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Abstract: In April 1997 the US state of Michigan implemented a
graduated licensing program for novice drivers under the age of 18
that ensures that they gain experience and maturity under condi-
tions of low risk before progressing to more risky driving situations.
Since there is no reasonable control group of young Michigan drivers
not exposed to graduated licensing during this period, the extent to
which observed declines in crash rates can be attributed to gradu-
ated licensing versus other unobserved changes in crash reporting or
driving behavior is important. We assemble a Bayesian changepoint
model to assess the probability that changes in crash rate trends
among 16-year Michigan drivers can be plausibly linked to the intro-
duction of graduated licensing and, if it can, to make inference about
graduated driver licensing effects that take into account the uncer-
tainty in when these effects began and ended, and whether or not
a “rebound” in crash rates occurs afterward. We show that, while
there is a moderate degree of sensitivity to the choice of prior distri-
butions for changepoints and rate slopes in determining the number
of changepoints present in the crash trends, inference about whether
GDL effects are present and their degree are relatively insensitive to
prior choice. This analysis suggests that the decline in crash rates
among 16-year old Michigan drivers observed between 1996 and 1998
can be reasonably attributed to graduated licensing for all crashes
combined, but that observed changes in single-vehicle and especially
nighttime crash rates might have been part of longer-term trends
among this age group.

Key words: Linear splines, model averaging, model selection, prior
sensitivity.
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1. Introduction

On April 1, 1997 Public Act 387 went into effect in the US state of
Michigan, requiring all unlicensed Michigan residents under the age of 18
who wished to obtain driver’s licenses to do so through a graduated driver
licensing (GDL) program. This program required a more structured intro-
duction to driving than the previous law, and thus its effect on the crash
rates of young Michigan drivers is a key question of interest. To answer
this question, we construct a linear changepoint model that assumes a lin-
ear spline model for the mean crash rates conditional on the number and
location of the changepoints or pulses, with the regression slopes and the
number and location of the changepoints as parameters with specified prior
distributions. We bring together several modeling ideas (Berry and Harti-
gan 1993, Carlin, Gelfand and Smith 1992, and Stephens 1994) into a unified
framework that combines the flexibility of non-parametric regression models
with the simplicity of interpretation of parametric regression models.

The effect of graduated licensing programs has been examined in New
Zealand (Langley, Wagenaar, and Begg 1996), the Canadian provinces of
Ontario (Boase and Tasca 1998) and Nova Scotia (Mayhew, Simpson, and
desGroseilliers 1999), and the US state of Florida (Ulmer et al. 1999). The
estimated effects have varied from a crash rate decline of 11% among 16
year-olds in the calendar years previous and subsequent to GDL introduc-
tion in Florida, where only time-of-day restrictions were put into place, to
a crash rate decline of 31% between the calendar years preceding and fol-
lowing introduction of graduated licensing in Ontario, where a graduated
licensing program involving supervision and other license restrictions for
novice drivers of all ages was enacted.

The Canadian and US analyses considered before-GDL versus after-GDL
crash rate differences via relative risk measures, where the “before” and “af-
ter” time points were chosen on an ad-hoc basis, typically the calendar year
before and the one or two calendar years after the introduction of graduated
licensing. Comparisons of these sorts may be confounded with underlying
trends independent of GDL, and such confounding is difficult to sort out
since typically there is no true control group of young drivers not subject
to graduated licensing. In analysis of the New Zealand GDL program Lan-
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gley et al. utilized ARIMA time series models (Box and Jenkins 1976) to
estimate the effect of GDL on crash-related hospitalization rates. In the
ARIMA modeling, it was assumed that the effect of GDL occurred in the
form of a single “pulse” that occurred five months after the introduction of
GDL; again, this choice of timepoint is reasonable but ad-hoc. Alternatively
one might fit nonparametric regression models such as locally-weighted run-
ning line smoothers (Cleveland 1979) or cubic splines (Hastie and Tibshirani
1993) to the crash rate trend data and observe where and to what degree
the rate appears to buckle, but the simple interpretability of the pulse or
relative risk parameters is lost. Our analysis allows us to

