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Abstract: The main interest of the cytogenetic dosimetry is the
prevision of an unknown radiation dosage based in cytogenetic anal-
ysis. In this paper the dosimetry problem is formulated as a linear
calibration problem for binary response data. Two approaches are
considered for inference on the quantity of interest, which is expressed
as a calibration parameter in a discrete response variable situation.
One is based on the maximum likelihood approach, which depends on
large sample results and the second one is based on a Markov chain
Monte Carlo (MCMC) simulation approach using BUGS. Applica-
tion to a data set obtained from blood cultures exposed in vitro to
Cobalt 60 (.60Co) at the Energetic Nuclear Research Center (IPEN
- Brasil) is considered.
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1. Introduction

The calibration problem can be briefly described as follows. There are
two related responses x and y, where x represents the true value of the
characteristic of interest and y a variable related to it. The statistical con-
trolled calibration problem considers that the variables x and y are related
through a fuctional form as in the usual regression problem. However, the
main interest center on estimation of an unknown value of x. At a first
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stage a collection of values x1, x2, . . . , xn are fixed and corresponding values
y1, y2, . . . , yn are observed. At a second stage, k replications of the response
are observed, y01, y02, . . . , y0k, are observed, corresponding at an unknown
value x0. The interest is on estimating x0 given (xi, yi), i = 1, 2, . . . , n and
y0j , j = 1, 2, . . . , k. The special case where y and x are linearly related and y
is normally distributed has been extensively considered. A good exposition
of this area is presented in Osborne (1991) and Brown (1993). Extensions
for Student-t models and more generally, elliptical linear models are pre-
sented in Branco et al. (1998, 2000).

In this paper, it is considered that the response variable y is binomial,
with parameter p. In this case, a function of p is modeled as a linear function
of the independent variable x.

The cytogenetic dosimetry is concerned with the relationship between
dosage as some form of exposure to radiation and response, as some measure
of genetic aberration. The exposure is typically very difficult to measure
and the cytogenetic analysis can be helpful to make inference about the
unknown exposure dosage. The cytogenetic dosimetry experiment in vitro
considers samples of cell cultures exposure to a range of doses levels of a
given agent. At each dose level some measure of cell disability is recorded.
In the application developed at section 3, the agent is gamma radiation and
cell disability is the presence of micronuclei (MN) at the cells. We recall
that Cobalt 60 (.60Co) is a heavy radioactive isope of the mass number
60 produced in nuclear reactors and used as a source of gamma rays (as
for radiotherapy). Therefore, k1, k2, . . . , kn cells are exposed to fixed dose
levels d1, d2, . . . , dn, respectively. The response y1, y2, . . . , yn are the number
of cells with MN, for each dose level. The interest centers on estimating the
unknown dose, d0, to which k0 new cells were exposed, based in the number
of cells with MN, y0, and a dose-response model. See Madruga et al. (1996)
for details on the data set.

The model used for describing the dose-response relationship considered
in the paper is described in Finney (1971), where it is suggested the use
of the logit and probit models to study the problem. Two components
are considered: the stimuli (radiation, for example) and the response ob-
served in a subject (blood cells, for example). The denomination dose is
used to describe the intensity of the stimuli at which the subject is submit-
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ted. Tolerance, denoted by T , is the value used to specify the limit of the
stimuli, after which a response is expected (cell deformation, for example).
Moreover, tolerance is a population characteristic varying with the popu-
lation units. Given a dose level d, a response is expected in subjects with
T ≤ d. Thus, the expected proportion of subjects with positive response
is p = P [T ≤ d] =

∫ d

0
g(t)dt, where g(t) is the probability density function

associated with T . Since T is a positive random variable, the transforma-
tion X = log T may be considered, taking values in � and for which we
consider p = P [X ≤ x] =

∫ x

−∞ f(t)dt, x ∈ �. If f is the normal density
then the probit model follows. To establish the calibration problem, let y
be the positive response among n subjects submitted to a value x of the
independent variable. Considering y|x ∼ Bin(k, p) in the probit model, x
and y are related through the nonlinear model

p = P [X ≤ x] = Φ

(
x − µ

σ

)

where Φ(z) = P [Z ≤ z], with Z ∼ N(0, 1). Then, Φ−1(p) = β1 + β2x,
with β1 = −µ/σ and β2 = 1/σ, β1 ∈ � and β2 ∈ �+. Thus, a linear
transformation is obtained relating x and a function of p, Φ−1(p). In the
logistic case, the transformation obtained is

log
p

1 − p
= β1 + β2x.

