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Abstract: We are interesed in comparing the mean the diastolic blood
pressure of individuals submitted to a stress stimulus to that of individuals
under normal conditions with the prior knowledge that the subjects in both
groups are hypertense. Essentially, this may be formulated as a two sample
problem for Gaussian populations with bounded means. For such purposes,
we consider two different approaches to obtain Bayes factors. The first is
based on predictive distributions and the second is based on Markov Chain
Monte Carlo methods. The sensitivity of the Bayes factors with respect to
choice of prior distributions is also investigated.
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1. Introduction

Giampaoli and Singer (2004) consider the problem of comparing the mean
diastolic blood pressure of individuals submitted to a stress stimulus (like the
death of a close relative or discharge from employment) to that of individuals
under normal (no stress) conditions based on blood pressure measurements ob-
tained on two independent samples of sizes n1 and n2, respectively. The data
are reproduced in Table 1, the entries of which correspond to the average of se-
ries of 30 measurements taken over periods of one hour to eliminate short term
fluctuations.

Assuming normality and homocedasticity, this is the typical situation for
which Student’s t test is an appropriate statistical tool. In fact, a simple two
sample t-test with df=20 yields a p-value of 0.0595. For the sake of comparison,
the p-value for the correponding Wilcoxon two sample test is 0.2929. Hence the
data does not provide sufficient evidence for rejection of the null hypothesis that
the mean diastolic blood pressure of subjects under normal or stress conditions
are equal. Here, however, we are interested in comparing the corresponding means
with the additional information that the subjects in both groups are hypertense,
i.e., have mean diastolic blood pressures known to be at least 90 mmHg. This
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Table 1: Diastolic blood pressure (mmHg)

Stress group
89.6 92.4 87.1 92.2 96.4 92.2 92.7 95.0 92.2 109.2 96.8

Control group
81.7 89.9 81.5 89.4 94.6 93.5 85.5 95.5 88.9 95.4 97.0

occurs, for example, in studies where patients are being screened for the detection
of possible causes of hypertension.

More specifically, let y1 = (y11, . . . , y1n1)
′ and y2 = (y21, . . . , y2n2

)′ respec-
tively denote independent random samples of N(µ1, σ

2) and N(µ2, σ
2) distribu-

tions. Under this framework, we consider tests of the hypothesis

H0 : µ1 = µ2 (1.1)

versus
H1 : µ1 > µ2 (1.2)

with or without the assumption that σ2 is known under the restriction that
µ1 ≥ c and µ2 ≥ c where c is some constant. We may take c = 0 without loss of
generality.

Classical statistical inference under constrained parametric spaces has been
addressed by many authors, among which we mention Bartholomew (1959a,
1959b, 1961), Kudô (1963), Nüesch (1966), Perlman (1969) and Barlow et al.
(1972). In particular, Giampaoli and Singer (2004) proposed tests for the com-
parison of Gaussian distributions with restricted means (assuming or not known
variance), which may be considered as alternatives to the usual Z or t tests. Us-
ing simulation studies, the author has shown that the proposed tests are more
powerful than the usual Z or t tests in most circumstances. However, they are
only approximate level α tests and depend on estimators of the unknown param-
eters. We attack the problem under a Bayesian approach, since it seems that
from such a perspective, the restricted parameter space can be handled with less
effort than under a classical point of view.

Testing the hypothesis (1.1) is equivalent to comparing the two following
models

M = 1 : yik = µ + εik, εik
iid∼ N(0, σ2), (1.3)

M = 2 : yik = µi + εik, εik
iid∼ N(0, σ2), (1.4)
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with µ1 > µ2, i = 1, 2, k = 1, . . . ni and σ2 is viewed as a nuisance parameter.
Here M is an integer-valued parameter indexing the models, such that M = 1
corresponds to H0 and M = 2 corresponds to H1.

In Section 2 we present details for the computation of the Bayes factors under
two different approaches assuming that the common variance is known. In Section
3 we illustrate the procedures with the data depicted in Table 1. Section 4 is
devoted to an extension for the unknown variance case. We conclude with a
discussion of the results in Section 5.

2. Bayes Factors

The ratio of the observed marginal densities for the two models, namely

B21 =
p(y|M = 2)
p(y|M = 1)

=
p(M = 2|y)
p(M = 1|y)

π1

π2
, (2.1)

where y = (y′
1,y

′
2)

′ denotes the vector of observations and πj = p(M = j),
j = 1, 2,

∑K
i=1 πi = 1 represent the prior model probabilities, is known as the

Bayes factor and may be used for deciding in favor or against each model. Kass
and Raftery (1995) discuss the use of these factors for hypothesis testing and
suggest the rule displayed in Table 2 for deciding between one model or the
other.

Table 2: Kass and Raftery’s decision rule based on Bayes factors.