1. Construct mean crash rate estimates that capture non-linear trends;

2. Assess the posterior probability that the changepoints (if any) occur
within time frames that can be directly associated with GDL intro-
duction;

3. Provide inference about the impact of graduated licensing that in-
cludes variability due to the uncertainty in estimating when the im-
pact began and ended and whether the observed rate changes are
plausibly related to GDL;

4. Provide inference about any “rebounds” in crash rates; and

5. Provide summary model checks of functional and distributional forms
via posterior predictive distributions.

1.1 Michigan’s graduated driver licensing program

Prior to the introduction of GDL, young Michigan drivers could obtain
a driver’s license at age 16 with parental permission after passing both
a driver’s education course (with on-the-road driving) and a written test.
Under graduated licensing, residents 14 years and 9 months and older who
have completed the first segment of driver’s education can obtain a “Level
I” license approximately equivalent to the pre-GDL learner’s permit, which
allowed the holder to drive under parental supervision. But 16-year-old
drivers wishing to obtain a “Level II” license permitting independent driving
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privileges are now required to: 1) complete a second segment of driver’s
education; 2) spend 50 hours of behind-the-wheel practice driving, including
10 hours of nighttime driving, with a licensed parent or guardian (or a
designate if no parent or guardian is a licensed driver); 3) pass a road
test conducted by a state-approved testing firm; 4) be free of traffic-related
moving violations for the prior 3 months; and 5) have held a Level I license
for 6 months. Level II licenses also are more restrictive than pre-GDL
licenses in that no unsupervised driving is allowed between midnight and 5
am unless driving to or from places of employment. 17-year-old drivers can
graduate to Level III licensing (no time-of-driving restrictions) after holding
a Level II license for at least 6 months and going at least 12 months without
a moving violation or violation of graduated licensing requirements. Drivers
are “graduated” from graduated licensing at age 18, though they remain in
the state’s existing three-year probationary period for all new licensees.

Because many young drivers were in the process of obtaining their li-
censes under the pre-GDL system as of April 1, 1997, the introduction of
the program was somewhat gradual among 16 year-olds. Those who had
started a driver’s education course on or before March 31, 1997 were not
subject to the graduated licensing requirement, except that those who had
not yet obtained a full license were required to pass the road test along with
their written test, rather than substitute the driver’s education road experi-
ence. Hence through mid-1999 the cohort of 16 year-old drivers included a
mix of pre-GDL, Level I, and Level II drivers, although few pre-GDL drivers
remained after mid-1998.

An analysis of the Michigan GDL law by Shope et al. (2001) found that
the 1998 crash rate among Michigan 16 year-olds declined by 26%(95%
CI 25%-28%) from the 1996 crash rate, with declines of 46%(39%-51%)
for nighttime (midnight-5am) crashes, and 31%(28%-34%) for single-vehicle
crashes (all p < .0001). Note that this analysis implicitly assumes that all
changes between 1996 and 1998 were due to the introduction of GDL.

2. A Bayesian Linear Spline Changepoint Model

Our outcomes of interest are crash rates for three types of crashes involv-
ing 16-year-old drivers: all crashes, nighttime crashes (midnight-5 am), and
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Table 1: Crash rates per 1,000 Michigan 16-year-olds

period (a) (b) (c) period (a) (b) (c)
1 32.64 1.37 7.72 15 34.83 1.48 7.40
2 36.80 1.40 8.34 16 33.77 1.24 8.99
3 40.18 1.73 9.22 17 26.62 0.80 6.50
4 43.72 1.99 11.61 18 27.25 0.81 5.21
5 34.65 1.41 8.80 19 28.52 1.04 6.26
6 37.61 1.62 7.88 20 30.82 0.75 8.08
7 39.07 2.21 9.07 21 24.07 0.63 5.69
8 47.05 1.79 12.87 22 27.53 0.62 5.48
9 36.96 1.44 9.75 23 29.43 0.71 5.88
10 35.14 1.69 7.40 24 29.71 0.70 7.89
11 38.42 1.45 8.32 25 27.88 0.42 7.54
12 43.46 1.68 12.37 26 29.06 0.51 6.17
13 34.71 1.15 8.09 27 30.18 0.79 6.32
14 36.85 1.50 7.52 28 33.88 0.62 8.41

