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Abstract: We start with a data set obtained from a study of the
CS-M-3 ignitor in a military experiment and is based on the classical
up-and-down method of Dixon and Mood (1948). Since the Bruce-
ton tests are actively employed in pyrotechnical sensitivity studies,
we reexamine this method based on the view that it is designed for
data-collection. Two different aspects are addressed: as a design for
parameter estimation and as a design for giving clues about the good-
ness of fit. Two sets of data are employed to illustrate our points.
For the estimation of (µ, σ), the location and the scale parameters,
we show that a properly selected up-and-down design is quite infor-
mative; for the estimation of xp, the 100p%-th quantile, however,
the best selected up-and-down method is only about 50% effective
as compared with the corresponding c-optimal design. Although not
particularly useful, the up-and-down method does judge the proper
selection of underlying model. In any case, all the quantal response
models are rather poor in terms goodness of fit.

Key words: A-optimal, c-optimal, D-optimal; Markov chains, max-
imum likelihood estimate, probit model, sequential design, up-and-
down method.

1. Introduction

Table 1.1 summarizes the test results for the CS-M-3 ignitor obtained
from an experiment carried out at the Chung-Shan Institute of Science and
Technology in Taiwan. The experiment is carried out by a Bruceton test,
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which is based on the classical up-and-down method of Dixon and Mood
(1948). Bruceton is the name of a military installation in Pennsylvania,
USA, that tests weapons and ammunition among other things (Mood 1998).
Since this method is specifically documented in certain military standards
(e.g., MIL-STD-331B, MIL-STD-322B), 50 years after its initial introduc-
tion, it is still actively used in Pyrotechnics Sensitivity Analysis (PSA).

An implicit assumption underlying this quantal response model is that
there is a latent random variable X which represents the critical value of
the testing item in the sense that Y (x) = 1 if and only if X ≤ x. Although
F , the distribution function of the critical stimulus levels, can be any dis-
tribution function, in practice, a parametric family is often assumed. In
particular, two distributional forms have been commonly used, the probit
and the logit models, perhaps after a transformation of x. For the pro-
bit model, F (x) is modeled as an integrated normal distribution function.
Hence, for the probit model,

F (x) = P (Y (x) = 1) =

∫ (x−µ)/σ

−∞

1√
2π

e−t2/2dt, (1.1)

where µ and σ are two unknown parameters. For the logit model, F (x) is
the logistic distribution

F (x) = P (Y (x) = 1) =
1

1 + exp{−x−µ
σ

} . (1.2)

An up-and-down test can be described as follows. Start from an initial
stimulus level and assume that increasing the stimulus level will increase the
explosion probability. When the response is 0 (non-explosive), we increase
the level by one unit at the next stage; if the response is 1 (explosive),
we decrease the stimulus level by one unit in the next stage. The process
continues until a fixed number of observations is obtained.

When we are presented with the given data set, the main objective of
the experiment is to estimate xp, the 100p%-th quantile of F , where p is
close to unity. In pyrotechnical terms, this is called a sensitivity test. For
the case p is close to 0, it is called a safety test. We shall not address the
question of safety tests in this paper since a dual argument is sufficient.
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Table 1.1 Experiment of CS-M-3 ignitor

.884 - - - - - - - - - - - - - - - 1 - - - 1 - - - - - - - - - - - - - - - - - - - - - - -

.874 1 - 1 - - - - - - - - - - - 0 - 1 - 0 - 1 - 1 - - - - - 1 - - - 1 - 1 - - - 1 - - - 1

.864 - 0 - 1 - - - - - - - - - 0 - - - 0 - - - 0 - 1 - - - 0 - 1 - 0 - 0 - 1 - 0 - 1 - 0 -

.854 - - - - 1 - 1 - 1 - - - 0 - - - - - - - - - - - 1 - 0 - - - 0 - - - - - 0 - - - 0 - -

