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Abstract: Hydrocarbon contaminated soils result from pipeline rup-
tures, petroleum manufacture spills, as well as storage and trans-
portation accidents (Bossert and Bartha (1984)). The cost of removal
of the contaminated solids followed by incineration or by disposal in
a landfill is prohibitive. Bioremediation - the use of microorganism
populations to eliminate hydrocarbon contaminations from the envi-
ronment - is the most acceptable technology for hydrocarbon cleanup
(Bossert and Bartha (1984)). It can be argued that a decrease of the
oil concentration in soil is not due to biodegradation but due to sorp-
tion. If this were the case, since mass transfer of sorption is a gradual
process, a slow decrease in the oil recovery rate may be observed after
a spill. However, a rapid or sudden decrease in the oil concentration
during the incubation should exclude sorption as the primary mech-
anism contributing to the observed hydrocarbon loss. A Bayesian
procedure is given to detect a change of the linear relationship be-
tween the oil concentration (the dependent variable) and the time in
days since the addition of the oil (the independent variable). The
advantage of this procedure is that it does not need to assume that
the variance of the error before the change is equal to that after the
change. The implementation of this procedure is straightforward.

Key words: Bioremediation, change point, linear model, posterior
distribution.

1. Introduction
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In Ma (1999), an investigation of the potential enhanced rate, the poten-
tial enhanced extent, or both of bioremediation of 20W motor oil contami-
nated soil by inoculation of microorganisms was undertaken. The inoculant
of the soil was with a commercially available product containing microbial
isolates with bioremediation abilities. The product package also included
a nutrient product for feeding the microbes, which was added to all treat-
ments. Also examined was the effect of different soil types (sandy loam with
low organic matter, denoted as sandy loam, sandy loam with high organic
matter, denoted silt loam, and loam with high clay content, denoted loam)
on bioremediation.

Ma noted that it could be argued that the observed decrease of the oil
concentration in all soil types was not due to biodegradation but due to
its sorption effects. Ma also noted that the mass transfer of sorption is a
gradual process, and should result in an unchanged degradation rate. Rapid
decrease of the oil concentration during the incubation period would exclude
sorption as the primary mechanism contributing to the observed hydrocar-
bon loss, and therefore providing evidence of effective bioremediation.

When oil concentration is modeled via linear regression lines, such a
rapid change would be indicated by a change in the regression line at some
time during the study period. A statistical test that such a change exists
would provide an objective method of eliminating sorption as the primary
mechanism contributing to the observed hydrocarbon loss, and supporting
the existence of bioremediation. In addition, estimating the time when
such a change takes place is then meaningful and potentially useful. For
example, the knowledge of the change point under a given set of conditions
could determine the choice of inoculant or affect the strategy of dealing with
a particular hydrocarbon spill.

Statistical methods have been developed to detect change points in re-
gression. For example, one may use likelihood procedures (see, for example,
Worsley (1983) and Srivastava and Worsley (1986)) and Bayesian methods
(see, for example, Broemeling and Chin Choy (1981), Moen and Broemel-
ing (1984), and Guttman and Srivastava (1987)). This paper focuses on
Bayesian methods. In a Bayesian analysis one needs to give prior probabil-
ity distributions to both change points and the parameters. The resulting
posterior probabilities, based on the data, are then used to make neces-
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sary inferences. In particular, the posterior distribution of the change point
can be employed to locate the “actual time” at which a sequence of ob-
servations undergoes sudden changes, that is, the time where the posterior
probability assumes its maximum will be used to estimate the actual time of
the change. Such a methodology has found many interesting applications in
practice. For example, Smith (1975) developed Bayesian tests for structural
stability, a topic of interest to economists. Moen and Broemeling (1984) de-
veloped a procedure for testing whether or not a change has occurred in the
regression matrix of a multivariate linear model. The resulting test is based
on the marginal posterior distribution of the change point. A numerical
example using a bivariate regression model was used to illustrate the test
procedure. Guttman and Srivastava (1987) provided a Bayesian method of
finding the change point for the general multivariate linear model in which
it is suspected that a change occurs from one linear model to another where
the different models have some common parameters. They also discussed a
certain change-point problem that involves a switch at some time from one
growth-curve model to another. They illustrated the general results through
the example of locating the time at which the effects of labor inputs on gross
domestic product may undergo.