(a)= all crashes , (b)= nightime (midnight-5am) , and (c)=
single-vehicle (SV) crashes. First period is January to March
of 1994, and the last period is October to December of 2000.

single-vehicle crashes. These data are available from the Michigan State
Police, and have been computed on a per-1,000-16 year-old basis at quar-
terly periods from January-March 1994 through October-December 2000
(see Table 1). The estimated total population of MI 16-year-olds during
1994 through 2000 (US Census 2001) has been used as the denominator
to account for the fact that 16 year-olds driving under pre-GDL learner’s
permits were not counted as licensed drivers, although they were included
in the count of police-reported crashes. We use a changepoint model since
the crash rate trends must be continuous, and we want to capture the effect,
if any, of the GDL pulse on the crash rates. By using a larger number of
changepoints we can also capture more complex underlying trends in the
data. The relatively limited number of data points – 28 – suggests that a
linear trend between the points will be sufficient to estimate the mean rates
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if enough changepoints are used. We rescale the crash rates yt for a given
type of crash to have sample mean 0 and sample variance 1, in order to
easily “tune” the prior distributions as we will discuss below. We assume

yt | β, γ, θ, K = k ∼ N(ηt, σ
2)

ηt ≡ ηt(θ, k) = β0 +
k∑

j=0

βj+1(t − θj)+ + γ ′xt (2.1)

where t = 1, . . . , T = 28, θ0 = 0, (z)+ equals z if z > 0 and 0 otherwise
and xt consists of dummy variables for seasonal effects (January-March,
April-June, July-September, October-December) centered at 0 (that is, xt

has dummy variables for winter, spring, and summer, with all three set to
-1 for winter; this allows de-trending of seasonal effects without changing
the overall location of the mean). Thus we assume that, after adjusting
for seasonal effects (assumed constant over the crash period), the mean
crash rate µt ≡ µt(θ, k) = β0 +

∑k
j=0 βj+1(t − θj)+ follows linear trends

parameterized by β between changepoints, where both the location of the
changepoints θ1, . . . , θk and the number of changepoints k is unknown. The
prior specifications are then given by

β | θ, K = k ∼ Nk+2(0, dI) (2.2)

γ | θ, K = k ∼ N3(0, dI)

σ2 | θ, K = k ∼ IG(.001, .001)

P (θ | K = k) =

k∏

j=1

P (θj | θ0, . . . , θj−1, K = k) =

k∏

j=1

P (θj | θj−1, K = k)

where
P (θj ≤ t + 1 | θj−1 = t, K = k) = 0
P (θj > t + 1 | θj−1 = t, K = k) ∝ 1

for j = 1, . . . , k.

K ∼ p(k)

where Np(µ, Σ) is the p-variate normal distribution and IG(a, b) is the
inverse-gamma distribution given by f(x; a, b) = Γ(a)−1b−ax−(a+1)e−1/bx.
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Thus we have a conjugate prior on the linear spline trend and seasonal ef-
fects, an essentially flat prior on residual variance; and, conditional on the
number of changepoints, a uniform prior on the location of these change-
points in time, subject to the constraint that the changepoints must be
separated by at least 6 months. Note that any discrete distribution could
be used as a prior for the changepoints. We use a constrained discrete
uniform prior that forces the linear spline to have at least three points es-
timating the linear trend. We choose a uniform distribution because we do
not want to favor one point over another a priori : we want the data to
tell us where the crash rates change, not let our preconceptions or even our
observations the time series plots (which can be prone to optical illusions)
make the decision.

Elements of these models are discussed in Berry and Hartigan (1993),
Carlin Gelfand and Smith (1992), and Stephens (1994); they can also be
viewed as a special case of “Bayesian Treed models” discussed in Chipman
et al. (2001).