.844 - - - - - 0 - 0 - 1 - 0 - - - - - - - - - - - - - 0 - - - - - - - - - - - - - - - - -

.834 - - - - - - - - - - 0 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

A salient feature of the Bruceton test is that the observations are con-
centrated around the stimulus level that will produce the median value of
F , and this holds true irrespective of the choice of the initial stimulus level
and without prior knowledge about the values of the unknown parameters.
When the data in Table 1.1 is projected on the verticle-axis, we can see
a histogram-like picture and will intuitively expect that estimation of the
mean of F can be effectively carried out. This was an important feature
in the late 1940’s when the value of the location parameter was of primary
interest. However, for the data set in Table 1.1 (and Table 5.4 presented
later), the main objective of the experiment is to estimate the high quan-
tiles of F . This task is usually achieved by first estimating the parameters
and then estimating xp by using its corresponding parametric form. The
classical method estimates the parameters of the underlying distribution
first and then estimates the quantile xp by means of extrapolation. For
p ∈ (.2, .8), several authors have noted that the probit and logit models
have good agreement for quantiles in this range (Wetherill 1963, Wu 1985);
on the other hand, the choice of model to be used when estimating quantiles
in this range is up to the investigator. For p close to 1, however, the proper
estimation of xp depends on the correct choice of the parametric model,
probit or otherwise. Hence, the issue of goodness of fit becomes more and
more important as p gets closer to unity.

Although there is no lack of good designs for estimating xp based on
the binary quantal response data (see, for example, Young and Easterling
1993), we were rather surprised when we found that the 1948 method is still
in active use at PSA today. One of the main objectives of this study was
to take a close look at this classical method and examine it based on what
we know about current binary data analyses. Emphasis was placed on, but
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not limited to, the estimation of xp.

Since for the problem at hand, the data set had already been collected,
we made no attempt to improve the Bruceton test as far as the data col-
lection part is concerned. Rather, we examined the method with respect
to two distinct issues: design and goodness of fit. For analysis of binary
data with a parametric model, the known optimal designs are all 1-, 2- or
3-point designs (Wu 1988, Sitter and Wu 1993). However, the Bruceton
test usually takes values at 6 or more different levels of stimulus. How
does the Bruceton test compare with a corresponding optimal design? As a
data-collection design, in Section 3, we calculate and compare its efficiency
with that of the D- and A-optimal designs. In most cases, the Bruceton
test demonstrates a relative efficiency of 70% or more as compared with the
corresponding optimal design. Section 4 is devoted for the c-optimal design
since it is the optimal design when the estimation of xp is of major concern.
For p close to 1, the Bruceton test is less than 50% effective as compared
with the corresponding c-optimal designs.

For goodness of fit, it is clear that a 2-point design, even when it is
optimal in some other sense, cannot give us any clue about the unknown
functional form of F , which is important, particularly when we need to
extrapolate it into the tail part to estimate a high quantile. For comparison
with the optimal estimator of F with the same amount of data collected by
means of fixed designs, we examine the corresponding estimator of F based
on the Bruceton test (Section 5). Even with a moderately large data set
(n = 240), the best estimator of F we can construct is far from satisfactory.
This is typical of all quantal response models, however. Inference at the
extreme tail of the distribution is risky unless the sample size is extremely
large.

2. Markov chain representation

To analyze the performance of the up-and-down test insofar as estimat-
ing µ, σ and xp is concerned, we first represent the process based on the
data presented in Table 1.1 as a Markov chain and then perform point and
interval estimation for the parameters of interest. The idea of the Markov
chain representation is not new, see for example Derman (1957), Wetherill
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(1963), Wetherill and Glazebrook (1986), and more recently Thomas (1994).
The advantage of using the Markov chain representation can be described
as follows. For the up-and-down method, since we can reproduce the whole
ordered data set {(Xi, Yi), i = 1, · · · , n} from the ordered set of stimulus
levels {Xi, i = 1, · · · , n}, and since the latter can be formulated as a Markov
chain with a specific transition probability matrix P as in (2.1) below, in
the analysis that follows, we can completely ignore the Y values and con-
centrate on the X values only. Therefore, the classical method of maximum
likelihood in parametric Markov chains can be applied to perform point
estimation. The statistical inferences for ergodic Markov chains have been
well documented by Anderson and Goodman (1957), Billingsley (1961) and
Basawa and Prakasa Rao (1980).