Estimates obtained by using the logistic or the probit model are similar, ex-
cept for small (close to zero) or large (close to one) values of p, as considered,
for example, in Lloyd (1999). Estimates for β1 and β2 can be obtained by
using the maximum likelihood approach, which are computed by using nu-
merical techniques. It is available in any statistical software. The Bayesian
methodology for analyzing logistic regression models abound in the litera-
ture. See, for example, Zellner and Rossi (1984), Albert and Chib (1998)
and Bedrick et al. (1997). The above references mainly address the issue
of Bayesian inference on the regression coefficients. In this paper, the main
interest is focused on the calibration problem which seems not to have been
considered in the literature using either classical or Bayesian approaches.
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As it happens in the case where interest centers on the regression coeffi-
cients, there is no analytical or closed form posteriors for the calibration
problem.

Section 2 presents classical (based on the maximum likelihood approach)
and Bayesian (based on the MCMC methodology) solutions to the calibra-
tion problem under the binomial model for logit and probit link functions.
The problem of model comparisons is also investigated. An asymptotic ap-
proximation is considered for the posterior distribution for estimating x.
Finally in Section 3 we present an application to a data set reported in
Madruga (1996) on the number of blood cells affected by .60Co radiation.

2. The binomial calibration model

In this section, we consider the binomial calibration model,

yi|xi, β1, β2
ind∼ Bin(ki, F (β1 + β2xi)), (2.1)

i = 0, 1, . . . , n, where β1, β2 and x0 are unknown parameters and F is a
(known) continue distribution function, which has a continue density func-
tion f . Note that if F is the distribution function of the standard normal
distribution, then the probit model follows and if F is the distribution func-
tion of a logistic distribution, then the logit model follows. It follows from
(2.1) that the likelihood function can be written as

L(β1, β2, x0) =
n∏

i=0

(
ki

yi

)
[F (β1 + β2xi)]

yi[1 − F (β1 + β2xi)]
ki−yi. (2.2)

Thus, it is not simple to deal with the likelihood (2.2) in the sense of ob-
taining explicit expressions for the maximum likelihood estimator (MLE)
and for the posterior distribution of x0. To overcome this difficulty, two
different approximations are considered. One is based on the asymptotic
distribution of the MLE and the other approximation is based on the Markov
chain Monte Carlo approach to posterior approximation, by using BUGS
(Spiegelhater et al. (1995)).

2.1. The maximum likelihood approach
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It is well known that under certain regularity conditions the distribution
of the MLE of (β1, β2, x0) can be approximated (see Lehmann (1999)) by
a normal distribution with mean (β1, β2, x0) and the covariance matrix as
the inverse of the Fisher information matrix evaluated at the MLE. In the
following we discuss the derivation of the maximum likelihood estimators
for the binomial calibration problem discussed above. As such, considering
the reparametrization

(β1, β2, x0) → (β1, β2, p0),

where
p0 = F (β1 + β2x0),

and taking the logarithm of the likelihood function (2.2), we obtain the
log-likelihood given by

l(β1, β2, p0) ∝ y0 log p0 + (k0 − y0) log(1 − p0) +

n∑
i=1

yi log[F (β1 + β2xi)]

+
n∑

i=1

(ki − yi) log[1 − F (β1 + β2xi)] (2.3)