Bayes Factor (B21) Evidence against H0

1 to 3 Not worth more than a bare mention
3 to 20 Positive
20 to 150 Strong
>150 Very Strong

Although Bayes factors constitute important tools for statistical analysis,
their use is not free of controversy. First, they may be severely affected by vari-
ation of prior distributions. Also, they lack interpretation when improper prior
distributions are used, as pointed by O’Hagan (1995). Variations commonly
employed for model comparison include pseudo-Bayes factors as advocated by
Geisser and Eddy (1979), Gelfand et al. (1992) or Gelfand and Dey (1998), pos-
terior Bayes factors as suggested by Aitkin (1991) or criteria that minimize some
posterior loss function as proposed by Gelfand and Ghosh (1998). We can also
mention intrinsic Bayes factors suggested by Berger and Pericchi (1996) and frac-
tional Bayes factors, discussed in O’Hagan (1995) or De Santis and Spezzaferri
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(1997). These techniques, however, use training samples and are unstable when
the size of sample is small as in the example described above.

To compute Bayes factors, we need to obtain the posterior probability asso-
ciated with each model, namely, p(M = j|y), j = 1, 2. We consider two different
techniques for such purposes. The first, due to Irony and Pereira (1995) provides
an analytic expression for the Bayes factor obtained by a direct computation of
the posterior distribution; it accommodates any proper prior distribution and
does not require Gibbs sampling, since usual methods of numerical integration
may be employed. The second, proposed by Carlin and Chib (1995), is based on
the Gibbs sampler and on Markov Chain Monte Carlo methods for the computa-
tions. It requires either the use of conjugate prior distributions or the existence of
conditional complete conjugation or conditional complete posterior density. Un-
fortunately, a direct comparison of the results obtained by the two techniques is
quite complicated, since the first technique relies on a prior distribution specified
for the entire parameter space while the second requires different prior distribu-
tions under the null and the alternative hypotheses.

2.1 Computation of Bayes factors via predictive distributions

First note that for j = 1, 2, a direct application of Bayes’s Theorem yields

p(M = j|y) =
πjp(y|M = j)

π1p(y|M = 1) + π2p(y|M = 2)
. (2.2)

Then let

Ω1 = {µ = (µ1, µ2) : µ1 ≥ 0, µ2 ≥ 0 and µ1 = µ2} ,

Ω2 = {µ = (µ1, µ2) : µ1 ≥ 0, µ2 ≥ 0 and µ1 > µ2}

and note that the null (j = 1) and the alternative (j = 2) hypotheses may be
written as

Hj : µ ∈ Ωj . (2.3)

The prior density of µ under Hj, (j = 1, 2) is defined as

g(µ|M = j) =
gj(µ)∫

Ωj
gj(µ)dµ

(2.4)

where g is a convenient prior density function and gj denotes the function g
restricted to the set Ωj, i.e., the function with domain Ωj that gj(µ) = g(µ) if
µ ∈ Ωj . Note that the integral

∫
Ωj

gjdΩj represents the volume under the prior
density function g(µ) in Ωj . When the integral is null as in the case where the
dimension of Ωj is less than the dimension of the parameter space, we consider
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the corresponding line integral. Naturally the prior density (2.4) is well defined
if 0 <

∫
Ωj

gdΩj < ∞.

Under the hypothesis (2.3), j = 1, 2, the required predictive densities are

p(y|M = j) =

∫
Ωj

gj(µ)l(y|µ)dµ∫
Ωj

gj(µ)dµ
. (2.5)

where l(y|µ) is the likelihood function, then p(M = j|y) may be obtained from
(2.2).

2.2 Computation of Bayes factors via MCMC methods

We now describe an alternative way of computing p(M = j|y), j = 1, 2 via an
MCMC algorithm proposed by Carlin and Chib (1995). Essentially they consider
M as an component of the random vector (µ, (µ1, µ2),M) so can it be sampled
via Gibbs methods. After convergence, the estimators of p(M = j|y), j = 1, 2
may be obtained as the ratios between the number of iterations for which M = j
and the total number of iterations. Direct sampling of the marginal distributions
themselves or of the joint distribution p(υ,y) is complicated, but sampling of
the full conditional posterior distributions p(µ|(µ1, µ2),M,y), p((µ1, µ2)|µ,M,y)
and p(M |µ, (µ1, µ2),y) is straightforward using the Gibbs sampler. To satisfy the
MCMC conditions for convergence, we need to specify a full probability model.
For such purposes we assume that µ and (µ1, µ2) are independent given the model
indicator M , and that the prior distributions p(µ|M = j) and p((µ1, µ2)|M = j),
j = 1, 2 are proper. Thus

p((µ, µ1, µ2)|M = j) = p(µ|M = j)p(µ1, µ2|M = j). (2.6)

We also assume that y is independent of (µ1, µ2) given M = 1 and of µ given
M = 2. We complete the Bayesian model specification by choosing proper “pseu-
doprior” distributions p(µ|M = 2) and p(µ1, µ2|M = 1). Because of the condi-
tional independence assumptions, these “pseudoprior” distributions do not inter-
fere with the expression of the marginal densities and so their form is irrelevant.
The joint distribution of y and (µ, (µ1, µ2)) given M = j is

p(y, µ, (µ1, µ2)|M = j) = f(y|µ, (µ1, µ2),M = j)p(µ, (µ1, µ2)|M = j)

were f(y|µ, (µ1, µ2),M = j) is the associated density function which is equal to
f(y|µ,M = 1)π1 for j = 1 and f(y|(µ1, µ2),M = 2)π2 for j = 2 . To implement
the Gibbs sampler we need the full conditional distributions of µ and (µ1, µ2) as
well as that of M . The former are given by