For ease of exposition, let us assume that there are five stimulus levels
a0, a1, · · · , a4 with ai < aj for i < j. It is easy to see that {Xt, t = 1, · · · , n}
forms a Markov chain on a state space {a0, · · · , a4} with the following tran-
sition probability matrix:

P =




p0 1 − p0 0 0 0
p1 0 1 − p1 0 0
0 p2 0 1 − p2 0
0 0 p3 0 1 − p3

0 0 0 p4 1 − p4


 (2.1)

where pj = Φ((aj−µ)/σ) for the probit model (1.1), and pj = (1+exp{(aj−
µ)/σ})−1 for the logit model (1.2).

3. Design aspect

The data collection process for the up-and-down method described ear-
lier is a sequential design in the sense that the stimulus level of the next
observation depends on the stimulus level and the outcome of the current
observation. This design has the effect that the stimulus levels are clustered
around the median value of F . In addition, this is happens despite the fact
that the parameters, or even the functional forms, of F are unknown.

In contrast, let a = (a0, a1, · · · , ak) be fixed stimulus levels, and let nj

independent binary observations Yt(aj), t = 1, 2, · · · , nj be taken at level aj.
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This is a so-called fixed-design, and an optimal fixed design may be used as
a benchmark with which the up-and-down methods can be compared. We
assume that n observations are taken using an optimal fixed design, and
that another n observations are taken using the up-and-down method. In
this section, we shall derive numerical values, which in effect represent the
relative efficiency of the Bruceton test. We shall consider three cases for
F : probit, logit and double exponential. The D-, A- and c-optimalities will
also be considered.

Suppose that among the nj observations taken at aj , rj of the Y ’s take
the value 1. Then, the likelihood function is of the form

L(F ) = constant ×
k∏

j=0

[F (aj)]
rj [1 − F (aj)]

nj−rj . (3.1)

It is easy to see that the above equation holds for the fixed design case.
It also holds true for the up-and-down method, thanks to its special data
collection procedure, despite the fact that the X’s follow a Markov chain.
The difference is that, for the fixed design, the nj ’s are constants and the
rj ’s follow a binomial distribution b(nj ; F (aj)) whereas for the up-and-down
method, the nj’s are random variables.

We shall introduce the location-scale family F ((· − µ)/σ) to facilitate
likelihood analysis. Omitting the details, the Fisher information produced
by a binary observation taken at aj is

I(aj) =
1

Fj(1 − Fj)

[
(

∂Fj

∂µ
)2 (

∂Fj

∂µ
)(

∂Fj

∂σ
)

(
∂Fj

∂µ
)(

∂Fj

∂σ
) (

∂Fj

∂σ
)2

]
,

where Fj = F ((aj − µ)/σ). Let n = (n0, n1, · · · , nk). A fixed design can be
represented by the two vectors a and n, where nj data points are collected
at level aj , j = 0, 1, · · · , k. Let w = (w0, w1, · · · , wk), where wj = nj/n, n =∑

nj . In optimal design terms, the pair (w,n) constitutes an approximate
design since when analytical methods are employed to find the optimal w,
we cannot assure that nwj are integers.

