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Abstract: Microarray gene expression data contains missing values (MVs).
However, some methods for downstream analyses, including some predic-
tion tools, require a complete expression data matrix. Current methods for
estimating the MVs include sample mean and K-nearest neighbors (KNN).
Whether the accuracy of estimation (imputation) methods depends on the
actual gene expression has not been thoroughly investigated. Under this set-
ting, we examine how the accuracy depends on the actual expression level
and propose new methods that provide improvements in accuracy relative
to the current methods in certain ranges of gene expression. In particular,
we propose regression methods, namely multiple imputation via ordinary
least squares (OLS) and missing value prediction using partial least squares
(PLS).

Mean estimation of MVs ignores the observed correlation structure of
the genes and is highly inaccurate. Estimating MVs using KNN, a method
which incorporates pairwise gene expression information, provides substan-
tial improvement in accuracy on average. However, the accuracy of KNN
across the wide range of observed gene expression is unlikely to be uniform
and this is revealed by evaluating accuracy as a function of the expression
level.

Key words: Gene expression, imputation, microarray missing value estima-
tion; K-nearest neighbors, partial least squares.

1. Introduction and Background

DNA microarrays, designed to monitor mRNA expression levels of thousands
of genes in concert, are used to investigate various biological processes. Gene
expression data obtained from microarray experiments, like other experimental
data, often contain missing values (MVs). Reasons for MVs include insufficient
resolution, image corruption, array fabrication error, and excessive background
noise among others. However, some data analysis methods applied to gene expres-
sion data, including some classification and model-based clustering techniques,
are not equipped to handle missing data. For methods that require a complete
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expression matrix, the primary approaches to missing data include (1) removing
data points with MVs before the analysis or (2) estimating the MVs and then
proceeding to the analysis. We note that there are some methods, such as clus-
tering, that utilize only available data (implicit imputation), although it is not
the focus of this paper. Currently, some analyses of gene expression data adopt
approach (1) to handle MVs, partly for its simplicity. Approach (2), estimat-
ing the MVs before analysis, is less common and only naive methods, such as
replacing MVs with zeros or the sample means, have been used. Such methods
are highly inaccurate. One of the earliest use of a more sophisticated MV esti-
mation method is by Dudoit, Fridlyand and Speed (2002), where the method of
K-nearest neighbors (KNN) was used to estimate MVs before applying various
classification methods.

Recognizing the potential benefits of estimating MVs accurately in gene ex-
pression data before applying analysis methods, Troyanskaya et al. (2001) pro-
vided the first substantial evaluation of various MV estimation methods, includ-
ing KNN. K-nearest neighbors was found to give accurate prediction of MVs on
average. However, like other prediction methods, the accuracy of KNN is un-
likely to be uniform across the wide range of observed gene expression. Thus,
in this work, we evaluate the relative accuracy of imputation methods, including
mean and KNN imputation, as a function of the observed gene expression level.
Also, we propose and evaluate regression methods, OLS and PLS, for estimat-
ing MVs which provide improvement in accuracy over some ranges of expression
values where KNN did not performed as well. Both ¢cDNA and oligonucleotide
microarray data sets are used in the study.

The paper is organized as follows. We first describe the general framework of
the study design to evaluate imputation methods and also introduce the neces-
sary notations in Section 2. Next, the estimation or imputation methods, which
include mean, KNN, OLS regression, and PLS regression are described in Section
3. A brief description of the microarray gene expression data sets follows and a
summary of the findings are given in the Results Section 4. In Section 5 we dis-
cuss various issues, including the selection of method parameters, sensitivity to
initial values, and other missing data mechanisms. We conclude in Section 6 with
a summary of some practical guidelines and issues for further investigation. All
algorithms in the paper are described in sufficient details for implementation and
are also made available at http://stat.tamu.edu/~dnguyen/supplemental.html.
Implementation codes in Matlab will be made available there as well.

2. Evaluation Procedure

Given n microarray experiments, each of which contains the mRNA expres-
sions of p genes, the data can be organized into an n x p matrix of gene expression
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values. Denote x;; to be the expression value of gene (column) j in sample (row) i.
To evaluate the accuracy of imputation methods we used the following evaluation
design.