2.1 Posterior distributions

Integrating out β, γ and σ2 from the likelihood yields (e.g., Halpern
1973)

p(y | θ1 = t1, . . . , θk = tk, k) = π(y, θ, k) ∝
d−(k+5)/2|d−1Ik+5 + X ′

θ,kXθ,k|−1/2

× (
y′y − y′Xθ,k(d

−1Ik+5 + X ′
θ,kXθ,k)

−1X ′
θ,ky

)−T/2
(2.3)

where Xθ,k is the design matrix for (2.1) where θ and K are fixed at
θ1 = t1, . . . θk = tk and k. Consequently we can factor the joint posterior
distribution into our key posterior distributions of interest:

p(k | y) =
[p(k)/ck]

∑
θ π(y, θ, k)∑

k {[p(k)/ck]
∑

θ π(y, θ, k)} (2.4)

p(θ1 = t1, . . . , θk = tk | k, y) =
π(y, θ, k)∑
θ π(y, θ, k)

(2.5)
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p(β, γ, σ2 | y) =
∑

θ,k

π(y, θ, k)N(β̂θ,k, Vβθ,k
)/

∑

θ,k

π(y, θ, k) (2.6)

where

β̂θ,k = (X ′
θ,kXθ,k + Ik+5(σ

2/d))−1X ′
θ,ky

Vβθ,k
= σ2(X ′

θ,kXθ,k + Ik+5(σ
2/d))−1.

Equation (2.4) follows from the fact that the joint prior P (θ, K = k) ∝
p(k)/ck, where ck is the number of elements of {t1, t2, . . . , tk : P (θ1 = t1, θ1 =

t2, . . . θk = tk | K = k) > 0}. The identity p(θ | k, y) =
π(y,θ,k)p(θ)

p(k|y)
yields

(2.5) after cancelling the p(k)/ck terms in the numerator and denominator.
Equation (2.6) follows immediately from (2.5) and the fact that p(β, γ, σ2 |
θ, k, y) ∼ N(β̂θ,k, Vβθ,k

) (see, e.g., Carlin and Louis 2000, p. 25). The
X matrix is k + 5 × T , since it includes the k + 2 changepoints and the 3
seasonal effect dummy variables. Thus the marginal posterior of the number
of changepoints and the location of these changepoints, (marginally and
conditional on the number of changepoints) is available analytically; the
marginal distribution of µt is obtained by integrating σ2 out of the weighted
mixture of normals given by (2.6), and is easily obtained by simulation by
simulating a draw from θ, k | y from (2.4) and (2.5) and then running a
short Markov Chain Mote Carlo to obtain a draw of βk, γ, σ2 | θ, k, y.

The choice of d and of p(k) is critical: for a fixed d, the increase in
the likelihood associated with higher-dimension model will tend to lead to
larger values of K being selected, while for a fixed p(k), increasingly flat
priors (large d) lead to smaller values of K being selected, as inspection of
(2.3) reveals. This is a problem inherent in the choice of non-informative
priors in model selection or model averaging, since as the prior becomes
more dispersed it puts less and less prior weight on reasonable values of β
and γ relative to the whole of �k+5. Thus we determine d = d(k) from
(2.2) such that P (−c < βk < c) = .95, which algebra shows is given by

d =
[
c/Φ−1

(
.5(1 + .951/(k+5))

)]2
. Because yt has been standardized to have

mean 0 and variance 1, the βk can in some sense be viewed relative to a
standard normal distribution; we consider c = 3 or c = 10, with the former
being a reasonable “maximum” value for most of the maximum likelihood
estimates and the latter being less informative, but not to the point of
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placing a great deal of the prior distribution at extreme values. We consider
two priors for K: K ∼ POI(2),and a BIC-type penalty (Schwartz 1978)
against larger models given by p(k) ∝ T−k/2. We restrict our analysis to
consider models of up to 5 changepoints, so we truncate these priors so that
P (K > 5) = 0. (We back-transform to the original scale when reporting
our results.)

3. Results

3.1 Number of changepoints

Table 2 indicates that the posterior probability of the number of change-
points is sensitive to the choice of prior. Considering models of up to 5
changepoints, the BIC-type prior on changepoints suggests the 2-changepoint
or perhaps the 3-changepoint model is most appropriate for all crashes com-
bined, whereas the Poisson prior on changepoints gives credence to 2-,3-,
4- and 5-changepoint models. For nighttime crashes, the BIC-type prior
gives the 1-changepoint model the greatest posterior probability, while the
Poisson prior weights more toward the 2-changepoint model. For single-
vehicle crashes, a 2-changepoint model has substantial posterior probability
under all the priors considered, although the BIC prior with a less informa-
tive prior regression model places a majority of weight on a 0-changepoint
model, while the Poisson priors suggest a 3-changepoint model might be
plausible as well.