Let p̂0 and (β̂1, β̂2) be the MLE of p0 and (β1, β2), respectively. Thus, from
(2.3) it follows that p̂0 = y0/k0 and (β̂1, β̂2) is a function of the calibration
data (ki, xi, yi), i = 1, . . . , n. Note that p̂0 and (β̂1, β̂2) are independent. To
obtain the MLE x̂0 of x0, we note that

x0 =
F−1(p0) − β1

β2
(2.4)

so that by using the invariance property of the MLE, it follows that

x̂0 =
F−1(y0/k0) − β̂1

β̂2

. (2.5)

In particular,

i) x̂0 = (Φ(y0/k0) − β̂1)/β̂2, for the probit model, and
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ii) x̂0 = (log{y0/(k0 − y0)} − β̂1)/β̂2, for the logit model.

As mentioned previously, it is known from the likelihood theory for gen-
eralized linear models (see Lloyd (1999)) that the MLE of (β1, β2) can not be
obtained explicitly, and numerical algorithms such as the Newton-Raphson
must be used to compute them. Thus, from the MLE of (β1, β2), the MLE
of x0 can be computed by using (2.5) and S-Plus subroutines for logit and
probit link functions, for example.

The asymptotic variance of the MLE x̂0 is considered next. Let

IIIN(θθθ) =
((

E
{ ∂l

∂θi

∂l

∂θj

}))
,

where θθθ = (β1, β2, p0) and N =
∑n

i=0 ki, be the Fisher information ma-
trix corresponding to the log-likelihood function (2.3). Thus, after some
algebraic manipulations, it can be shown that

(2.6) IN(θθθ) =




n∑
i=1

kiwi

n∑
i=1

kiwixi 0

n∑
i=1

kiwixi

n∑
i=1

kiwix
2
i 0

0 0 k0

p0(1−p0)


 ,

where

wi =
f 2(β1 + β2xi)

F (β1 + β2xi)[1 − F (β1 + β2xi)]
,

i = 0, 1, . . . , n and f is the density function corresponding to the distribu-
tion function F . Note that w(t) = F (t)(1 − F (t)), for the logistic model.
Assuming that ki/N → λi > 0, as N → ∞, with

∑n
i=0 λi = 1, if follows

that
1

N
IN(θθθ) → I(θθθ),

as N → ∞, where I(θθθ) is as in (2.6) with ki replaced by λi, i = 0, 1, . . . , n.

Thus, letting θ̂θθ be the MLE of θθθ, it follows for large N that
√

N(θ̂θθ − θθθ)
is approximately normally distributed with mean vector 0 and covariance
matrix I−1(θθθ) (see Lehmann (1999)), that is,

√
N(θ̂θθ − θθθ) ∼ AN(0, I−1(θθθ)).

70



Binomial Cytogenetic Dosimetry Problem

Consequently, since x0 = x0(θθθ) (see (2.4)), we have that

√
N(x̂0 − x0) ∼ AN(0, ∆(θθθ)),

where

∆(θθθ) = (
∂x0

∂θθθ
)I−1(θθθ)(

∂x0

∂θθθ
)′,

and from (2.4),

(
∂x0

∂θθθ
) =

(
− 1

β2
,−g(p0) − β1

β2
2

,
g′(p0)

β2

)
,

with g(u) = F−1(u), the link function, so that

g′(u) =
dg(u)

du
=

1

f(g(u))
.

Thus, after some algebraic manipulations we obtain that

∆(θθθ) =
β2

2A2 − 2β2(g(p0) − β1)A1 + (g(p0) − β1)
2A0

β4
2A0A1 − A2

2

+
p0(1 − p0)[g

′(p0)]
2

λ0β
2
2

where

A0 =

n∑
i=1

λiwi, A1 =

n∑
i=1

λiwixi, A2 =

n∑
i=1

λiwix
2
i

By the assumption that p0 = F (β1+β2x0), it follows that g(p0) = F−1(p0) =
β1 + β2x0 and g′(p0) = 1/f(g(p0)) = 1/f(β1 + β2x0). Thus, in terms of
θθθ = (β1, β2, x0) the asymptotic variance of

√
N(x̂0 − x0) is given by

∆(θθθ) =
1

β2
2

{∑n
i=1 λiwix

2
i − 2x0

∑n
i=1 λiwixi + x2

0

∑n
i=1 λiwi

(
∑n

i=1 λiwi)(
∑n

i=1 λiwix2
i ) − (

∑n
i=1 λiwixi)2

+
1

λ0w0

}
.