In this article, we developed a Bayesian method for detecting the time
where the regression lines differ. One advantage of the procedure is that it
does not assume that the variance of the error before the change of regression
is equal to that after the change. This is practical since in many biological
situations, the variance of concentrations changes with the magnitude of
the concentrations.

The rest of the paper is organized as follows. Section 2 describes the ex-
periment and dataset. Section 3 introduces the statistical models. Section 4
presents the analysis of bioremediation. Section 5 concludes our study. The
derivation of formulas is given in an Appendix.

2. Experiment

Three types of uncontaminated soils (sandy loam, silt loam and loam)
were collected from different locations of the University of Wisconsin-Green
Bay. This soil was air-dried and screened by using U.S. Standard Sieve Series
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No. 10 (2.00 mm). 20W motor oil was added to simulate a hydrocarbon
spill with a concentration of 3000 mg oil per kilogram of dry soil. Each
type of soil was then divided into three plots. These plots received one of
three treatments. For treatment one, the control, no additional material was
added. For treatment two, only the nutrients were added. This treatment
was to provide information on whether the nutrients could stimulate the
degradation of the oil by indigenous microorganisms. And for treatment
three, both the nutrients and the inoculum were added. This treatment was
to provide information on whether the inoculum could enhance the rate of
oil degradation. These treated plots of the soil were then divided in half to
provide a duplication of each treatment on each type of soil. Soil moisture
was adjusted twice a week to maintain between a 40 and 50 percent of the
soil content by weight at saturation. The soil was also mixed thoroughly
twice per week to homogenize the soil and oil contaminant distribution and
to enhance aeration. The results of both duplications of each of the three
treatments on each of the three soil types are given in Table 1.

3. Models

The simplest framework of detecting change point in regression may be
stated as follows. Consider a sequence of n pairs of observations (xi, yi),
i = 1, 2, . . . , n, where yi is the value of the response variable (dependent
variable) in the ith trial and xi is the known value of the independent
variable in the ith trial. Suppose the following model:

yi = β11 + β12xi + ε1i, i = 1, · · · , t,
yi = β21 + β22xi + ε2i, i = t + 1, · · · , n,

(3.1)

where 3 ≤ t ≤ n − 3, ε1i are independent N(0, σ2
1), ε2i are independent

N(0, σ2
2), and ε1i and ε2i are independent. The parameters βij , σ2

i , and t
are all unknown. The above model indicates a switch in regression of y on
x at “time” t. The main task is to estimate t. The range 3 ≤ t ≤ n − 3 is
necessary in order to allow for the estimation of the two regression lines as
well as the estimates of the associated error terms.

For completeness of the theory, we shall consider the following general
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Table 1: 20W oil concentration (mg/kg d.w.) in loam. Treatment 1 =
Control, Treatment 2 = Nutrient, Treatment 3 = Nutrient and Inoculum.