Let I =
∑

njI(aj) be the Fisher information matrix of the whole data
set. Then I−1 is the variance-covariance matrix for the MLE’s of µ and σ. A
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Table 3.1 D-optimal designs

model F (a) weights

F1 (.18, .82) (.5, .5)
F2 (.13, .87) (.5, .5)
F3 (.10, .50, .90) (.28, .44, .28)
F4 (.21, .50, .79) (.26, .48, .26)

Table 3.2 A-optimal designs

model F (a) weights

F1 (.21, .79) (.5, .5)
F2 (.14, .86) (.5, .5)
F3 (.10, .50, .90) (.36, .28, .36)
F4 (.21, .50, .79) (.40, .20, .40)

D-optimal design is a design that maximizes the determinant of I, and an A-
optimal design is a design that minimizes the sum of V ar(µ̂)+V ar(σ̂). The
exact solution of the approximate D- and A-optimal designs for 4 different
distributions were found by Sitter and Wu (1993):

The four distribution forms are as follows:

(i) Logit: F1(z) =
1

1 + e−z
;

(ii) Probit: F2(z) = Φ(z);

(iii) Double exponential: F3(z) =

∫ z

−∞
h(u)du, h(u) =

1

2
e−|u|;

(iv) Double reciprocal: F4(z) =

∫ z

−∞
h(u)du, h(u) =

1

2(1 + |u|)2
.

We shall consider not only the most popular cases, i.e., the logit and
probit, but also the double exponential distribution. To use the above
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optimal designs, one needs to guess the approximate values of µ and σ in
order to obtain the optimal aj ’s; hence they cannot be strictly employed
in practice. Nevertheless, these results give us a benchmark with which
the up-and-down method can be compared. Let Dopt and Aopt denote the
determinant and the sum of variances (trace of I−1) for the corresponding
optimal fixed designs. We can compute Dud and Aud, where the subscript
ud stands for “up-and-down”; then, the ratios Dud/Dopt and Aopt/Aud will
give us an efficiency measurement of the Bruceton test.

The D- and A-values are of the order of O(n) and O(1/n), respectively,
for a fixed design of size n. Table 3.3 lists the benchmark values of Dopt/n
and nAopt. For the up-and-down test, we divide the interval (−b, b) into k
equal parts (k = 4, 6, · · · , 12) and use ∆ = 2b/k as the step size.

Table 3.3 Benchmark values of certain
distributions

model Dopt/n nAopt

F1 0.05 9.4615
F2 0.1986 4.1527
F3 0.0809 7.6035

Let π∼ = (π0, π1, · · · , πk) be the corresponding stationary distribution of
the Markov chain; then, it can be shown that

πj ∝
∏
i<j

(1 − F (ai))
∏
i>j

F (ai), (3.2)

and the Fisher information matrix reduces to

Iud = n
k∑

j=0

πjIj

:=
k∑

j=0

φ(aj)

Φ(aj)(1 − Φ(aj))

[
1 aj

aj a2
j

]
, (3.3)

for the probit model. Now Iud is a 2 × 2 matrix, and its determinant and
inverse are easy to obtain. It is in this way that we can calculate the values

90



Bruceton Test for Pyrotechnics Sensitivity Analysis

of Dud and Aud for the case in which F = F2. For the optimal A-design, we
simply use k = 3, π∼ = (.5, .25) and a = (−z, z) in (3.3) according to Table
3.2, where z = Φ−1(0.86). For the optimal D-design, we employ Table 3.1
and use (3.3) but with z = Φ−1(.87) and the same π∼ . The calculation for
F1 and F3 is similar and will not be repeated here. Table 3.4 and Table 3.5
list the values of Dud/Dopt and Aud/Aopt for F1, F2 and F3.

Table 3.4 Efficiency of D-optimal design
vs up-and-down

k F1 F2 F3

4 .1894 .4970 .2883
6 .4834 .6827 .6545
8 .6624 .6520 .8568
10 .7337 .6000 .9405
12 .7475 .5500 .9648
14 .7359 .5030 .9613

Table 3.5 Efficiency of A-optimal design
vs up-and-down

k F1 F2 F3

4 .4450 .6978 .3246
6 .7296 .8135 .6645
8 .8445 .7720 .8246
10 .8936 .7172 .8848
12 .9090 .6635 .8996
14 .9065 .6144 .8938

For the probit model, if our main concern is to obtain a minimum volume
confidence ellipsoid for (µ, σ), then the best up-and-down design will use 7
levels (k = 6) whereas for the logistic model, we need k = 12. In all
these cases, the design points are equally spaced by k intervals, essentially
covering the whole range of F .