Notice that the above asymptotic variance require f to be nonnull on �.
Further, for large N , λi ≈ ki/N , i = 0, . . . , n, so that ∆(θθθ) can be estimated

consistently by ∆(θ̂θθ).
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2.2. The Bayesian approach

As mentioned before, it is not possible to obtain explicit expressions for
the posterior distribution of x0. In fact, from (2.1), it follows that

π(x0|y0, y1, . . . , yn) ∝
∫ ∫ n∏

i=0

[F (β1 + β2xi)]
yi[1 − F (β1 + β2xi)]

ki−yi

× π(β1, β2|x0)dβ1dβ2.

The last integral is intractable even for logit and probit models or for the
case where noninformative or reference priors are considered. So, to over-
come such difficulties we consider the MCMC methodology for approximat-
ing to the posterior distribution. As is well known, the main idea behind
MCMC is to build up a Markovian process whose stationary distribution
(with density f) is the one of interest. Among the MCMC methods, the
most popular approach is the Gibbs sampler, introduced in Bayesian infer-
ence by Gemman and Gemman (1984) while studying problems related to
image processing. The books by Robert and Casella (1999) and Chen et al.
(2000) contain a comprehensive review of these methods with applications
for logistic regression models.

In the case of the binomial calibration model with probit or logit links,
the likelihoods are logconcave (Wedderburn (1976)). So the adaptive re-
jection algorithm (Gilks and Wild (1992)) can be used and implemented
by using the software BUGS developed by Spiegelhater et al. (1995). It
is a free software and can be obtained from the world wide web page
http : ||www.mrcbsu.com.ac.uk|bugs. We specify normal priors for β1 and
β2 with large variances (flat prior) and x0 ∼ N(m0, v0). This will guarantee
a proper posterior distribution. For a more recent discussion about this see,
for example, Gelfand and Sahu (1999).

Remark 2.1. Another alternative to approximating the posterior distri-
bution is to consider the normal approximation (see Section 2.1). Under
general regularity conditions (Chen et al. (2000)), the posterior distribu-
tion of x0, can be approximated for large N by the normal distribution

N
(
x̂0,

∆(θ̂θθ)

N

)
,
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where θ̂θθ = (β̂1, β̂2, x̂0) is the MLE of θθθ = (β1, β2, x0) and ∆(θθθ) is the asymp-
totic variance of

√
N(x̂0−x0) (see Section 2.1). Thus, the credibility interval

for x0 coincides with the classical interval that follows by using the normal
approximation to the distribution of the MLE x̂0.

Another aspect of interest is to decide which of the two link functions
is more appropriate for a particular data set. The binomial calibration
model with the logistic (probit) link function is denoted by M1(M2). The
Bayes factor can be computed with the aim of deciding for one of the two
models. Let pi(y|θθθi) and πi(θθθi), respectively, the distribution of the data
y = (y1, . . . , yn)

′ and the prior distribution for the parameter vector θθθi under
model Mi, i = 1, 2. Thus, the Bayes factor for model M2 against model M1

is given by

B21(y) =
m2(y)

m1(y)
,

where mi(y) is the marginal (predictive) distribution of y under Mi, i =
1, 2. The predictive distribution can be approximated by using Monte Carlo
methods (see, for example, Bedrick et al. (1996) and Carlin and Chib
(1995)). Because the Bayes factor can be extremely sensitive to the specified
prior π(θθθi) (see, for example, O’Hagan (1995) and de Santi and Spezaferri
(1997)), several authors have proposed the use of robust Bayes factors and
Partial Bayes factors. One of them is the pseudo Bayes factor which is easy
to compute and is implemented in the program BUGS. It was introduced
in Geisser and Eddy (1979) (see also Gelfand et al. (1992) and Gelfand and
Dey (1994)) and it is based on the conditional predictive densities p(yr|y(r)),
where y(r) = (y1, . . . , yr−1, yr+1, . . . , yn).