p(µ|(µ1, µ2),M,y) ∝
{

f(y|µ,M = 1)p(µ|M = 1) if M = 1
p(µ|M = 2) if M = 2

(2.7)
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and

p((µ1, µ2)|µ,M,y) ∝
{

f(y|(µ1, µ2),M = 2)p((µ1, µ2)|M = 2) if M = 2
p((µ1, µ2)|M = 1) if M = 1,

(2.8)
Thus, when M = 1, the required distribution for µ (2.7) is generated from

model 1; otherwise, when M = 2 the distribution is generated from the cor-
responding “pseudoprior” distribution. Similarly, when M = 1, the required
distribution for (µ1, µ2) (2.8) is generated from the corresponding “pseudoprior”
distribution; otherwise, the required distribution is generated from model 2.

For M , we have

p(M = 1|µ, (µ1, µ2),y) =
f(y|µ,M = 1))p(µ, (µ1, µ2)|M = 1)π1∑2

k=1 p(y, µ, (µ1, µ2),M = k)
(2.9)

and

p(M = 2|µ, (µ1, µ2),y) =
f(y|(µ1, µ2),M = 2)p(µ, (µ1, µ2)|M = 2)π2∑2

k=1 p(y, µ, (µ1, µ2),M = k)
(2.10)

Thus, samples of the posterior distribution p(µ, (µ1, µ2),M |y) may be ob-
tained by samples from the full conditional distributions (2.7) - (2.8) and (2.9) -
(2.10), via Gibbs algorithm. In each iteration, l = 1, . . . , N , a sample of size one
(µ(l), (µ1, µ2)(l),M (l)), is obtained. The ratio

P̂ (M = j|y) =
number of M (l) = j in the N iterations

N
, j = 1, 2,

provides a simple estimate of p(M = j|y) that may be used to compute the Bayes
factor from (2.1).

Although the form of the “pseudoprior” distributions is theoretically arbi-
trary, it is convenient to have them close to the conditional densities p(µ|(µ1, µ2),
M,y) and p((µ1, µ2)|µ,M,y) so plausible values are generated even when the
assumed model is false. Carlin and Chib (1995) recommend separate runs for
each model, i.e., considering π1 = 1 and π2 = 0, and an approximation of the
resulting posterior distribution by pseudoprior distribution for the parameter µ
under model M = 2. Subsequently, considering π2 = 0 and π1 = 1, an approxi-
mation of the resulting posterior distribution may also be taken as pseudoprior
distribution for the parameters (µ1, µ2) under model M = 1.

3. Analysis of the Diastolic Blood Pressure Data

In this section we consider the analysis of the data presented in Table (1)
assuming that the variance is known and using either truncated Gaussian distri-
butions or exponential distributions as prior distributions for µ1 and µ2. These
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distributions do not belong to conjugate families of distributions. We start with
the technique proposed by Irony and Pereira (1995).

3.1 Analysis via predictive distributions

The likelihood function is

l(y1,y2|µ) = K1 exp

(
−τ

2

[
n1∑
i=1

(y1i − y1)
2 + n1(y1 − µ1)2

])

× exp

(
−τ

2

[
n2∑
i=1

(y2i − y2)
2 + n2(y2 − µ2)2

])
(3.1)

where τ = σ−2 and K1 = (τ/2π)(n1+n2)/2.

We assume that µ1 and µ2 have Gaussian prior distributions truncated at zero,
with parameters (a1, γ1) and (a2, γ2) respectively, i.e., with density functions

g(µj) =
1

1 − Φ(−aj
√

γj)

√
γj√
2π

exp
[−γj

2
(µj − aj)

]2

I[0,∞), (3.2)

with Φ denoting the standard Gaussian distribution function, j = 1, 2, so that

E(µj) = aj +
1

1 − Φ(−aj
√

γj)

√
γj√
2π

exp(−γjaj/2), (3.3)

V ar(µj) = γ−1
j

{
1 − aj

1 − Φ(−aj
√

γj)

√
γj√
2π

exp(−γja
2
j/2)

−
[

1
1 − Φ(−aj

√
γj)

√
γj√
2π

exp(−γja
2
j/2)

]2
}

. (3.4)

Using the independence assumption on µ1, µ2 it follows that the corresponding
joint prior density is

g(µ1, µ2) = K2

√
γ1γ2

2π
exp

[
−γ1

2
(µ1 − a1)2 − γ2

2
(µ2 − a2)2

]
I[0,∞)×[0,∞), (3.5)

where K2 =
[
Φ(a1

√
γ1)Φ(a2

√
γ2)
]−1 .