If, on the other hand, our main concern is to minimize V ar(µ̂)+V ar(σ̂),
then k = 12, 6 and 12 is the right choice for logit, probit, and the double
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exponential cases respectively. In most of these cases (D- and A- optimal
alike), the up-and-down method exhibits an efficiency level of 70% or more
compared to the best design and this is achieved without prior knowledge
of µ, σ. With respect to estimation, we can conclude that the up-and-down
design, 50 years after its invention, still remains efficient in terms of data
collection.

4. c-optimal designs

In this section, we will investigate the efficiency of the up-and-down
method in estimating xp, the 100p%-th quantile of F ((· − µ)/σ), in com-
parison with the c-optimal design for the same xp. As mentioned earlier,
one of the main objectives in obtaining our data set is to estimate the high
quantiles.

We write xp = µ+ zpσ, where zp satisfies F (zp) = p and is the 100p%-th
quantile of the “standard F”. The proper estimate is x̂p = µ̂ + zpσ̂, where
(µ̂, σ̂) is the MLE of (µ, σ). It follows that

V ar(x̂p) = V ar(µ̂) + 2zpCov(µ̂, σ̂) + z2
pV ar(σ̂),

and using the result of Section 3, we can find the Fisher information matrix
of xp for both the fixed design and the up-and-down method. For selected
values of p and k = 4, 6, · · · , 14, Tables 4.1 and 4.2 give the values of V ar(x̂p)
of F1 and F2, respectively.

Table 4.1 V ar(x̂p), with the up-and-down method:
logistic model

k p = .93 .95 .97 .99 .994 .998
4 80.919 102.538 139.833 238.511 293.104 429.505
6 41.944 52.216 69.936 116.821 142.760 207.568
8 36.027 44.744 59.781 99.567 121.578 176.573
10 35.756 44.541 59.696 99.795 121.979 177.406
12 37.201 46.519 62.592 105.122 128.651 187.439
14 39.278 49.286 66.550 112.228 137.498 200.638
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Table 4.2 V ar(x̂p), with the up-and-down method:
probit moedl

k p = .93 .95 .97 .99 .994 .998
4 10.957 12.968 16.139 23.284 26.711 34.232
6 9.481 11.243 14.021 20.281 23.284 29.873
8 10.355 12.376 15.561 22.738 26.181 33.735
10 11.450 13.761 17.404 25.613 29.549 38.189
12 12.634 15.247 19.367 28.650 33.102 42.873
14 13.872 16.795 21.405 31.792 36.773 47.706

A c-optimal design is a fixed design that minimizes V ar(x̂p). For F =
Fi, i = 1, 2, the exact solution of the approximate c-optimal design was ob-
tained by Wu (1988) and can be described as follows. With F = Fi, there
exists a p∗ = p∗i such that for p > p∗i , the c-optimal design is a 2-point design
which assigns probabilities (1−α, α) to (−x0, x0), x0 = Fi(p

∗), respectively.
Table 4.3 lists the values of p∗i (collected from Wu (1988)) and x0 for various
F ’s.