The pseudo-Bayes factor for model M1 against model M2 is

PSFB12 =

∏n
r=1 p1(yr|y(r))∏n
r=1 p2(yr|y(r))

.

Using Monte Carlo methods and the fact that

p(yr|y(r)) =

∫
p(yr|θθθ,y(r))π(θθθ|y(r))dθθθ,

we can write (see Gelfand and Dey (1994))
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p(yr|y(r)) =

(∫
1

p(yr|y(r), θθθ)
π(θθθ|y)dθθθ

)−1

,

which can be estimated by

p̂(yr|y(r)) = s

(
s∑

i=1

1

p(yr|y(r), θθθ
(i))

)−1

,

where s is the size of the sample generated by using BUGS from the posterior
of θθθ.

In our case, yr is independent of y(r) given θθθ, so that

p̂(yr|y(r)) = s

(
s∑

i=1

1

p(yr|θθθ(i))

)−1

with

p(yr|θθθ(i)) =

(
kr

yr

)[
F (α(i) + β(i)xr)

]yr [
1 − F (α(i) + β(i)xr)

]kr−yr
,

i = 1, . . . , s and r = 1, . . . , n. The estimates cr(l) = p̂l(yr|y(r)) can be
plotted against r for l = 1, 2, which together with c(l) =

∏n
r=1 cr(l) will give

indication of which model to select.

3. Analysis of cytogenetic data

The data considered in the following is part of the data analyzed in
Madruga et al. (1996). The experiment was conducted at the São Paulo
Nuclear Institute. Presence of micronucley (MN) indicates cell aberration.
We consider here only the presence (or absence) of the MN. Table 3.1
presents the frequency of cells with MN in blood samples from two healthy
older subjects, which were exposed to gamma radiation (.60Co) with doses
20, 50, 100, 200, 300, 400 and 500.

74



Binomial Cytogenetic Dosimetry Problem

Table 3.1 Frequency of MN for binucleated cells
from healthy older subjects

Doses 20 50 100 200 300 400 500

yi 49 70 146 243 268 363 470

ki 1038 1003 1085 1037 951 1105 1241

We consider the transformation xi = log(di), i = 1, . . . , 8, where di

represents the i-th dose value, which is previously fixed. For each one of
the groups a model is specified by considering

yi|xi ∼ B(ki, pi), with pi = F (β1 + β2xi),

i = 1, . . . , 8, where yi is the frequency of MN cells associated with the i-th
dose value, ki is the number of cells exposed to dose di, pi is the probability
of a cell exposed to the i-th dose value will present micronucley and F is a
distribution function.

Table 3.2 Adjusted values for logit, probit and Student-t models

Dose probit logit Student-t
di p̂ - p̃ p̂ - p̃ p̂ - p̃
20 0.011114 0.006919 0.007790
50 -0.013870 -0.012522 -0.012308

100 -0.008794 -0.002845 -0.003908
200 0.007646 0.0013799 0.011432
300 -0.004149 -0.001813 -0.004420
400 -0.003539 -0.005934 -0.008308
500 0.009051 0.001959 0.000013
mse 0.0000804 0.0000637 0.0000638

Using the maximum likelihood approach, three models are considered:
the probit, the logit and the Student-t with ν = 8 degree of freedom. The
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three models are compared by using the mean squared error (MSE) com-
puted using cross validation. The results are presented in the Table 3.2.
Note, from the table, that the results for the logit and Student-t with 8
degrees of freedom links are very close which is not unexpected as the lo-
gistic distribution is well approximated by a Student-t distribution with 8
degrees of freedom (Mudholkar and George (1978)). We can see that the
probit model performs worst according to the MSE criterion.

Table 3.3 presents maximum likelihood estimators and large sample con-
fidence intervals (C.I.) for d0 using the Student-t model.