1. Given a real gene expression matrix, the (real) MVs are removed to form
a complete gene expression matrix with no MVs. This is denoted by X =

(xij)nXp'

2. Next, a proportion ¢, 0 < ¢ < 1, of MVs are intentionally introduced
by randomly removing values in X. We also examine the case where the
missingness depends on the actual gene expression.

3. Imputation methods are applied to estimate the MVs (values removed in
step 2).

4. The imputed or estimated values are compared to the true values to assess
accuracy.

In step 2, the missing values are introduced by systematically removing ex-
pression values from the complete expression matrix. Let £ be the set of genes
with some MVs and denote the introduced MVs of gene j € L by y} = (y15, Y25,

-y Ymyj),my > 1. The set of all M = ) m; MVs can be expressed as y' =
(Y1 Y5 -, ¥0) = (y1,v2, - .-, yn), where m = |£] is the number of genes with
some MVs. We refer to a particular gene with MVs to be estimated as the target
gene. The set of genes with available information for estimating the MVs of the
target gene is the set of candidate genes.

Although obvious, we note that the imputation methods applied to estimate
the MVs in step 3 should not utilize, in any way, the true values that were removed
from X in step 2. A notation, that is useful to track the MVs and non-MVs of X,
after step 2, is the missing indicator matrix, R, introduced in Rubin (1976). The
ijth element of R is r;; = 1 if the expression value x;; is observed and r;; = 0 if
x;; is missing. Using this notation, all computations involved in any imputation
method must be applied to only the available data, which is {x;; : r;; = 1}. This
caution is relevant to even “preprocessing” algorithms applied to X (prior to step
3), because the MVs would not be available in practice.

In step 4 the accuracy of the imputation method is evaluated. Since the MVs
were introduced intentionally, they are therefore known. Thus, the vector of esti-
mates (§) can be compared to the vector of true values (y) to assess the accuracy
of an imputation method. For example, Figure 1 displays the normalized relative
estimation error (RAE) curve (Jy — 9|/|y|) as a function of the true expression
value (y) in a cDNA microarray data set for mean, KNN, and regression (PLS
and OLS) estimation methods. It is apparent from Figure 1 that the accuracy of
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an estimation method is not uniform (flat) across the full range of gene expres-
sion levels. The vertical lines marks the mean, mean + 1 standard deviation, and
mean + 3 standard deviations (i, u+ o, p £ 30) of true expression values. Note
that there is a range of expression where KNN performs better compared to other
methods (e.g., near p), but other methods (e.g., PLS regression) outperform it

in other ranges.

o | 1 -—- MEAN
— Y -- pLs1
! \ <o PLS2
! \ --+ OLSR
! \, —— oLs
i \, — KNN
© ! S
o ; S
L Il N
z ,.
= i ‘\'\
= Il N
.“_J ,.
© [ .
< o i ~.
= i
= i
N . K
|_|IJ ~. .
L
2 3
o
=
y
N
o
Q
o
T T T T T T
-6 -4 -2 0 2 4
TRUE

Figure 1: RAE error curves for BCLL data. Given are the relative absolute
errors (y-axis) as a function of the true gene expression values (z-axis) for
MEAN, PLS1, PLS2, OLSR, OLS, and KNN imputation. The lines plotted
are the loess fits through the scatter plots of the M true values (y;) and the
errors e; = |y; — 4i|/|yi| = |TRUE — ESTIMATE|/|TRUE| for each imputation
method. The mean true expression (u), u &+ o, and p + 30, where o is the
standard deviation of the true expression, are marked with vertical lines. See
section ‘Construction of the error curves’ for details of computation. The data
set used is the B-cell chronic lymphocytic leukemia (BCLL) cDNA data.
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Table 1: Summary of some characteristics of the complete gene expression ma-
trices, X, used to test imputation methods. For cDNA arrays, each expression
value, x;5, is the log expression ratio of the experimental to reference, background
corrected, expression intensity. A proportion of ¢ = 0.05, 0.10, 0.15, and 0.20
MVs is introduced to each complete expression matrix, X, of size n x p.