Table 4.3 V ar(x̂p), with the up-and-down method:
double exponential model

k p = .93 .95 .97 .99 .994 .998
4 84.818 115.591 171.581 329.88 421.09 655.16
6 38.498 52.060 76.736 146.50 186.70 289.85
8 29.924 40.301 59.182 112.56 143.32 222.25
10 27.520 37.007 54.269 103.07 131.19 203.35
12 27.003 36.301 53.219 101.05 128.61 199.34
14 27.255 36.652 53.750 102.09 129.94 201.42

For X ∼ Fi, i = 1, 2, it can be shown that E(X) = 0, but E(X2) �= 1,
so that the corresponding F ’s are not, strictly speaking, “normalized”. We
can adjust the F ’s using a scale factor to F ∗

i such that if X∗ ∼ F ∗
i , then

E(X∗2) = 1. The last row in Table 4.4 gives the value of x∗
0 such that

Fi(x
∗
0) = p∗i , i = 1, 2. For various p’s, the corresponding weight that the

c-optimal design assigns to (−x0, x0) is (1−α, α). Table 4.4 lists the values
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of α for different values of p (also complied by Wu (1988)) as well as the
corresponding values of V ar(x̂p).

Table 4.4 Support points for c-optimal designs

F1 F2 F3

p∗i .917 .942 .921
x0 2.402 1.572 1.845
x∗

0 1.324 1.572 1.304

We leave the cell for p = .93 and F = F2 open since for p = .93, the
corresponding c-optimal design for the probit case is a one-point design.

The values of V ar(x̂p) presented in Table 4.4 serve as benchmarks with
which the up-and-down method can be compared when the estimation of
xp is a major concern.

Comparing Table 4.1 with the first row of Table 4.2, we can see that
for the logit case, the up-and-down method behaves poorly compared to
the corresponding c-optimal design. The main reason is, of course, that the
up-and-down method was designed mostly with estimation of the median
in mind. In contrast with the A- or D-optimal case, our result shows that
the up-and-down method is far from being optimal when estimation of xp

is employed. The same conclusion is also drawn when the probit is com-
pared with its respective c-optimal designs. For the highest quantile x.998

considered by Wu (1988), the best choices for the up-and-down method are
k = 8, 6 and 12 for F1, F2 and F3, respectively. The relative efficiency ob-
tained for F1 and F2 are 49.8% and 45.6% respectively. It is quite clear
that, in general, the up-and-down method is rather inefficient in terms of
data collection when the estimation of high quantiles is our main concern.

5. Goodness of fit issues

The likelihood function of any fixed design as well as the likelihood
function for the up-and-down method depends on the unknown distribution
function F through the points in a = (a0, a1, · · · , ak) only. This implies that
if F and G are two distinct cdf’s that agree on the points of a, then there
is no way, other than by simple pure guessing, for the statistician to check
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whether the underlying model is F or G. This non-identifiability problem
exists and cannot be fixed unless we have n → ∞ and at the same time, let
the bandwidth ∆ go to 0.

In this section, we will keep ∆ fixed and study the goodness of fit issue
for the up-and-down method by looking at the points of a only. We take
F̂ (aj) = rj/nj as the estimator for F (aj) and study the behavior of

MSE =

∫ ∑
j

[
rj

nj
− F (x)

]2

dx, (5.1)

and compare it with a similar estimator for the best fixed design. We note
here that since the likelihood functions are of the same form for either the
fixed design or the up-and-down method, F̂ (aj) is the MLE of F (aj) in
either case although their statistical behaviors are different. To keep things
simple, we adopt the same k equally-spaced intervals.

For the fixed design case, since nj is fixed and rj is binomial, it can be
shown that the MSE can be expressed as the sum of a variance term and
bias squared:

MSE =
∑

j

∆

nj
F (aj)(1 − F (aj)) +

∑
j

∫ aj+1

aj

[F (aj) − F (x)]2dx. (5.2)

It is clear that except by letting ∆ → 0, there is nothing we can do to
reduce the bias term. But for the variance, using a Lagrange multiplier, it
can be shown that the best choice is

nj ∝
√

F (aj)(1 − F (aj))

subject to the condition that
∑

j nj = n.