Table 3.3 MLE and 95% asymptotic C.I. for d0 (Student-t link)

Dose MLE asymptotic C.I.

20 27.8563 (18.6603,41.5841)
50 36.7177 (25.4559,52.9618)

100 95.2111 (74.8464,121.1167)
200 220.3152 (182.4256,206.0745)
300 291.5146 (241.3704,352.0761)
400 377.3032 (315.6008,451.0689)
500 504.1587 (417.1400,609.3301)

The graphical results presented in Figure 3.1 relate the value of di (hor-
izontal axis) with the value of pi (vertical axis). As we can see the linear
fitting for the logit, probit or Student-t links are quite reasonable. Madruga
et al. (1996) considered a nonlinear fit at logit. Though, they obtain a little
better fitting, they have difficulty to obtain the real credibility interval for
the unknown dose d0.

We recall that the main interest here is not fitting the model but the
provision of a new dose associated with a new individual. Madruga et al.
(1996) consider a new observed value, that is y0 = 1117 cells with MN in
a total of 2427 evaluated cells. In this case we do not know the value of
the dose the cells are exposed to. Relative to Table 3.1, a dose value larger
than 500 is suggested, yielding an extrapolation problem.
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Figure 3.1 Graphics (pi versus di)

Table 3.4 MLE, posterior mean and 95% C.I. for d0, when y0 = 1117

Link MLE Bayesian

Logit 757.21 761.4
(649.7,882.5) (654.7,891.9)

Probit 834.2 840.0
(702.1,991.2) (708.6,1001.0)

Student-t 754.6 —
(646.6, 880.7) —

Table 3.4 presents classical and Bayesian point and interval estimates
based on the probit and logit link functions. The Bayesian computation
is based on normal prior specification for x0, with mean m0 = x̄ and vari-
ance v0 = 10, where x̄ is the average of the fixed value x′

is. Also normal
prior specifications for β1 and β2 are considered with a large variances (103)
(flat prioris). The Gibbs samples were generated by using a program imple-
mented in the software WinBUGS (see Spiegehalter et al. (1995)) with an

77



Márcia D. Branco et al.

•

•

•

•

•

•

•

Conditional Predictive densities

doses

de
ns

iti
es

100 200 300 400 500

0.
0

0.
02

0.
04

0.
06

0.
08

Figure 3.2 Conditional predictive densities for the
logit (dot) and probit (triangle) link

average time of 46 seconds used to generate a sample of size 90,000 disre-
garding the 10,000 initial iterations. Convergence was verified by using the
Geweke’s statistics (Geweke (1992)) and also by looking at the graphics of
the generated values.

The classical and Bayesian confidence intervals are somewhat close in
length for probit and logit links. However, the estimates obtained with the
probit link is larger than the estimates obtained with the logit link. The
Student-t link estimates follow the logit link estimates.

Using BUGS, we also computed the conditional predictive densities. As
we can see in the Figure 3.2, the logit link performs better than the probit
link for the most part of the time. However there is not a uniform best
model.

4. Conclusion

The present paper considers Bayesian and classical approaches for the
calibration problem with binomial response under logit and probit links.
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A new kind of link is proposed, the Student-t link. The three models are
considered with classical, or asymptotic Bayesian solutions. The application
in Section 3 suggests us that, results using Student-t link (ν = 8) are close
to the results by using logit link. In the MCMC Bayesian solution, it is not
straightforward to implement the Student-t model. However, that can be
done by introducing latent variables as considered in Branco (1997). The
Bayesian approach is very helpful for model comparison as we can see from
Figure 3.2. As remarked before, here we consider the response variable
as binomial, but in the original data set the response is multinomial. It
is under current investigation using the multinomial calibration model and
will be reported in future work. Some results in that direction are presented
in Branco (1997) and Kottas, Branco and Gelfand (2001). The later one
presents a Bayesian nonparametric approach for the multinomial calibration
problem. However, in both cases easiness of computational implementation
using BUGS is lost and more elaborated programs are required.
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Márcia D. Branco et al.