Days 3 7 11 14 18 21 25 32 39 46
Sandy Loam
Treatment 1
Dup 1 2660 3050 2920 2590 2450 2910 2510 2480 2570 2410
Dup 2 3160 3110 3040 2690 2940 3210 2820 2850 2520 2690
Treatment 2
Dup 1 3900 3200 3060 2850 2830 3000 2610 2740 2550 2690
Dup 2 2740 2820 2920 2930 2880 2810 2820 2710 2630 2410
Treatment 3
Dup 1 3280 2960 2990 2700 2730 2850 2540 2870 2880 2270
Dup 2 2870 3090 2950 2990 2710 3190 2800 2700 2690 3040
Silt Loam
Treatment 1
Dup 1 3490 2530 3670 2880 2770 1910 2850 1740 1950 1500
Dup 2 2310 3080 3100 2810 2590 2660 2520 1900 1840 1950
Treatment 2
Dup 1 2390 3360 3500 3540 2420 2500 1390 2680 2400 1890
Dup 2 2100 3210 3250 3310 2620 2520 3160 3130 2600 2770
Treatment 3
Dup 1 2550 3180 3030 3120 2690 2450 2840 2170 2110 2100
Dup 2 2110 3110 3190 3230 2930 3030 2740 2420 2600 2480
Loam
Treatment 1
Dup 1 3100 1990 2570 1640 1280 1560 1240 1650 1690 1150
Dup 2 2400 3710 2940 1540 1270 1480 970 2010 1780 1340
Treatment 2
Dup 1 2520 2620 2570 1370 1320 1620 1300 1680 1940 1380
Dup 2 2330 2380 2290 1220 1450 1680 1040 1480 1700 1430
Treatment 3
Dup 1 2160 2180 2410 1080 1250 1410 990 1360 1300 870
Dup 2 2470 2320 3110 1600 1730 1460 1180 1490 1620 1190

Source: Ma (1999)
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case:
yi = β′

1xi + ε1i, i = 1, · · · , t,
yi = β′

2xi + ε2i, i = t + 1, · · · , n,
(3.2)

where p+1 ≤ t ≤ n−p−1, xi is a known p vector of independent variables,
and both β1 and β2 are p vectors of unknown parameters. This model
shows that the linear relationship between the dependent and independent
variables changes at “time” t. The range p + 1 ≤ t ≤ n− p− 1 is necessary
in order to allow for the estimation of the two regression lines as well as the
estimates of the associated error terms.

In the following, we shall impose some prior information on β1, β2, σ2
1,

σ2
2 , and t, and derive the posterior probability mass function of the change

point t. This posterior distribution will be used to estimate t in (3.2).
Set the matrices X1 and X2 and vectors y1, y2, and y as follows.

X ′
1 = (x1, · · · ,xt), X ′

2 = (xt+1, · · · ,xn),

y′
1 = (y1, · · · , yt), y′

2 = (yt+1, · · · , yn), and y′ = (y′
1,y

′
2).

Assume that Xi is of full rank, i.e., the rank of Xi is p, the number of columns
of Xi, for i = 1, 2. Then the square matrix X ′

iXi is of full rank so that the
inverse of X ′

iXi is defined in the usual way. Let Si = (yi−Xiβ̂i)
′(yi−Xiβ̂i)

with β̂i = (X ′
iXi)

−1X ′
iyi, i = 1, 2.

Given that no other information is available, what prior might we put on
the parameters β1, β2, σ2

1, σ2
2 , and t ? Intuitively, “noninformative” priors

should be given in the absence of “enough” information. Let us consider
first the time t. Clearly, we should assume that each of the time values p+1,
· · ·, n − p − 1 is equally likely. This fact is indicated by the uniform prior
p(t) ∝ constant. For the vector β1, we may also assume the uniform prior,
that is, uniform over the entire p-dimensional space. This is expressed by
p(β1) ∝ constant. Similarly, we have p(β2) ∝ constant. To find a prior for
σ2

1 , we consider ln σ2
1. Since ln σ2

1 can take any value between −∞ and ∞,
we may assume the uniform prior on ln σ2

1, that is, uniform over the entire
one-dimensional space. Thus we have p(ln σ2

1) ∝ constant, so that p(σ2
1) ∝

1/σ2
1. Same reasoning yields p(σ2

2) ∝ 1/σ2
2. Note that the noninformative

priors for β1, β2, ln σ2
1, and ln σ2

2 should be understood in terms of Jeffreys’
improper probability distribution functions. Now we assume that all the
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above priors are independent. Then we have the following (uniform) prior
in β1, β2, ln σ2