From (3.1) and (3.5), we may write the joint density of the data and the
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parameter µ = (µ1, µ2) as

g(µ1, µ2)l(y|µ1, µ2) = K1K2

√
γ1γ2

2π
exp

{
−γ1

2
(µ1 − a1)2 − γ2

2
(µ2 − a2)2

}
× exp

{
−τ

2

[
n1∑
i=1

(y1i − y1)
2 + n1(y1 − µ1)2

]}

× exp

{
−τ

2

[
n2∑
i=1

(y2i − y2)
2 + n2(y2 − µ2)2

]}
. (3.6)

Let g1(µ) = g(µ, µ) and Ω1 = {µ : µ ≥ 0}. Then the denominator of (2.5) is∫
Ω1

g1(µ)dµ = K2

√
γ1γ2

2π

∫ ∞

0
exp

[
−γ1

2
(µ − a1)2 − γ2

2
(µ − a2)2

]
dµ

= K2

√
γ1γ2

2π

√
2π√

γ1 + γ2
exp

[
−γ1γ2(a1 − a2)2

2(γ1 + γ2)

]
×Φ

[
(γ1a1 + γ2a2)

(γ1 + γ2)
√

γ1 + γ2

]
. (3.7)

The corresponding numerator is∫
Ω1

g1(µ)l(y|µ, µ)dµ

= K1K2K3 exp
[
−γ1γ2(a1 − a2)2

2(γ1 + γ2)

]
exp

[
−τn1n2(y1 − y2)2

2(n1 + n2)

]
× exp

{
−K4

[
(γ1a1 + γ2a2)

(γ1 + γ2)
− n1y1 + n2y2

(n1 + n2)

]2
}

×
√

2π
K6

Φ(K5

√
K6), (3.8)

with

K3 =
√

γ1γ2

2π
exp

{
−τ

2

[
n1∑
i=1

(y1i − y1)
2 +

n2∑
i=1

(y2i − y2)
2

]}
,

K4 =
(γ1 + γ2)τ(n1 + n2)

2[(γ1 + γ2) + τ(n1 + n2)]
,

K5 =
(γ1a1 + γ2a2) + τ(n1y1 + n2y2)

γ1 + γ2 + τ(n1 + n2)
.

and
K6 = [γ1 + γ2 + τ(n1 + n2)].
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From (3.7) and (3.8) is follows that the predictive density (2.5) is

p(y|M = 1) = K1K3

√
2π
K6

[√
γ1γ2

2π

√
2π√

γ1 + γ2

]−1

Φ(K5

√
K6)

× exp
[
−γ1γ2(a1 − a2)2

2(γ1 + γ2)

]
exp

[
−τn1n2(y1 − y2)2

2(n1 + n2)

]
× exp

[
−K4(

(γ1a1 + γ2a2)
(γ1 + γ2)

− n1y1 + n2y2

(n1 + n2)
)2
]

×
{

Φ
[
(γ1a1 + γ2a2)

(γ1 + γ2)
√

γ1 + γ2

]}−1

. (3.9)

Similarly, we may compute∫
Ω2

g(µ)dµ

= K2

√
γ1γ2

2π

∫ ∞

0

∫ µ1

0
exp

[
−γ1

2
(µ1 − a1)2 − γ2

2
(µ2 − a2)2

]
dµ2dµ1

= K2

[√
γ1

2π
h(γ1, a1, γ2, a2) − Φ(−a2

√
γ2)Φ(a1

√
γ1)
]

, (3.10)

with h(b, a,m, n) =
∫∞
0 exp[−b(u − a)2/2]Φ[

√
m(u − n)]du as well as∫

Ω2

g(µ)l(y|µ)dµ

= K1K2K3

∫ ∞

0

∫ µ1

0
g(µ1, µ2)l(µ1, µ2)dµ2dµ1

= K1K2K3 exp
[−v1(y1 − a1)2 − v2(y2 − a2)2

]
×
{√

π

u2
h(2u1, µ1, 2u2, µ2) −

π√
u2u1

Φ(−µ2

√
2u2)Φ(µ1

√
2u1)

}
(3.11)

with
µj =

γjaj + τnjy1

γj + τnj
, vj =

γjτnj

2(γj + τnj)
, uj =

γj + τnj

2
,

for j = 1, 2. Using (3.10) and (3.11), we conclude that the predictive density (2.5)
under the alternative hypothesis is

p(y|M = 2) = K1K3 exp[−v1(y1 − a1)2 − v2(y2 − a2)2]

×
[√

π

u2
h(2u1, µ1, 2u2, µ2) −

π√
u2u1

Φ(−µ2

√
2u2)Φ(µ1

√
2u1)

]
×
[√

γ1

2π
h(γ1, a1, γ2, a2) − Φ(−a2

√
γ2)Φ(a1

√
γ1)
]−1

. (3.12)
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Then, choosing, for example, equal prior probabilities for both models, i.e., (π1 =
π2 = 1/2), the Bayes factor (2.1) is the ratio between (3.12) and (3.9).

Using these results, we computed Bayes factors for the data in Table 1 under
different choices for the hyperparameters. We assumed σ2 to be known with a
value equal to its estimate based on residual sum of least squares; thus τ = σ−2 =
0.03. To obtain the hyperparameters for the distributions of µ1 and µ2, we fixed
E(µj) and τj = [V ar(µj)]−1, j = 1, 2 and solved the system of equations defined
by (3.3) and (3.4) for a1, γ1, a2 and γ2. The correponding Bayes factors obtained
by fixing E(µ1) = y1 − 90 = 4.1636, and E(µ2) = y2 − 90 = 0.2636 for different
values of τ1 = τ2 are presented in the Table 3.