Because of the sensitivity to the prior, we will conduct all analyses under
two choices that tend to reflect the extremes considered: (2.1) K ∼ POI(2)
and P (−3 < βk < 3) = .95, and (2.2) p(K) ∝ T−k/2 and P (−10 < βk <
10) = .95.

We proceed with our analysis by considering first the posterior mean and
95% posterior predictive interval of the mean crash rate at time t µt | y and
the posterior probability of the changepoint location of the jth changepoint

P (θj = t | y) =

5∑

k=j

P (θj = t | K = k, y)P (K = k | y)

for j = 1, . . . , 5. (Since the location of the jth changepoint is predicated on
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Table 2: Posterior probability of K-changepoint model

K All Crashes Night Crashes SV Crashes
(a) (b) (c) (d) (a) (b) (c) (d) (a) (b) (c) (d)

0 .00 .00 .00 .01 .00 .00 .00 .03 .00 .02 .14 .56
1 .00 .00 .00 .00 .10 .24 .46 .66 .01 .01 .05 .04
2 .17 .36 .55 .75 .50 .54 .46 .28 .36 .54 .60 .34
3 .37 .34 .33 .20 .25 .17 .07 .03 .36 .28 .17 .05
4 .30 .15 .10 .03 .11 .03 .01 .00 .19 .08 .04 .01
5 .16 .15 .03 .02 .04 .02 .00 .00 .08 .07 .01 .00

(a) K ∼ POI(2) and P (−3 < βk < 3) = .95, (b) K ∼ POI(2) and
P (−10 < βk < 10) = .95, (c) p(K) ∝ T−k/2 and P (−3 < βk < 3) = .95,
and (d) p(K) ∝ T−k/2 and P (−10 < βk < 10) = .95.

the jth changepoint existing, the area under the posterior distribution of the
jth changepoint is downweighted to be equal to the posterior probability
that K ≥ j.) Then, since the timing of GDL suggests that GDL effects
include one changepoint inside an “effect window” within three months of
the introduction of GDL and the subsequent changepoint inside a second
“effect window” within 6-18 months of GDL introduction, the posterior
probability of the GDL effect is given by

P (12 ≤ θj ≤ 14, 15 ≤ θj+1 ≤ 19 | y)

=

5∑

k=2

k−1∑

j=1

P (12 ≤ θj ≤ 14, 15 ≤ θj+1 ≤ 19 | K = k, y)P (K = k | y).

Similarly, conditional of the GDL effect being plausibly present, we can
compute the effect of GDL as the posterior mean difference in crash rates
at the two GDL-relevant changepoints given by

E(µθj+1
− µ∗

θj+1
| 12 ≤ θj ≤ 14, 15 ≤ θj+1 ≤ 19, y) =

A

B
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where

A =

5∑

k=2

k−1∑

j=1

E(µθj+1
− µ∗

θj+1
| θ, k, y) ×

P (12 ≤ θj ≤ 14, 15 ≤ θj+1 ≤ 19 | K = k, y)P (K = k | y)

B =

5∑

k=2

k−1∑

j=1

P (12 ≤ θj ≤ 14, 15 ≤ θj+1 ≤ 19 | K = k, y)P (K = k | y)

where µ∗
θj+1

is computed by assuming βj+1 = 0, that is, by extrapolating
from µθj

assuming no change in trend due to GDL. Finally, we consider
potential rebound effects by fixing K = 2 and defining the “rebound effect”
as β∗

3 =
∑3

j=1 βj, the slope of the crash rates after the second changepoint,
again conditional on the changepoints being plausibly related to GDL.