1, ln σ2
2, and t:

p(β1, β2, σ
2
1, σ

2
2, t) ∝

1

σ2
1σ

2
2

for p + 1 ≤ t ≤ n − p − 1. (3.3)

It can be shown that given the prior in (3.3) and the data y, the posterior
probability that a change point occurs at time t is (see the Appendix)

p(t|y) = K2
n
2
−p(|X ′

1X1||X ′
2X2|)− 1

2 Γ
(t − p

2

)
Γ
(n − t − p

2

)
S
− t−p

2
1 S

−n−t−p
2

2 ,

(3.4)
where the constant K is such that

K−1 = 2
n
2
−p

n−p−1∑
t=p+1

(|X ′
1X1||X ′

2X2|)− 1
2 Γ

(t − p

2

)
Γ
(n − t − p

2

)
S
− t−p

2
1 S

−n−t−p
2

2 .

(3.5)
Now one may estimate t by the mode of the distribution in (3.4), that is by
that value of t at which p(t|y) has its maximum.

In this paper we use only noninformative priors (i.e., where no prior
information is explicitly imposed). Noninformative priors are used when
information about parameters is completely unknown or when proper priors
such as conjugate priors do not apply. When more information on the
parameters is known so that a reliable proper prior can be employed, the
resulting estimate of the change point can be expected to be more accurate.
For a vigorous discussion on the choice of priors, see Box and Tiao (1992).

4. Analysis

For simplicity, in this paper we will consider in detail the case of loam
with high clay content receiving treatment 3, where both nutrients and
inoculum were added. For this purpose we isolate the results of both dupli-
cations of treatment 3 on the loam from Table 1 to form Table 2.

Upon examination of the data in Table 2, it can be noted that the oil
concentration measurements in Dup 2 are consistently larger than the oil
concentration measurements in Dup 1. We suspect that there is some block
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Table 2: 20W oil concentration in loam with treatment 3

Days 3 7 11 14 18 21 25 32 39 46
Dup 1 2160 2180 2410 1080 1250 1410 990 1360 1300 870
Dup 2 2470 2320 3110 1600 1730 1460 1180 1490 1620 1190

effect associated with Dup 2. Specifically, the set of conditions such as raw
material source, raw material purity, and room temperature that resulted
in the oil concentrations observed in Dup 1 are not exactly the same as the
set of conditions that resulted in the oil concentrations observed in Dup 2.
Such differences may result in the fact that all responses in Dup 2 will be
τ units lower (or higher) than in Dup 1, that is, ỹ = y + τ , where ỹ is a
Dup 2 observation and y is an observation produced under the conditions
for Dup 1. To get valid data for our change point analysis from Dup 2, we
need to account for this effect τ . A straightforward way of doing this is as
follows. The average from Dup 1 is A1 = (2160+2180+· · ·+870)/10 = 1501,
and the average from Dup 2 is A2 = (2470 + 2320 + · · · + 1190)/10 =
1817. The difference A2 − A1 = 316, denoted τ̂ , will be used to estimate
τ . Now subtract τ̂ from each observation in Dup 2. See Table 3 for the
modified dataset. This new dataset will be used to replace the old one
(Table 2) for our analysis. In the above we discussed a simple way to
remove the block effect from Dup 2. For more information on block effects,
see Montgomery (2001).

Table 3: 20W oil concentration in loam with treatment 3 (Modified)

Days 3 7 11 14 18 21 25 32 39 46
Dup 1 2160 2180 2410 1080 1250 1410 990 1360 1300 870
Dup 2 2154 2004 2794 1284 1414 1144 864 1174 1304 874

The data in Table 3 suggest that the relation between the oil concentra-
tion and the time changes after 11 days, since the observations during the
first 11 days look larger than those for the following days. We now use the
procedure described in Section 3 to estimate the time when such a change
took place.
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Let y denote the (modified) oil concentration, and let x = (1, x2), where
x2 denotes the time in days. In order to apply the model (3.2) to the
two duplications it is necessary to enumerate the observations. We do
so alternating between duplicate 1 and duplicate 2, giving the sequence:
(2160, 2154, 2180, 2004, · · · , 870, 874). The posterior probabilities that a par-
ticular observation is where a change point occurs are derived by (3.4) and
(3.5). They are given in Table 4.