Table 3: Bayes factors for different values of the hyperparameters

Hyperparameters Bayes
τ1 = τ2 a1 γ1 a2 γ2 factor (B21)

0.35000 4.15 0.33 -0.22 0.30 2.81
0.20000 4.12 0.16 -0.09 0.18 2.45
0.04000 4.09 0.03 0.10 0.04 1.62
0.03500 4.09 0.02 0.12 0.03 1.60
0.00350 4.13 0.00 0.22 0.00 1.60
0.00035 4.15 0.00 0.25 0.00 1.63

The Bayes factor decreases as the precision τ1 = τ2 decreases, and it is more
stable in the case of less informative prior distributions. Also, fixing γ1 = γ2 =
0.349, we varied a1 and a2 in the interval [0, 5] and obtained Bayes factors in the
interval [1.65, 2.97]. These results suggest that the Bayes factor is sensitive to
the choice of the hyperparameters. However, within the limits considered here,
there is some weak evidence in favour of the alternative hypothesis in all cases.
This evidence decreases as the prior distributions become less informative.

For the sake of comparison, we conducted a similar analysis, computing Bayes
factors under unrestricted parameter spaces, i.e.,

Ω1 = {µ = (µ1, µ2) : µ1 = µ2} , (3.13)
Ω2 = {µ = (µ1, µ2) : µ1 > µ2} . (3.14)

We assumed Gaussian prior distributions with parameters (a1, γ1) and (a2, γ2),
for µ1 and µ2, respectively. The predictive densities may be computed as in the
previous case, from (3.7), (3.8), (3.10) and (3.11) with the obvious modifications.
Here we obtained the values of the hyperparameters by setting aj = E(µj), and
γj = τj = τ , j = 1, 2. In Table 4 we present the corresponding Bayes factors
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for different values of τ . The results also suggest less evidence against the null
hypothesis as the prior distributions become less informative.

Table 4: Bayes factors for unrestricted parameter spaces

Hyperparameter Bayes factor
τ (B21)

0.35000 2.16
0.20000 1.97
0.04000 0.46
0.03500 0.45
0.00350 0.40
0.00035 0.05

Comparing the results in Tables (3) and (4) for equal values of the dispersion
parameters, τ1 = τ2 = τ = 0.35, we conclude that the Bayes factor obtained
under the restricted parameter space (B21 = 2.81) is greater than the unrestricted
parameter space counterpart (B21 = 2.16), which suggests that the restriction
increases the evidence against the null hypothesis. For less informative prior
distributions, however, the Bayes factors associated to the unrestricted parameter
space are smaller than those obtained under the restricted parameter space.

To explore the flexibility of the methodology proposed by Irony e Pereira
(1995), we mantained the same normal density for the data y and considered an
exponential prior distribution with parameter λj , for µj , j = 1, 2, i.e.,

g̃(µj) = λj exp(−λjµj)I[0,∞), (3.15)

so that E(µj) = λ−1
j and V ar(µj) = λ−2

j , j = 1, 2. The joint prior density of
(µ1, µ2) is

g̃(µ1, µ2) = λ1λ2 exp(−λ1µ1 − λ2µ2)I[0,∞)×[0,∞),

and the joint likelihood of data y and the parameter µ = (µ1, µ2) is

g̃(µ1, µ2)l(y|µ1, µ2) = K1λ1λ2 exp(−λ1µ1 − λ2µ2)

× exp

{
−τ

2

[
n1∑
i=1

(y1i − y1)
2 + n1(y1 − µ1)2

]}

× exp

{
−τ

2

[
n2∑
i=1

(y2i − y2)
2 + n2(y2 − µ2)2

]}
×I[0,∞)×[0,∞).
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The denominator of the ratio that defines p(y|M = 1) is∫
Ω1

g̃1(µ)dµ =
λ1λ2

(λ1 + λ2)
,

where g̃1(µ) = g̃(µ, µ). The corresponding numerator is∫
Ω1

g̃1(µ)l(y|µ, µ)dµ

= K1λ1λ2 exp

{
−τ

2

[
n1∑
i=1

(y1i − y1)
2 +

n2∑
i=1

(y2i − y2)
2

]}

×
∫ ∞

0
exp

{
−(λ1 + λ2)µ − τ

2
[
n1(y1 − µ)2 + n2(y2 − µ)2

]}
dµ, (3.16)

Similarly, the denominator of the ratio that defines p(y|M = 2) is∫
Ω2

g̃(µ1, µ2)dµ2dµ1 = 1 − λ1

(λ1 + λ2)

and the corresponding numerator is∫
Ω2

g̃(µ1, µ2)l(y|µ1, µ2)dµ2dµ1

= K1λ1λ2 exp

{
−τ

2

[
n1∑
i=1

(y1i − y1)
2 +

n2∑
i=1

(y2i − y2)
2

]}

×
∞∫
0

µ1∫
0

exp{−λ1µ1 − λ2µ2 − τ

2
[
n1(y1 − µ1)2 + n2(y2 − µ2)2

]}dµ2dµ1.

Taking the hyperparameters as the inverse of the sample means, i.e. λ1 =
0.24 � 1/4.1636, and λ2 = 3.79 � 1/0.2636, it follows that the Bayes factor (2.1)
is equal to 5.22, leading to the rejection of the null hypothesis.

