, a regression model is fitted for each gene g to provide estimates
of γg and (γτ)gk, for k = k1, . . . , k7, g = 1, . . . , G. We impose sum-to-zero
estimability constraints on each of the sets of parameters for main effects
and interactions.

We shall use the simpler notation Igk for the interaction term (γτ)gk and

denote its estimate by Îgk. The Îgk are the estimated differential effects for
the seven treatment combinations.

4. Analysis and results

We now describe the results of several analyses of differential gene ex-
pression in this experiment.

4.1 Differentially Expressed Gene Pool

First, we investigate which genes, if any, are differentially expressed in
any of the treatment combinations, reflecting effects arising from either the
time stage or morphine treatment. This first analysis identifies a set of
genes that are qualified for study in subsequent stages of analysis in the
sense that they show evidence of some form of differential expression. The
sum of the squared interaction effects, shown next, is a summary measure
that captures the combined effects across all treatment combinations.

Cg =

k7∑
k=k1

Î2
gk (4.1)

We do not use measure Cg directly because of the imbalance in this experi-
mental design. Instead, we use the model sum of squares from the regression
analysis of (3.2) for gene g. The model sum of squares is a weighted-sum
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version of Cg. We denote this quantity by SSMg. With a balanced design
having r readings for gene g on each of the treatment combinations, we note
that Cg and SSMg would be connected as follows: SSMg = rCg.

If the ANOVA error term in (3.2) were normally distributed, one might
wish to use the regression F statistic F ∗

g = MSMg/MSEg to test the null hy-
pothesis of no differential expression for gene g, i.e., the hypothesis H0 : Igk

= 0 for k = k1, . . . , k7. Here MSMg = SSMg/6 and MSEg denote the re-
gression mean squares for the model and error ANOVA components, re-
spectively. The test would entail comparing F ∗ with an appropriate F
percentile.

We wish to avoid an assumption about the error term distribution, how-
ever, and thus we use the following chi-square based rule. This rule re-
quires that the estimated interaction effects Îgk be approximately normally
distributed. With replicated observations, the central limit theorem gives
some assurance of approximate normality in this context.

Proceeding, we let M denote the median value of the SSMg values for
all G = 1722 genes. We then calculate the statistic

Sg =
χ2

K−1(0.5)

M SSMg, (4.2)

where K − 1 = 7 − 1 = 6 in this application. Quantity χ2
K−1(0.5) denotes

the median of a χ2
K−1 variable. The ratio of the respective medians in (4.2)

scales the quantity SSMg appropriately so that Sg will have an approximate
χ2

K−1 distribution under the null hypothesis of no differential expression, i.e.,
under H0 : Igk = 0 for k = k1, . . . , k7. The distributional approximation
holds if at least 50 percent of the genes are not differentially expressed,
which we believe to be a reasonable assumption in this study.

Now, we choose the following chi-square percentile as a cutoff for Sg that
separates differentially expressed genes from those that are not

χ2
K−1

(
G

G + 1

)
(4.3)

In this application, this cutoff value equals χ2
6(1722/1723) = 23.75. Crite-

rion (4.3) has the property that it tends to produce one false positive in
each application. Another criterion could be used to control the family
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Table 2: Differentially Expressed Gene Pool: 43 genes exhibiting sig-
nificant differential expression for one or more of the seven treatment
combinations according to the criterion that model sum of squares
SSMg is significantly large, ordered by chi-square statistic Sg.

Gene Chi-square Gene Chi-square
Name Sg Name Sg

g1145 23.80181 g1087 29.99177
g339 24.03087 g234 30.62762

g1201 24.14126 g870 30.99461
g33 24.16163 g1698 31.61664

g898 24.23594 g914 32.54018
g1519 24.48179 g1105 32.92247
g830 24.98025 g900 32.98985

g1526 25.36965 g278 34.11127
g946 25.45033 g1169 35.229
g922 25.75307 g1465 35.61224
g708 25.76863 g1649 36.63601
g453 25.83311 g1073 38.83312

g1175 25.9591 g1199 41.85474
g1669 26.39848 g1063 42.49206
g1623 26.62695 g1185 42.66629
g939 29.0621 g438 43.74333
g899 29.1816 g1257 48.36805
g633 29.36458 g1134 48.95993
g17 29.50138 g1191 52.02124

g311 29.63199 g1024 55.24098
g371 29.81269 g1202 71.21092

g1704 29.87632

type I error rate but the study team found this one to be acceptable in this
application. Based on the cutoff value of 23.75, we find that the 43 genes
listed in Table 2 are differentially expressed. We refer to this set as the
differentially expressed gene pool. The fact that only one false positive is
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Table 3: Gene clusters sharing similar differential expression profiles
across the seven treatment combinations, irrespective of morphine or
placebo treatments. The 43 genes are listed here.