Table 4: Posterior probabilities that a change point occurs

Days 3 7 11 14 18 21 25 32 39 46
Dup 1 — 0.001 0.000 0.005 0.000 0.000 0.000 0.000 0.002 —
Dup 2 — 0.000 0.732 0.001 0.000 0.000 0.001 0.257 — —

The maximum probability p(t|y) = 0.732 is seen to be when t = 6,
indicating a change in response after 11 days. A graph of the experimental
points and the two resulting regression lines are given in Figure 1.

Note that in the above we used the sequence (2160, 2154, 2180, 2004, · · ·,
870, 874) as our data y, that is, we arranged the data as if we always ob-
served Dup 1 first in a given day. The fact is that the order of displaying
Dup 1 and Dup 2 observations in a given day will not affect our final es-
timate of the change point. More specifically, if we display the data in
the order of time (days) but without caring about the order of arranging
Dup 1 and Dup 2 observations in a given day, then we have 210 = 1024
ways to write down our y, and each y will lead to the same conclusion that
a change in response occurs after 11 days. Clearly, different y’s may yield
different posterior distributions p(t|y). For example, let us use the sequence
(2154, 2160, 2004, 2180, · · · , 874, 870) as our y. Then using (3.4) and (3.5),
we obtain Table 5 listing the posterior probabilities that a change point
occurs. Note that Table 5 is not identical with Table 4. However, since the
maximum posterior probability 0.731 occurs when t = 6, again we see that
a change in response takes place after 11 days.

In the analysis of this data in the original bioremediation study Ma (1999)
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Figure 1: Oil concentration in loam as a function of days of bioremediation.
The scatter represents the experimental data. The lines represent the two
fitted linear models.

Table 5: Posterior probabilities based on data
(2154, 2160, 2004, 2180, · · · , 874, 870)

Days 3 7 11 14 18 21 25 32 39 46
Dup 1 —– 0.000 0.731 0.001 0.000 0.000 0.001 0.256 —– —–
Dup 2 —– 0.001 0.001 0.006 0.000 0.000 0.000 0.000 0.002 —–
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noted change points only in the loam with high clay content under all treat-
ments by visual inspection. By applying our methodology to treatment 1
and treatment 2 in loam, we found the change point occurs during day 11.
Therefore, in all three treatments, the change takes place during day 11.
This further corroborates the conclusions in Ma (1999) that “. . . the rapid
decrease after day 11 of the incubation with loam with high clay content
should exclude sorption as the primary mechanism contributing to the ob-
served hydrocarbon loss. The microbial activity can change exponentially
which may indicate that the rapid decrease of hydrocarbon in loam soil was
contributed by biodegradation.”

5. Conclusion

We have derived a practical Bayesian method for the estimation of a
change point in a linear regression that does not rely on the hypothesis that
the same variance exists both before and after the change point. Through
our analysis of bioremediation data, we have illustrated the methods use
and have shown it to be an effective means in estimating the time of a
change point in this situation. As the literature contains many examples
where the application of this method of finding the time of a change point
would be useful for other fields, including economics and biology, we feel
that this method can become a useful tool in a variety of undertakings.
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Appendix: Derivation of (3.4) and (3.5)

Derivation of (3.4) and (3.5) consists of two steps.

I. Derivation of the posterior p(β1,β2, σ
2
1 , σ

2
2 , t|y)

For any fixed t, since ε1i are independent N(0, σ2
1), the likelihood, given the data

y1, is then (see (3.2))

l(β1, σ
2
1 |y1) ∝ 1

(σ2
1)1/2 exp

[
− (y1−β′

1x1)2

2σ2
1

]
· · · 1

(σ2
1)1/2 exp

[
− (yt−β′

1xt)2

2σ2
1

]

∝ 1
(σ2

1)t/2 exp
{
− 1

2σ2
1
[(y1 − β′

1x1)2 + · · · + (yt − β′
1xt)2]

}
.