3.2 Analysis via MCMC methods

Now we analyse the same data via the proposal of Carlin and Chib (1995).
We considered Gaussian distributions for the data and truncated prior Gaussian
distributions for the parameters µ, µ1 and µ2. We did not consider a pseudo-
prior distribution for σ2, since the data are informative about such parameter,
regardless of the value of M , as suggested by Carlin and Chib (1995). In all prior
distributions the hyperparameters (mean and standard deviation) were set equal
to the least squares estimator of the corresponding parameters in each model.
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These values are presented in Table 5. Although both the likelihood and the
chosen prior distributions are standard in Bayesian analyses, it is not simple to
obtain expressions for the posterior distributions required to compute the Bayes
factor. This difficulty is related to the restriction on the parameter space so we
must rely on numerical procedures for the computations. We used the BUGS
(version 0.6) software (Bayesian Inference using Gibbs Sampling) developed by
Thomas et al. (1992) for such purposes.

Running each model separately, we obtained estimates of the posterior means
and standard deviations, which we used as values for the hyperparameters of the
pseudoprior distributions.

Table 5: Least squares estimates of the parameters in models (1.3) and (1.4)

Model Parameter Mean Standard Deviation
1 µ 92.2 1.2

2 µ1 94.2 1.7
µ2 90.3 1.7

We used the methods proposed by Geweke (1992) as convergence diagnos-
tics. They are available in CODA (Convergence Diagnosis and Output Analysis
Software for Gibbs sampling), a menu-driven set of S-Plus functions, originally
developed by Cowles (1994), that serves as an output processor for BUGS. To
compute the Bayes factors, we considered a BUGS run of 500 burn-in iterations
and 10000 updating iterations. The Bayes factors for comparison of models 1
and 2 under different a priori probabilities πj , j = 1, 2 are presented in Table 6.

As with the previous approach, the Bayes factors provide evidence (although
weak) against the null hypothesis, (see Table 2), suggesting that the data are
more compatible with model 2. To evaluate the effect of the choice of the hy-
perparameters of the prior distributions, we assumed π1 = π2 = 0.5 and varied
the corresponding precision (inverse of the variance) parameters, τµ, τµ1 and τµ2 ,
obtaining the results displayed in Table 6.

Along the lines of the previous analyses, we observe that the Bayes factor
increases as the precision increases, indicating that it is sensitive to the choice of
the hyperparameters of the prior distributions. If we consider, for example, a non-
informative prior distribution with precision hyperparameter equal to 0.00001,
the Bayes factor is B21 = 0.02, suggesting that the null hypothesis should be
accepted, i.e. that model 1 is more compatible with the data.

We also computed Bayes factors for models with unrestricted means consid-
ering π1 = π2 = 0.5, obtaining B21 = 2.52, which is greater than its counterpart
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Table 6: Bayes factors computed under the Carlin and Chib proposal

A priori Precision Bayes
Probabilibities Parameter Factor
π1 π2 τµ τµ1 τµ2

0.05 0.95 0.65000 0.35000 0.35000 1.49
0.25 0.75 0.65000 0.35000 0.35000 1.64
0.50 0.50 0.65000 0.35000 0.35000 1.64
0.75 0.25 0.65000 0.35000 0.35000 1.69
0.95 0.05 0.65000 0.35000 0.35000 1.70
0.50 0.50 0.06500 0.03500 0.03500 0.69
0.50 0.50 0.00650 0.00350 0.00350 0.63
0.50 0.50 0.00065 0.00035 0.00035 0.07
0.50 0.50 0.00001 0.00001 0.00001 0.02

under the restricted parameter space (B21 = 1.65). This suggests that the inclu-
sion of the restriction in the parameter space decreases the evidence against the
null hypothesis null, an unexpected conclusion, for which we have no explana-
tion. Finally, still working under an unrestricted parameter space, we considered
a non-informative prior distribution with precision parameter equal to 0.00001,
obtaining B21 = 0.03, which is in line with the value obtained under the restricted
parameter space (B21 = 0.02).

4. Extension to the Unknown Variance Case

In this section we first consider the unknown variance case under the Irony
and Pereira (1995) approach. In addition to the truncated normal distributions
(3.2) adopted for µ1 and µ2, we chose a prior gamma distribution with parameters
ν1 and ν2 for τ = σ−2 so that the joint prior density is

g∗(µ1, µ2, τ) = K2K7 exp
[
−γ1

2
(µ − a1)2 − γ2

2
(µ − a2)2

]
τν1−1 exp(−τν2),

with τ > 0 and K7 = νν1
2
√

γ1γ2[Γ(ν1)2π]−1. Here, the relevant (restricted) pa-
rameter space sets are

Ω∗
1 = {θ = (µ1, µ2, τ) : µ1 ≥ 0, µ2 ≥ 0 and µ1 = µ2, τ > 0} ,

Ω∗
2 = {θ = (µ1, µ2, τ) : µ1 ≥ 0, µ2 ≥ 0 and µ1 > µ2, τ > 0} .
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The expressions (3.7) and (3.10) reduce to∫
Ω∗

1

g∗(µ, µ, τ)dθ = K2

√
γ1γ2

2π

√
2π√

γ1 + γ2
exp

[
−γ1γ2(a1 − a2)2

2(γ1 + γ2)

]
×Φ

[
(γ1a1 + γ2a2)