Using this optimal fixed design, we have

MSE ≥ ∆

n

[∑
j

√
F (aj)(1 − F (aj))

]2

+
∑

j

∫ aj+1

aj

[F (aj) − F (x)]2dx

:= V aropt + Bias2. (5.3)
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We can see that V aropt = O(1/n) and

Bias2 .
=

∆3

3

∑
j

f 3(aj),

where f is the pdf of F .
For the up-and-down method, when n is large,

MSE ≥ ∆

n

[∑
j

F (aj)(1 − F (aj))

πj

]2

+
∑

j

∫ aj+1

aj

[F (aj) − F (x)]2dx

:= V arud + Bias2. (5.4)

In Tables 5.1–5.3, we list values for V aropt, V arud for the probit, the
logit, and the double exponential cases and various values of k.

Table 5.1 MSE: optimal fixed design
vs up-and-down: logit

k nVopt nVud bias2 ∆
4 2.186 2.834 103.725 5.18
6 2.840 3.473 43.770 3.45
8 3.716 25.085 23.791 2.59
10 4.638 1072.072 14.873 2.07
12 5.569 78965.15 10.159 1.73

Table 5.2 MSE: optimal fixed design
vs up-and-down: probit

k nVopt nVud bias2 ∆
4 1.274 1.378 .4400 2
6 1.916 2.059 .1684 1.33
8 2.564 5.6295 .0940 1
10 3.211 49.301 .060 .8
12 3.858 1010.31 .0417 .6667
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Table 5.3 MSE: optimal fixed design
vs up-and-down: double exponential

k nVopt nVud bias2 ∆
4 1.891 2.578 84.39 4.83
6 2.244 3.133 35.79 3.22
8 2.788 39.154 19.554 2.416
10 3.397 2596.03 12.265 1.993
12 4.032 268590.7 8.394 1.161

For the up-and-down method, π0 = πk → 0 as k → ∞, and this is
reflected in the estimation of F (aj), j = 0, · · · , k. This means that very
few resources are allocated to estimate the tail part of F if k is large. Its
effect can be seen from Tables 5.1-5.2 for the nVud entries when k is more
than 8. In practical terms, while the up-and-down method can provide
some clues about the goodness of fit of certain models, this analysis can
only be trusted, roughly speaking, for the central part of the distribution
F . From these tables, it is clear that k = 6 to 8 is about optimal, and that
data points can be used to construct a proper QQ-plot. A formal goodness
of fit test can be suggested based on the up-and-down data, but its null
distribution is difficult to derive. In conclusion, we suggest a simple QQ-
plot of F̂ (aj) against F (aj), which should provide us with some clues about
the underlying model. Since it is fair to say that the up-and-down method
does not include the goodness of fit feature in its original design, we should
be satisfied with the limited side benefit of a rough QQ-plot. Although not
powerful enough, in fact not powerful at all, we can at least examine the
shape of F at points F (aj), j = 0, 1, · · · , k for k = 6 to 8. None of the
optimal designs we have discussed so far enables us to do the same.

To illustrate, let us consider the data set presented in Table 5.4, which
consists of n = 240 observations taken from a Bruceton test conducted by
the 4-th Quality Assurance Group of the Chung-Shan Institute of Science
and Technology.

In Table 5.5 below, we calculate the MLE for F (aj), which is listed as

F̂j(aj). Note that the MLE of F is not even monotonically non-decreasing.
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Table 5.4 Data from a Bruceton test