3.2 All crashes

To answer the question about whether a change in crash rates among
16-year-olds may be plausibly associated with the introduction of graduated
licensing, we consider the posterior mean of the crash rate and the posterior
changepoint location given in Figure 1. Examination of Figure 1 indicates
that, in contrast to simply determining the number of changepoints, there is
little sensitivity to the prior with respect to the shape of the mean function
and the presence of changepoints both at the introduction of graduated
licensing and approximately one year after its introduction. The three- and
four-changepoint models indicated as plausible under the Poisson prior pick
up the additional structure of an uptick or an uptick and downtick in crash
rates before the introduction of graduated licensing respectively, while the
five-changepoint model finds additional change after the one-year-post-GDL
changepoint. The posterior probability of any GDL effect on all types of
crash among Michigan 16 year-olds is .61 under the Poisson changepoint
prior and .76 under the BIC changepoint prior, that is, there is a better
than 60% chance that a change in crash rates occured within the two effect
windows of three months before or after the introduction of GDL and again
within 6-18 months of GDL introduction. The posterior mean of GDL-
relatable crash rate changes under the Poisson changepoint prior was -9.6
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crashes per 1,000 MI 16-year-olds (95% PPI=-2.6,-16.5), a decline of 24.9%
(95% PPI=7.0%,38.2%); under the BIC changepoint prior the posterior
mean change in crash rates was -11.5(-5.6,-16.7) per 1,000 or a decline of
29.2%(19.5%,37.4%). (See Table 3.)

Positive values of the rebound effect β∗
3 are indicative of a trend toward

increasing crash rates. The posterior mean of the rebound effect conditional
on plausible GDL-related changepoints is 1.1 crashes per 1,000 MI 16-year-
olds per year with a 95% PPI of (-.4,2.9) under the Poisson changepoint
prior and 1.0 crashes per 1,000 MI 16-year-olds per year with a 95% PPI of
(-0.5,2.9) under the BIC changepoint prior.

3.3 Nighttime crashes

Nighttime crashes are of substantive interest since unsupervised driving
between midnight and 5 am is no longer allowed for 16 year-olds under
Michigan GDL. Figure 2 summarizes the posterior mean crash rates and
changepoint locations for nighttime crashes among 16-year-old Michigan
drivers. Evidence of a plausible GDL-related effect is weak; it appears
that the downward trend among nighttime crashes began more than a year
in advance of the introduction of GDL and continued as a linear trend
throughout the GDL introduction period, perhaps ending in mid-to-late
1999. P (12 ≤ θj ≤ 14, 15 ≤ θj+1 ≤ 19 | y)=.06 under the Poission change-
point prior and <.01 under the BIC changepoint prior (see Table 3), indi-
cating that changes in nighttime crash rates among 16-year-old Michigan
drivers cannot be linked to GDL with a reasonable degree of certainty.

3.4 Single-vehicle crash

Single vehicle crashes are of particular interest since they tend to be
“purer” measures of driver behavior than multiple-vehicle crashes, where
culpability may reside with drivers other than the target 16-year-old. There
is both considerable sensitivity to the type of prior and “disagreement” as to
the number of changepoints in the single-vehicle crash rate, although there
is, on average, substantial evidence that single-vehicle crash rates peaked
in late 1995 and declined afterwards (see Figure 3). There is weak evidence
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Figure 1. Top row: observed all-crash rates for 16 year-olds
and seasonally-adjusted posterior mean rate using Bayesian
changepoint model (dotted line=90% PPI for posterior
mean). Bottom row: posterior probability of changepoint
location for all-crash rates (“first”=first changepoint, “sec-
ond”=second changepoint, etc.). (1) under K ∼ POI(2)
and P (−3 < βk < 3) = .95 (Poisson changepoint prior) and
(2) under p(k) ∝ T−k/2 and P (−10 < βk < 10) = .95 (BIC
changepoint prior). Time = quarter-year intervals since Jan-
uary 1994. Vertical line indicates last time point prior to
introduction of GDL.
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Figure 2. Top row: observed nighttime crash rates
(midnight-5 am) for 16 year-olds and seasonally-adjusted
posterior mean rate using Bayesian changepoint model (dot-
ted line=90% PPI for posterior mean). Bottom row: poste-
rior probability of changepoint location for nighttime crash
rates (“first”=first changepoint, “second”=second change-
point, etc.). (1) under K ∼ POI(2) and P (−3 < βk < 3) =
.95 (Poisson changepoint prior) and (2) under p(k) ∝ T−k/2

and P (−10 < βk < 10) = .95 (BIC changepoint prior).
Time = quarter-year intervals since January 1994. Vertical
line indicates last time point prior to introduction of GDL.
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Table 3: Posterior probability and posterior mean of any GDL-related
change