(γ1 + γ2)
√

γ1 + γ2

]
, (4.1)

and∫
Ω∗

2

g∗(µ1, µ2, τ)dθ = K2

[√
γ1

2π
h(γ1, a1, γ2, a2) − Φ(−a2

√
γ2)Φ(a1

√
γ1)
]

, (4.2)

Similarly, one may show that (3.8) and (3.11) reduce to

∫
Ω∗

1

g∗(µ, µ, τ)l(µ, µ, τ)dθ = K7

(
2
π

)n1+n2
2

Γ
(

n1 + n2 + 2ν1

2

)
×
∫ ∞

0
exp

[
−γ1

2
(µ − a1)2 − γ2

2
(µ − a2)2

]
×
[

1
2

{
n1∑
i=1

(y1i − µ)2 +
n2∑
i=1

(y2i − µ)2
}

+ ν2

]−(
n1+n2+2ν1

2
)

dµ, (4.3)

and ∫
Ω∗

2

g∗(µ1, µ2, τ)l(µ1, µ2, τ)dθ = K7

(
2
π

)n1+n2
2

Γ
(

n1 + n2 + 2ν1

2

)
×
∫ ∞

0
exp

[
−γ1

2
(µ − a1)2 − γ2

2
(µ − a2)2

]
×
{

1
2

[
n1∑
i=1

(y1i − µ1)2 +
n2∑
i=1

(y2i − µ2)2
]

+ ν2

}−(
n1+n2+2ν1

2
)

dµ1dµ2. (4.4)

The required predictive densities may then be obtained from (2.5) using either
(4.1) and (4.3) or (4.2) and (4.4). Specifying the prior probabilites π1 and π2 we
may compute the Bayes factor from (2.1). Actual computations require numeri-
cal integration methods such as the generalizations of Romberg integration, for
example, routine MIDEXP (see, Press et al., 1994).

For numerical illustration we first considered an informative gamma distribu-
tion for τ by taking ν1 = ν2 = 0.03 (the estimator of τ based on residual sum
of squares). We also considered a non-informative gamma distribution for τ by
choosing ν1 = 1 and ν2 = 33.3 = 1/0.03. The results are displayed in Table 7.
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Table 7: Bayes factors computed under the Irony and Pereira proposal – unknown
variance case

Bayes Factor
τ1 = τ2 a1 γ1 a2 γ2 ν1 = ν2 = 0.03 ν1 = 1, ν2 = 33.3

0.35000 4.15 0.33 -0.22 0.30 0.49 (0.35) 0.49 (0.35)
0.20000 4.12 0.16 -0.09 0.18 0.78 (0.67) 0.77 (0.67)
0.04000 4.09 0.03 0.10 0.04 1.21 (1.30) 1.20 (1.26)
0.03500 4.09 0.02 0.12 0.03 1.22 (1.31) 1.21 (1.31)
0.00350 4.13 0.00 0.22 0.00 1.61 (1.63) 1.60 (1.62)
0.00035 4.15 0.00 0.25 0.00 1.71 (1.72) 1.69 (1.71)

Here too, the Bayes factor increases unexpectedly, when the precision τ1 = τ2

decreases as opposed to the known variance case (see Table 3). The behaviour of
the Bayes factor is similar for informative or non-informative prior distributions
for the precision parameter. Also, the Bayes factors computed under unknown
variance situations are smaller that those obtained under the known variance case
(see Tables 3 and 7).

We also repeated the computations under an unrestricted parameter space
with the same choice for the hyperparameter values. The corresponding results
are indicated within parentheses in Table 7. It is clear that the Bayes factors
increase when τ1 = τ2 decreases, suggesting that the more informative the prior
distribution, the smaller is the evidence against the null hypothesis, again in
opposition to the results obtained under known variance (see Table 4). The
corresponding Bayes factors are smaller than those obtained under the restricted
parameter space for informative prior distribuitions (τ1 = τ2 = 0.35 or τ1 = τ2 =
0.20), but they are comparable for the non-informative prior distributions.

We now perform a similar analysis under the methodology proposed by Carlin
and Chib (1995). The prior distributions for µ, µ1 and µ2 are the same considered
in the known variance case. We also considered the same informative and non-
informative prior distributions for τ used in the analysis under the Irony and
Pereira (1995) methodology. We performed a BUGS run of 500 (1000) burn-
in iterations and 10000 updating iterations for the informative (non-informative)
prior distribution. The Bayes factors associated to the different prior distributions
and different choices of πj, j = 1, 2 are presented in Table 8. In all cases the Bayes
factors provide weak evidence against the null hypothesis.

Finally, we computed the corresponding Bayes factors under an unrestricted
parameter space, obtaining B21 = 2.72 and B21 = 2.65, for the informative and
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Table 8: Bayes factors computed under the methodoloy of Carlin and Chib -
unknown variance case

Prior Probabilities Prior Distribution

π1 π2 ν1 = ν2 = 0.03 ν1 = 1, ν2 = 33.3
0.05 0.95 1.70 1.26
0.25 0.75 1.75 1.76
0.50 0.50 1.72 1.69
0.75 0.25 1.67 1.66
0.95 0.05 1.79 1.74

non-informative prior distributions respectively; these values are greater than
those computed under the restricted parameter space, namely B21 = 1.72 and
B21 = 1.69. As in the known variance case the incorporation of restrictions on
the parameters decreases the evidence against the null hypothesis.