Cluster Gene Name
A1 : {g278, g311, g339, g371, g453}
A2 : {g438, g870, g898, g900, g914, g946}
A3 : {g526, g1704}
A4 : {g17, g33, g1169, g1201, g1519}
A5 : {g708, g1063, g1257, g1649, g1669}
A6 : {g1191, g1465}
A7 : {g939, g1134, g1175}

Singleton {g234}, {g633}, {g830}, {g899}, {g922}, {g1024}, {g1073}, {g1087}
Clusters: {g1105}, {g1145}, {g1185}, {g1199}, {g1202}, {g1623}, {g1698}

expected in this list implies that there is a substantial number of genes in
the list that are truly differentially expressed.

4.2 Cluster analysis

Next, we employ cluster analysis to identify subsets of the 43 genes in
the differentially expressed gene pool that have similar expression profiles
across the seven treatment combinations. For this purpose, we employ the
routine for hierarchical cluster analysis from the JMP statistical software
system of the SAS Institute. The clustering routine uses the standardized
values of the Îgk and the centroid linkage criterion. The results are shown by
a gene-wise dendrogram in Figure 1. We see a number of distinct clusters.
We cut the tree at a distance of 1.423, creating 22 clusters. Table 3 shows
the membership of these clusters. Seven clusters contain multiple genes and
15 are singleton clusters.

4.3 Comparing genes at the late abstinence stage

Continuing, we focus our investigation on differential expression for the
late abstinence stage, i.e. time stage 4, to see if morphine administration
has a lasting impact on gene expression. For this purpose, we are interested
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Figure 1. Dendrogoram corresponding to Table 3. Verticle
line shows the selected cluster solution.
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in the following difference between condition k3, placebo at time 4, and
condition k7, morphine at time 4.

dg = Igk7 − Igk3 (4.4)

The estimate of this difference is denoted by d̂g, where d̂g = Îgk7 − Îgk3 .
Again, based on the approximate normality of the estimated interaction

effects, we have that d̂g follows an approximate N(0, σ2
0) distribution under

the null hypothesis H0 : dg = 0, where σ2
0 denotes the null variance param-

eter. This hypothesis states that there is no differential expression between
the morphine and placebo treatments in the late abstinence stage.

We look at both the sample standard deviation of the d̂g and the stan-

dard deviation estimated from the interquartile range of the d̂g for the 1722
genes as alternative estimates of the null standard deviation σ0. The re-
spective values are 0.5564 and 0.5942. They differ little. To be conser-
vative, we shall use the smaller value as our estimate of σ0, denoting the
estimate by σ̂0. We then compute the standardized values zg = d̂g/σ̂0

and compare |zg| for each gene g with the standard normal percentile
z[G/(G + 1)] = z(1722/1723) = 3.2483. Values of |zg| that exceed this
percentile are judged to be differentially expressed. This cutoff criterion
will tend to give one false positive in each tail (two false positives in total)
with each application. Table 4 lists the four genes that are up-regulated and
the one gene that is down-regulated in the morphine treatment, relative to
the placebo, in the late abstinence stage. All of these genes are in the dif-
ferentially expressed gene pool identified in the first analysis. As Table 4
lists only five genes in total and two are expected to be false positives, three
genes are expected to be true positives.

4.4 Summarizing differences across all time stages

As a final analysis, differences between morphine and placebo treatment
combinations of the type shown in formula (4.4) were calculated for all four
time stages for the whole gene pool. For the withdrawal stage, the inter-
action estimates Îgk1 from the placebo-tolerance combination were used as
estimates for the missing placebo-withdrawal combination in the experi-
mental design.
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Table 4: Five genes exhibiting a significant difference in differential
expression between the morphine and placebo treatments in the late
abstinence stage as assessed by the standard normal statistic zg.

Gene Standard Normal
Name Statistic zg

Down-regulated in morphine
g1087 -3.608409
Up-regulated in morphine
g278 3.632209
g438 3.312954

g1199 3.915316
g1704 3.323965

We wish to test the null hypothesis H0 : dgt = 0 for all t. Here dgt is
the difference for gene g in time stage t and t = 1, . . . , T , with T = 4.
The standardized difference corresponding to estimate d̂gt is denoted by zgt

and is calculated here using the standard deviation of all differences d̂gt at
time stage t. As an approximate test procedure, we employ the following
statistic, which is an analog of the earlier chi-square statistic (4.1).