But
(y1 − β′

1x1)2 + · · · + (yt − β′
1xt)2

= (y1 − X1β1)′(y1 − X1β1)
= (y1 − X1β̂1)′(y1 − X1β̂1) + (β1 − β̂1)′X ′

1X1(β1 − β̂1),
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where β̂1 = (X ′
1X1)−1X ′

1y1 is the least-squares estimator of β1. The last equality
of the above comes from the Pythagorean theorem due to the geometry of the
least-square solution. (See also the equation (3.59), Guttman (1987).) Thus one
has

l(β1, σ
2
1 |y1) ∝ 1

(σ2
1)t/2

exp
{
− 1

2σ2
1

[S1 + (β1 − β̂1)
′X ′

1X1(β1 − β̂1)]
}

, (5.1)

where S1 = (y1 − X1β̂1)′(y1 − X1β̂1).
Similarly, from the last n − t equations of (3.2), one obtains the likelihood,

given the data y2,

l(β2, σ
2
2 |y) ∝ 1

(σ2
2)(n−t)/2

exp
{
− 1

2σ2
2

[S2 + (β2 − β̂2)
′X ′

2X2(β2 − β̂2)]
}

, (5.2)

where S2 = (y2 − X2β̂2)′(y2 − X2β̂2), and β̂2 = (X ′
2X2)−1X ′

2y2 is the least-
squares estimator of β2.

Since ε1i and ε2i are independent, it follows from (3.2), (5.1) and (5.2) that
the likelihood function of β1, β2, σ2

1 , σ2
2 , and t is,

l(β1,β2, σ
2
1 , σ

2
2 , t|y) ∝ 1

(σ2
1)t/2 exp{− 1

2σ2
1
[S1 + (β1 − β̂1)′X ′

1X1(β1 − β̂1)]}
× 1

(σ2
2)(n−t)/2 exp{− 1

2σ2
2
[S2 + (β2 − β̂2)′X ′

2X2(β2 − β̂2)]}.

Suppose the following uniform prior in β1, β2, σ2
1, σ2

2 , and t (see (3.3)):

p(β1,β2, σ
2
1 , σ

2
2 , t) ∝

1
σ2

1σ
2
2

for p + 1 ≤ t ≤ n − p − 1.

Then the posterior

p(β1,β2, σ
2
1 , σ

2
2 , t|y) ∝ p(β1,β2, σ

2
1 , σ

2
2 , t)l(β1,β2, σ

2
1 , σ

2
2 , t|y)

∝ 1
(σ2

1)t/2+1 exp{− 1
2σ2

1
[S1 + (β1 − β̂1)′X ′

1X1(β1 − β̂1)]}
× 1

(σ2
2)(n−t)/2+1 exp{− 1

2σ2
2
[S2 + (β2 − β̂2)′X ′

2X2(β2 − β̂2)]}.

II. Derivation of p(t|y)

In order to obtain p(t|y), we need to integrate out β1, β2, σ2
1, and σ2

2 from
the posterior p(β1,β2, σ

2
1 , σ

2
2 , t|y). This is done through successive integration

processes.
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Note that a normal density for the p-dimensional random vector X has the
form

f(x) =
1

(2π)p/2|Σ|1/2
exp{−(x − µ)′Σ−1(x − µ)/2},

where µ represents the expected value of the random variable X and Σ is the
p × p variance-covariance matrix of X. ¿From

∫
f(x)dx = 1, we have∫

exp{−(x − µ)′Σ−1(x− µ)/2}dx = (2π)p/2|Σ|1/2.