5. Discussion

In this work we study two different Bayesian approaches for comparing to
bounded means of Gaussian distributions, a problem of interest in situations
where the phenomenon under investigation induces restrictions, as in the example
described in the Introduction. The incorporation of prior knowledge about the
restriction generates some technical difficulties under a frequentist approach as
seen in Giampaoli and Singer (2004).

Although a direct comparison of the methodologies proposed by Irony and
Pereira (1995) and Carlin and Chib (1995) is complicated in view of the differences
in formulation, the Bayes factors computed under the latter are smaller, which
might be an indication that the former is more efficient to detect small differences
and do not present contradictory results.

The two approaches differ in the computation of the posterior probabilities
p(M = j|y), j = 1, 2. Under the first approach, they are directly computed from
the predictive density (2.5) while under the second approach they are obtained by
a Gibbs sampling of the full conditional distribution. The prior opinion on the full
parameter space is expressed in a certain way via the construction of pseudoprior
distributions when working under the Carlin and Chib (1995) approach. It may
not be implemented with exponential prior distributions, for example, because
the full conditional distribution in this case is not acceptable. The methodology
proposed by Irony and Pereira (1995), on the other hand, could be inappropriate
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for the comparison of non-nested models. However, not only it requires a smaller
number of hyperparameters but it is also less sensitive to their choice.

We finally conclude by recognizing that the use of Bayes factors for hypothesis
testing is a controversial subject and other alternatives must be considered for
such purposes. In particular we mention the Bayesian reference criterion (BRC)
as suggested in Bernardo and Rueda (2002) or the recent proposal of Bayesian
p-values by Pereira and Stern (1999, 2001). In a future paper we will treat this
problem considering the intrinsic statistic and the corresponding Bayes decision
rule, the Bayesian reference criterion (BRC). This approach may be necessary
the study and consequently generation of probability densities.
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do Estado de São Paulo (FAPESP), Brazil. The authors would like to thank Pro-
fessors Heleno Bolfarine, Carlos Alberto de Bragança Pereira, Francisco Cribari-
Neto and the referee for their enlightening suggestions.

References

Aitkin, M. (1991). Posterior Bayes factors. Journal of the Royal Statiscal Society B 53,
111-142.

Barlow, R. E., Bartholomew, D. J., Bremmer, J. N. and Brunk, H. H. (1972). Statistical
Inference under Order Restrictions. John Wiley.

Bartholomew, D. J. (1959a). A test of homogeneity for rrdered alternatives, I. Biometrika
46, 36-48.

Bartholomew, D. J. (1959b). A test of homogeneity for ordered alternatives, II. Biometrika
46, 328-335.

Bartholomew, D. J. (1961). A test of homogeneity of means under restricted alterna-
tives. Journal of the Royal Statiscal Society B 23, 239-281.

Bernardo, J. M. and Rueda, R. (2002). Bayesian hypothesis testing: A reference ap-
proach. International Statistical Review 70, 351-372.

Berger, J. O. and Pericchi, L. (1996). The intrinsic Bayes factor for model selection
and prediction. Journal of the American Statistical Association 91, 109-122.

Carlin, B. P. and Chib, S. (1995). Bayesian model choice via Markov chain Monte Carlo
methods. Journal of the Royal Statistical Society B 57, 473-484.

Cowles, M. K. (1994). Practical Issues in Gibbs Sampler Implementation with Ap-
plication to Bayesian Hierarchical Modeling of Clinical Trial Data. PhD thesis,
Division of Biostatistics, University of Minnesota.



Bayes Factors for Comparing Two Restricted Means 417

De Santis, F. and Spezzaferri, F. (1997). Alternative Bayes factors for model selection.
The Canadian Journal of Statistics 4, 503-515.

Geisser, S. and Eddy, W. (1979). A predictive approach to model selection. Journal of
the American Statistical Association 74, 153-160.

Gelfand, A. E., Dey, D. K. and Chang, H. (1992). Model determination using predic-
tive distributions with implementation via sampling-based methods. In Bayesian
Statistics 4 (Edited by J. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith)
147-168. Oxford University Press.

Gelfand, A. E. and Dey, D. K. (1994). Bayesian model choice: Asymptotics and exact
calculations. Journal of the Royal Statiscal Society B 56, 501-514.

Gelfand, A. E. and Ghosh, S. K. (1998). Model choice: A minimum posterior predictive
loss approach. Biometrika 85, 1-11.

Geweke, J. (1992). Evaluating the accuracy of sampling-based approaches to calculating
posterior moments moments. In Bayesian Statistics 4 (Edited by J. M. Bernardo,
J. O. Berger, A. P. Dawid, and A. F. M. Smith). Clarendon Press.

Giampaoli, V. and Singer, J. M. (2004). Comparison of two Normal populations with
restricted means. Computational Statistics and Data Analysis. 46, 511-529.

Irony, T. Z. and Pereira, C. A. B. (1995). Bayesian hypothesis test: Using surface
integrals to distribute prior information among the hypotheses. Resenhas IME-
USP, 27-46.

Kass, R. and Raftery, A. (1995). Bayes factors. Journal of the American Statistical
Association 90, 777-795.
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