Brown, P. J. (1993). Measurement, Regression and Calibration. Oxford Univer-
sity Press.

Carlin, B. P. and Chib, S. (1995). Bayesia model choice via Markov Chain Monte
Carlo Methods. Journal of the Royal Statistical Society B 57, 473-484.

Chen, C. F. (1985). On asymptotic normality of limiting density functions with
bayesian implications. Journal of the Royal Statistical Society B 97, 540-
546.

Chen, M. H. , Shao, A. and Ibrahim, J. (2000). Monte Carlo Methos in Bayesian
Computation. Springer-Verlag.

Finney, D. (1971). Probit Analysis. Cambridge University Press.

Geisser, S and Eddy, W. F. (1979). A predictive approach to model selection.
Journal of the American Statistical Association 74, 153-160.

Gelfand, A, Dey, D. K. and Chang, H. (1992). Model determinating using
predictive distributions with implementation via sampling-based methods
(with discussion in Bayesian Satistics 1992 4, Eds. J. M. Bernardo, J.
O. Berger, A. P. Dawid and A. F. M. Smith). Oxford: Oxford University
Press, 147-167.

Gelfand, A and Dey, D. (1994). Bayesian model choice: asymptotic and exact
calculations. Journal of the Royal Statistical Society 56 B, 501-514.

Gelfand, A and Sahu, S. (1999). Gibbs sampling identifiability and improper
priors in generalized linear mixed models. Journal of the American Statis-
tical Association 94, 247-253.

Geman, S and Geman, D. (1984). Stochastic relaxation Gibbs distributions,
and the bayesian restoration of images. IEEE PAMI-6, 721-741.

Geweke, J. (1992). Evaluating the accuracy of sampling-based approaches to
calculating posterior moments. In Bayesian Statistics 4, 1992 Eds.J. M.
Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith. Clarendon Press,
Oxford, UK.

Gilks, W. R. and Wild, P. (1992). Adaptative rejection sampling for Gibbs
sampling. Applied Satistics 41, 337-348.

80



Binomial Cytogenetic Dosimetry Problem

Kottas, A, Branco, M. D. and Gelfand, A. E. (2001). A nonparametric Bayesian
modelling approaches for cytogenetic dosimetry. Technical Report RT-
MAE 2001-01.

Lehmann, E. L. (1999). Elements of Large-Sample Theory. Springer.

Lloyd, C. J. (1999). Statistical Analysis of Categorical Data. Wiley.

Madruga, M. R., Ochi-Lohmann, T. H., Okazaki, K., Pereira, C. A. de B and
Rabello-Gay, M. N. (1996). Bayesian Dosimetry II: Credibility Intervals
for Radiation Dose. Environmetrics 7, 325-331.

Mudholkar, G. S. and George, E. O. (1978). A remark on the shape of the
logistic distribution. Biometrika 65, 667-668.

O’Hagan, A. (1995). Fractional Bayes factors for model comparison (with dis-
cussion). Journal of the Royal Statistical Society, B 57, 99-138.

Osborne, C. (1991). Statistical calibration: a review. Internat. Statist. Review
59, 309-336.

Robert, C. P. and Casella, G. (1999).Monte Carlo Statistical Methods. Springer
Texts in Statistics.

De Santis, F. and Spezzaferri, F. (1997). Alternative Bayes factor for model
selection. Canadian Journal of Statistics 25 (4), 503-515.

Spiegelhater, D. J., Thomas, A., Best, N. and Gilks, W. R. (1995). BUGS.
Bayesian inference using Gibbs sampling. Version 0.5. Medical research
Council, Biostatistic Unit, Cambridge, U.K.

Wedderburn, R. W. M. (1976). On the existence and uniqueness of the maxi-
mum likelihood estimates for certain generalized linear models. Biometrika
63, 27-32.

Zellner, A. and Rossi, P. (1984). Bayesian analysis of dichotomous quantal
response models. Journal of Econometrics 25, 365- 393.

Received November 3, 2001; accepted March 27, 2002

81
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