Using this equality, one can integrate out β1 and β2 from p(β1,β2, σ
2
1 , σ

2
2 , t|y) to

obtain

p(σ2
1 , σ

2
2 , t|y) ∝ ∫ ∫

p(β1,β2, σ
2
1 , σ

2
2 , t|y)dβ1dβ2

∝ ∫
1

(σ2
1)t/2+1 exp{− 1

2σ2
1
[S1 + (β1 − β̂1)′X ′

1X1(β1 − β̂1)]}dβ1

× ∫
1

(σ2
2)(n−t)/2+1 exp{− 1

2σ2
2
[S2 + (β2 − β̂2)′X ′

2X2(β2 − β̂2)]}dβ2

∝ exp(−S1/2σ2
1)

(σ2
1)t/2+1

∫
exp[− 1

2σ2
1
(β1 − β̂1)′X ′

1X1(β1 − β̂1)]dβ1

× exp(−S2/2σ2
2)

(σ2
2)(n−t)/2+1

∫
exp[− 1

2σ2
2
(β2 − β̂2)′X ′

2X2(β2 − β̂2)]dβ2

∝ exp(−S1/2σ2
1)

(σ2
1)t/2+1 (2π)p/2|(X ′

1X1/2σ2
1)−1|1/2

× exp(−S2/2σ2
2)

(σ2
2)(n−t)/2+1 (2π)p/2|(X ′

2X2/2σ2
2)−1|1/2

∝ exp(−S1/2σ2
1)

(σ2
1)t/2+1 (2π)p/2(2σ2

1)p/2|X ′
1X1|−1/2

× exp(−S2/2σ2
2)

(σ2
2)(n−t)/2+1 (2π)p/2(2σ2

2)p/2|X ′
2X2|−1/2

∝ (|X′
1X1||X′

2X2|)−1/2

(σ2
1)(t−p)/2+1(σ2

2)(n−t−p)/2+1 exp{−(S1/2σ2
1 + S2/2σ2

2)}.

Now observe that if X = aU , where a > 0 is a constant and U−1 is distributed
according to χ2

m, the probability density function of X is then

f(x) = 2−
m
2

[
Γ
(m

2

)]−1
a

m
2 x−m

2
−1 exp

(
− a

2x

)
.

Thus
∫

f(x)dx = 1, so that
∫

exp(− a
2x)x−m/2−1dx = 2m/2Γ(m

2 )a−m/2. Using this
equality and integrating out σ2

1 and σ2
2 from p(σ2

1 , σ
2
2 , t|y) lead to

p(t|y) ∝ ∫ ∫
p(σ2

1 , σ
2
2 , t|y)dσ2

1dσ2
2

∝ (|X ′
1X1||X ′

2X2|)−1/2
∫ exp(−S1/2σ2

1)

(σ2
1)(t−p)/2+1 dσ2

1

∫ exp(−S2/2σ2
2)

(σ2
2)(n−t−p)/2+1 dσ2

2

∝ (|X ′
1X1||X ′

2X2|)−1/22(t−p)/2Γ( t−p
2 )S−(t−p)/2

1 2(n−t−p)/2Γ(n−t−p
2 )S−(n−t−p)/2

2

∝ 2n/2−p(|X ′
1X1||X ′

2X2|)−1/2Γ( t−p
2 )Γ(n−t−p

2 )S−(t−p)/2
1 S

−(n−t−p)/2
2 .
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Therefore

p(t|y) = K2
n
2
−p(|X ′

1X1||X ′
2X2|)−

1
2 Γ

(t − p

2

)
Γ
(n − t − p

2

)
S
− t−p

2
1 S

−n−t−p
2

2 ,

where the constant K is such that
∑n−p−1

t=p+1 p(t|y) = 1, i.e.,

K−1 = 2
n
2
−p

n−p−1∑
t=p+1

(|X ′
1X1||X ′

2X2|)−
1
2 Γ

(t − p

2

)
Γ
(n − t − p

2

)
S
− t−p

2
1 S

−n−t−p
2

2 .
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