Dg =

T∑
t=1

z2
gt (4.5)

A gene is judged to be differentially expressed between the morphine and
placebo treatments at one or more dependence time stages if its statistic
Dg exceeds χ2

T [G/(G + 1)] = χ2
4(1722/1723) = 19.67. In this application of

the test procedure, Dg will be only approximately distributed as χ2
4 under

H0. With the approximation, however, we know the procedure is expected
to yield about one false positive in testing the whole set of G = 1722 genes.

Table 5 shows the nineteen genes identified as differentially expressed by
this criterion. The nineteen genes have been grouped into nine clusters in
Table 5 according to the pattern of expression across the four time stages.
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Figure 2. Dendrogoram corresponding to Table 5. Verticle
line shows the selected cluster souution.

The nine clusters were cut from the dendrogram in Figure 2 that was
generated using the same hierarchical clustering routine described earlier.
The cluster patterns are not internally uniform but some consistency is
present. For example, the cluster with the largest membership, cluster B8
as listed in Table 5, shows genes that are fairly consistently up-regulated at
all time stages under morphine relative to placebo. There is no guarantee
that all genes that appear as differentially expressed by this criterion will
be from the differentially expressed gene pool, although there should be a
high degree of correspondence. We note that two of the 19 genes (g910,
g1296) in cluster B8 are not in the pool of 43 genes listed in Table 2.
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Table 5: Differences in differential expression between the morphine
and placebo treatments in each of four dependence time stages as
assessed by the standard normal statistic zg for each stage. The
clusters group genes with similar profiles across the four time stages.

Gene Standardized Normal Statistic zg

Cluster Name Tolerance Withdrawal Early Abstinence Late Abstinence
B1 : g1185 -2.555528 .4801729 2.578545 -2.515898

g1202 -1.891121 3.915715 .2488594 -1.984508
B2 : g1024 .5734071 6.774648 -1.205199 -1.01564
B3 : g633 .0371928 -.9443634 -4.435981 .3645121

g1063 -1.920154 -.7747319 -4.065078 -1.267348
g1257 -1.863966 -1.286642 -4.496387 -.9962125
g1649 -1.747722 -.8297673 -4.239462 -.9612752

B4 : g899 -3.404126 -4.072057 -1.705509 -1.007635
B5 : g1191 2.517021 .840284 -4.309214 -.4327433
B6 : g1105 -2.514672 -3.631862 -3.366916 2.004774
B7 : g1073 -2.711815 -2.119922 .4428932 2.917885
B8 : g438 1.58086 3.956466 .5766376 3.312954

g870 2.501067 3.291142 .5538081 2.004692
g910 3.12235 2.857303 1.773949 .2036051
g922 3.532286 1.859219 2.587013 .9108489
g1296 1.939579 3.970597 .8866081 -.1409477
g1526 2.472733 2.719066 1.742795 2.413913
g1698 1.73313 1.428013 3.779864 2.034925

B9 : g1199 3.352447 -.2531143 .9331462 3.915316

5. Estimated power

Using methods described in Lee et al (2002b), we have estimated the
statistical power of the experimental design used in this study as a guide
to designing further studies in this series of genetic investigations. To make
this estimate, we use Sg in (4.2) as the summary measure of differential
expression. Under H0, this measure is approximately a χ2

6 variate.
As the specified alternative hypothesis Ha, we postulate a single treat-

ment condition (say, the morphine-late abstinence condition k7) that is dif-
ferentially expressed relative to all other treatment conditions which are
assumed to have uniform expression levels. Specifically, we assume that the
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differential expression in this pattern is a four-fold difference. Under this
specification of Ha, Sg follows a non-central chi-square distribution with six
degrees of freedom and a non-centrality parameter which is estimated to be
25.0.

We have controlled the family type I error probability so that only one
false positive is expected. We also have assumed that the estimation errors
in the interaction estimates Îgk are independent for different genes. (We
stress that the independence here relates to statistical estimation error and
not gene co-regulation. Co-regulation is almost certainly present.)

Finally, calculation of the relevant area under the non-central chi-square
distribution gives the estimated power of this study under the specified
alternative hypothesis as 0.739. This power is moderate to large, suggesting
that differential expression levels consistent with a non-centrality parameter
of 25.0 had more than seven chances in ten of being uncovered. The sum of
the degrees of freedom and non-centrality value assumed under Ha equals 6+
25.0 = 31. Referring to the values of Sg reported in Table 2 for differentially
expressed genes, we see that a value of 31 is quite typical. If Ha were
changed to an hypothesis with an eight-fold differential expression then the
noncentrality parameter increases to 56.4 and the power jumps to 0.999.