0.51 0.49 0.47 0.45 0.47 0.45 0.43 0.41 0.39 0.41
0.43 0.45 0.47 0.45 0.47 0.49 0.47 0.49 0.51 0.53
0.51 0.53 0.51 0.49 0.51 0.49 0.47 0.49 0.47 0.45
0.43 0.45 0.47 0.49 0.51 0.53 0.51 0.53 0.51 0.49
0.51 0.49 0.47 0.45 0.43 0.45 0.43 0.45 0.47 0.45
0.43 0.45 0.47 0.45 0.47 0.45 0.43 0.41 0.43 0.41
0.43 0.45 0.43 0.45 0.43 0.41 0.43 0.45 0.47 0.45
0.43 0.45 0.43 0.41 0.39 0.41 0.43 0.45 0.43 0.41
0.39 0.41 0.39 0.41 0.39 0.37 0.39 0.37 0.35 0.37
0.39 0.41 0.43 0.45 0.47 0.49 0.47 0.49 0.47 0.45
0.47 0.49 0.51 0.49 0.51 0.53 0.51 0.49 0.47 0.49
0.51 0.53 0.51 0.49 0.51 0.49 0.51 0.49 0.51 0.53
0.55 0.57 0.59 0.57 0.55 0.53 0.51 0.49 0.51 0.49
0.51 0.49 0.47 0.49 0.47 0.49 0.51 0.53 0.51 0.49
0.47 0.49 0.51 0.53 0.51 0.53 0.51 0.53 0.51 0.49
0.51 0.49 0.51 0.53 0.51 0.49 0.51 0.49 0.51 0.49
0.51 0.53 0.51 0.49 0.51 0.49 0.51 0.49 0.51 0.49
0.51 0.49 0.51 0.53 0.51 0.49 0.47 0.49 0.51 0.53
0.51 0.53 0.55 0.53 0.51 0.53 0.51 0.53 0.51 0.53
0.51 0.49 0.47 0.49 0.51 0.53 0.51 0.53 0.51 0.53
0.51 0.53 0.51 0.53 0.51 0.53 0.51 0.49 0.51 0.53
0.51 0.49 0.47 0.45 0.47 0.49 0.47 0.45 0.43 0.45
0.47 0.45 0.43 0.41 0.43 0.41 0.39 0.41 0.39 0.41
0.43 0.45 0.47 0.45 0.47 0.45 0.47 0.45 0.47 0.49

We employed the “smooth” function in S-plus of F̂ (aj) and obtained
the values listed in last row of Table 5.4. These smoothed values are now
monotonic and the corresponding QQ-plot against the normal distribution
(not shown here) appeared to be a straight line.

Does this imply that we can safely use the probit as the proper model?
Hardly. Take, for example, the first difference in the last row of Table
5.4; we should, in principle, see an estimate of the corresponding density
function. But this one is U-shaped, instead of being bell-shaped, as one
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Table 5.5 Estimation of F (aj)

j 0 1 2 3 4 5 6 7 8 9 10 11 12

nj 1 3 9 15 21 29 31 43 54 28 3 2 1
rj 0 1 2 7 8 13 16 16 28 26 2 1 1

F̂ (aj) 0 .33 .22 .47 .38 .45 .52 .37 .52 .93 .67 .5 1
smoothed 0 .10 .19 .26 .31 .33 .37 .41 .47 .54 .66 .83 1

would wish. Curve fitting with the quantal response data is an extremely
difficult problem, and using data from a Bruceton test does not help either.
Even for the case of a fixed design, a very large data set is needed to carry
out a reasonable goodness-of-fit study. The only decent effort we know of
is the study done by of Xie, Ren and Wang (1987), where n = 8440 and a
logistic curve was properly fitted with α = 0.05.

6. Conclusion

Although the up-and-down test is a classical sequential procedure, it is
still very much in use in the Pyrotechnics Sensitivity Analysis. Applications
to biological statistics are in Storer (1989), Whitehead and Brunier (1995)
and Smith, Dutton and Smith (1996). In this paper, we have investigated
the behavior of the up-and-down design from the point of view of data
collection and data analysis. For the estimation of (µ, σ), it has been shown
that a properly selected up-and-down design is quite informative, with an
efficiency level of 70% or more for most of the cases we have considered. For
the estimation of xp, however, the best selected up-and-down method is only
about 50% effective as compared with the corresponding c-optimal design.
However, although not particularly useful, the up-and-down method does
judge the proper selection of underlying model. In any case, all the quantal
response models are rather poor in terms goodness of fit.
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