Poisson changepoint prior BIC changepoint prior
(a) (b) (c) (d) (e)
All .61 24.9%(7.0%-38.2%) .76 29.2%(16.4%-38.6%)
Night .06 N/A <.01 N/A
SV .23 23.9%(-14.8%-46.0%) .09 N/A

(a)= crash type, (b)= posterior prob. of GDL effect, (c) posterior mean
of GDL-related crash rate change, (d)= posterior prob. of GDL effext,
and (e)= posterior mean of GDL-related crash rate change.

that this decline accelerated and then slowed under the Poisson changepoint
prior (posterior probability of GDL-related changepoints=.23), while under
the BIC-type changepoint prior either no trend or a 1995 drop and 1998
rebound are most probable. (posterior probability of GDL-related change-
points=.09). The posterior mean of GDL-relatable single-vehicle crash rate
change was -2.4 crashes per 1,000 MI 16-year-olds (95% PPI=.8,-4.9), a
decline of 23.9% (95% PPI=-14.8%,46.0%) under the Poisson changepoint
prior. (See Table 3.) There is no evidence of a rebound effect among single-
vehicle crashes: the post-GDL slope under the 2-changepoint model is es-
timated as .2(-.3,.8) crashes per 1,000 MI 16-year-olds per year under the
Poission changepoint prior. We do not attempt to estimate GDL effects un-
der the BIC prior since the posterior probability of relatable effects is so low.

3.5 Model Checking Via Posterior Predictive Distributions

To determine whether the normal model is a reasonable approximation
for the error terms, we utilize posterior predictive distributions (PPD) (Gel-
man, Meng, and Stern 1996). The PPD p-value represents the probability
that the observed statistic (which can be a function of both the data y and
the parameters θ) is more extreme than the replicated statistic, conditional
on the observed data: P (T (y, θ) ≤ T (yrep, θ) | y). Specifically, for each
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Figure 3. Top row: observed single-vehicle crash rates for 16
year-olds and seasonally-adjusted posterior mean rate using
Bayesian changepoint model (dotted line=90% PPI for pos-
terior mean). Bottom row: posterior probability of change-
point location for single-vehicle crash rates (“first”=first
changepoint, “second”=second changepoint, etc.). (1) un-
der K ∼ POI(2) and P (−3 < βk < 3) = .95 (Pois-
son changepoint prior) and (2) under p(k) ∝ T−k/2 and
P (−10 < βk < 10) = .95 (BIC changepoint prior). Time
= quarter-year intervals since January 1994. Vertical line
indicates last time point prior to introduction of GDL.
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crash type, we consider the chi-square-type statistic

S(y, η, σ) =

T∑

t=1

(yt − ηt)
2

σ2
(3.1)

where Sobs = S(yobs, ηrep, σ2rep
) is then compared with Srep = S(yrep, ηrep,

σ2rep
) where yrep is generated from N(ηrep, σ2rep

); consequently Srep =
∑

t ε2
t

for a εt ∼ N(0, 1). That is, Sobs should follow a χ2
28 distribution if the

model proposed in (2.1) with K ≤ 5 and normally-distributed error terms
is correct. Comparison of 200 values of Sobs in a quantile-quantile plot
with a χ2

28 indicates excellent model fit for all crash types considered, with
Kolmogorov-Smirnov goodness-of-fit test p-values of .45, .34, and .86 for all
crashes, nighttime crashes, and single vehicle crashes respectively.