6. Discussion of results

Genes implicated in long-term genetic changes following morphine ad-
ministration are expected to have a consistent and major differential impact
across all time stages and, in particular, to be clearly significant in the early
and late stages of abstinence. With this thought in mind, the results of the
preceding statistical analysis were subjected to review by the principal sci-
entist, giving the following findings and those summarized in Table 6.

6.1 Sorting out image artifacts

Upon review of the 43 genes in the differentially expressed gene pool in
Table 2, 14 were observed to have image artifacts that may have caused
them to appear as differentially expressed. Specifically, the artifact was
identified as a six-fold or greater difference between the two duplicate spots
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Table 6: Functional classification of genes in the differentially ex-
pressed gene pool.

Category Gene Name
Energy metabolism: g234, g278, g438, g633, g830, g900, g910, g914

g946, g1199, g1526, g1623
Regulatory function: g453, g898, g1519, g1704
Structural function: g870, g922, g1145, g1185, g1296
Image artifacts: g17, g33, g939, g1063, g1073, g1087, g1134, g1169

g1201, g1257, g1465, g1649, g1669, g1698
Unknown function: g311, g339, g371, g708, g899, g1024, g1105

g1175, g1191, g1202

for a gene (in those treatment combinations that were replicated). No at-
tempt was made to repeat the analysis excluding these genes. Considerable
subjectivity would be introduced by judging what kind of remedy was ap-
propriate for these spots.

As noted in Section 2, 61 of the 1728 spots were used as negative controls.
Three of these negative-control genes (g1063, g1087 and g1134) appear in
the list of 43 differentially expressed genes and are clearly false positives.
As these three negative controls are among the 14 spots showing image
artifacts, the finding suggests that it was faulty replication of the spot that
allowed these negative controls to appear in the differentially expressed gene
pool.

6.2 Functional classification

Table 6 classifies the 43 genes in the differentially expressed gene pool
into functional groups. The 14 genes with image artifacts are segregated in
one class of the table. The remaining 29 genes are classified into functional
groups related to energy metabolism, regulatory function or structural func-
tion or as having unknown function. Recall from section 4.4 that two ad-
ditional genes (g910, g1296) appeared in Table 5 as having differences in
expression between morphine and placebo treatments but are not among the
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43 differentially expressed genes in Table 2. These two genes have also been
classified in Table 6 into the energy metabolism and structural functions
groups, respectively.

The energy metabolism group in Table 6 is characterized by increased
expression during the tolerance stage and then a slight decrease during the
early abstinence stage. Expression for the regulatory group also increases
during the tolerance stage, decreases during withdrawal and then increases
during late abstinence. Finally, expression for structural genes increases
during tolerance and decreases during late abstinence.

Matching these categories with the findings in Tables 3, 4 and 5, reveals
some interesting features. A small subset of genes associated with energy
metabolism appears in Cluster A2 of Table 3 (g438, g900, g914, g946).
The only gene spot down-regulated in morphine in Table 4 turns out be be
a negative control from the image artifact category (g1087). Of the four
genes up-regulated in morphine in Table 4, three are associated with energy
metabolism (g278, g438, g1199) and the last is found in the regulatory group
(g1704). In Table 5, singleton cluster B6={g1105} (a gene in the unknown
function category) is noteworthy for its pattern of strong down-regulation
for the first three time stages and then moderate up-regulation in the late
abstinence stage. Also, oddly, singleton cluster B2={g1024} (having un-
known function) is strongly up-regulated in morphine in the withdrawal
stage. Whether this occurrence reflects a data anomaly or a real expres-
sion response requires further investigation. We observe that cluster B3 in
Table 5 consists almost completely of genes with image artifacts (including
one negative control gene, g1063). Gene g633, a member of the energy-
metabolism group, is the only exception. Singleton cluster B7={g1073} is
also in the image artifact category. Cluster B8, a large cluster, is a mixed
lot consisting of genes associated with energy metabolism and structural
function and one spot on the image artifact list (g1698).

Tables 3 and 5 pose a contrast in clustering of differential expression
profiles. Table 3 clusters genes that have similar gene expression profiles
across the seven treatment combinations as listed in Table 1, irrespective of
how these profiles relate to time stage or morphine-placebo treatment. On
the other hand, Table 5 clusters genes on the basis of similar differential
expression patterns between morphine and placebo across the four time
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stages. Matching the cluster memberships in Tables 3 and 5, we see that
cluster A5 in Table 3 and cluster B3 in Table 5 share three gene spots having
image artifacts (g1063, g1257, g1649), the first being a negative control.
Several of the singleton clusters also match up. Cluster A2 in Table 3 and
cluster B8 in Table 5 share two genes (g438, g870).
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