4. Summary

A Bayesian linear spline model with an unknown number of knots and
knot locations provides a better means than previous approaches of de-
scribing time trends in 1994-2000 crash rates among Michigan 16-year-old
drivers and in linking these trends to the introduction of graduated driver’s
licensing in Michigan in April 1997. Averaging across models with differing
number of knots and knot locations provides 1) mean estimates that have
the flexibility of loess or cubic spline models, while retaining the simple
interpretability of linear regression slopes, 2) posterior probabilities that
changes in rate trends can be linked to GDL effects, and 3) a method of
taking into account the uncertainty as to when GDL effects began and
ended together with previous trends in estimation of these effects, if any.
We considered models of up to 5 changepoints with two prior distributions
on the changepoint: a BIC-type prior that a priori downweighted many-
changepoint models, and a less restrictive Poisson prior with a mean of
2. The posterior probability of the number of changepoints was sensitive
to the choice of prior. Despite the sensitivity of the changepoint count to
priors, key posterior distributions such as the location of changepoints and
the change in crash rates between GDL-relevant changepoints did not differ
greatly under the different priors considered.
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When all types of crashes combined are considered, GDL appears more
likely than not to have had a substantial effect, dropping crash rates among
Michigan 16-year-olds by approximately 25% during the 12-18 months fol-
lowing its implementation. The effect on single vehicle crashes among MI
16 year-olds is less certain, with a posterior probability of .23 that a change-
points appeared within three months of GDL introduction and again 6 to
18 months after GDL introduction under a Poisson prior and only .09 under
the BIC prior. Conditional on changes within these windows, the plausible
GDL effect on single vehicle crash rates was a decline of 24%. Although
the law specifically prohibits all 16 year-olds from driving between midnight
and 5 am except under special pre-approved circumstances, it is unclear if
GDL has had any impact on late night crashes. While the crash rate for
that type of crash declined nearly 50% between 1996 and 1998, this analy-
sis suggests that this drop is part of a decline that began in 1995 or 1996
and its rate was largely unaffected by the implementation of the graduated
licensing law April 1, 1997.

Comparing our results with those obtained by a simple comparision of
1996 to 1998 rates (Shope et al. 2001) shows that our point estimate of
effect size is similar for all crashes combined, although the confidence inter-
val is wider under the Bayesian changepoint analysis since it incorporates
uncertainty in the location of exactly when the GDL effects begin and end.
In the case of single-vehicle crashes, the Bayesian changepoint analysis sug-
gests that a previous downward trend might explain a modest part of the
change between 1996 and 1998 single-vehicle crash rates. Similarly, a simple
analysis of 1996 versus 1998 nighttime crash rates does not capture the fact
that GDL caused no significant break in the trend of downward crash rates
among this subset of (already uncommon) crashes for 16 year-olds.

The analysis presented here is conservative in that we have restricted
“GDL effects” to lie in somewhat narrow windows around the beginning and
conclusion of the introduction of graduated drivers licensing. Lack of trends
among nighttime and, to a lesser extent, single vehicle crashes that clearly
relate to GDL does not eliminate the possibility that GDL had substantial
impact on these crash types. All three crash types considered show evidence
of declines in rates beginning in late 1995 or early 1996. While this may
be due to changes in enforcement patterns or driving habits irrespective of
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the introduction of GDL, it may also be evidence of the effects of publicity
about the upcoming law that changed parents’ restrictions on 16-year-old
late night driving well in advance of the law.

Another issue of interest is whether or not crash rates have begun to
climb after a leveling-off period, due to non-adherence to the requirements of
50 hours of supervised driving or midnight to 5 am driving restrictions, two
requirements which are entirely or largely self-enforced. We considered this
possibility by analyzing 2-changepoint models that provided an estimate
of linear change following the second changepoint, conditional on the 2
changepoints being GDL-relevant. There is evidence of the beginning of
“rebound” in the rate for all crashes combined, with a posterior probability
of a rebound effect of .93 under the Poisson changepoint prior and .89 under
the BIC changepoint prior. Somewhat weaker evidence was present in the
case of single vehicle crashes, where the posterior probability of a rebound
was estimated at .79. The total effect thus far, however, appears quite
small relative to the crash rate drop associated with GDL, on the order of
about 10% of the decline. We have followed subjects for a relatively short
period of time since the introduction of graduated driver’s licensing; further
observation may be required to fully describe any rebound effect, if present.
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