Lymphoma Leukemia Breast Cancer
DATA.: DLBCL BCLL AML ALL BRCA1, BRCA2, sporadic
# arrays, n 45 29 47 25 22
# genes, p 5,353 5,079 2,260 2,560 3,226
type cDNA  c¢DNA oligo. oligo. cDNA

To evaluate the accuracy of the imputation methods, we implemented the
evaluation design described above to five complete expression matrices (summa-
rized in Table 1). The percentage of induced missing data is 5%, 10%, 15% and
20%. For ¢cDNA array data we examined estimation using ratio data as well as
estimation based on data from each channel separately. In addition, we exam-
ined the estimation results under the setting where the rate of missing data is
dependent on the expression level.

3. Imputation Methods for Microarray Data

3.1 Ignoring gene correlation structure: Mean imputation

One of the simplest imputation methods used for microarray data is mean
imputation, wherein the MVs of target gene j are estimated by the observed
average expression of gene j. The average is taken over the available values of
gene j in the n experiments. More precisely, the imputed values of gene j € L,

are given by

D TigTig

Jvj = ~=n—— v=1,...,m; > 1.

2 i1 T

Note that mean imputation does not utilize any information between genes across
the n experiments. Although it is an improvement over replacing the MVs with
zeros (or a positive constant), as is sometimes done with microarray data (e.g.,
Alizadeh et al., 2000), there are other much more precise methods.

3.2 Incorporating pairwise gene information: KNN imputation

One approach to improve upon mean imputation is to incorporate the infor-
mation between genes contained in the structure of the gene expression matrix.
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To improve accuracy, the method of KNN imputation has been used in the esti-
mation of MVs in microarray experiments (Dudoit, Fridlyand and Speed, 2002;
Troyanskaya et al., 2001). KNN uses pairwise information between the target
gene with MVs to be estimated and the remaining candidate genes. A MV of
target gene j in experiment v is imputed based on K candidate genes with avail-
able values in experiment v corresponding to K genes “closest” or “nearest” to
target gene j. The choice of a distance measure to select the K genes giving
good accuracy depends on various factors, some of which are data dependent.
For example, it was found that a weighted Euclidean distance performed well
when it was applied to cDNA experiments from the yeast Saccharomyces cere-
visiae (Troyanskaya et al., 2001). Others have used the Pearson correlation to
select the K nearest genes (Dudoit Fridlyand and Speed, 2002).

Without lost of generality, suppose that a target gene j € £ has a MV in
experiment v. The set of available candidate genes for estimating the MV, y,;,
are all genes with available values in experiment v corresponding to MV y,,;.
Denote this set of candidate genes by C,. Next, K genes among the candidate
gene set, i.e., from C,, are selected so that they are closest to gene j. These
K selected candidate genes are referred to as the K nearest neighbors of the
target gene. The rationale underlying such a procedure is that candidate genes
closer to target gene j may provide better information for estimating MVs. Often
the Euclidean distance or some variant of it is used. For example, the weighted
Euclidean distance measure between target gene x; and each candidate gene xy,
k € C, based on the available data is

n

1/2
djk: = d(Xj,Xk) = {njkl Zrijrik(fxik — -Tij)2} , kedC, (31)
=1

where nj, = Z?:l 7371 is the number of jointly available values between x; and
xj. Note that the distance (3.1) is weighted by the number of data points, ny.
Furthermore, note that C, depends on the target gene j, but the dependence on
7 is suppressed in the notation throughout for simplicity.

Let C; be the set of column labels corresponding to the selected K nearest
neighbors. The estimated value for MV y,,; is the weighted average of expression
values of the K selected candidate genes in experiment v,

:l.}yj = Z WETyk, (3.2)

keCy

where wy, = 1/(d;,C), k € C; are the weights and C' =}, .. dj_k.1 is the normal-
izing weight constant. Weights are inverse of the distances, thus, giving higher
weights to expression values from candidate genes closer to target gene j. The
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distances and weights described above were used in (Troyanskaya et al., 2001) in
the algorithm called KNNimpute.

3.3 Incorporating pairwise gene information: Imputation via repeated
OLS regression

Rather than taking a weighted average of the K available values, as is done in
KNN, multiple estimation of each MV can be obtained by repeatedly regressing
the target gene on each of the K selected candidate genes. Consider the selection
of K nearest candidate genes based on the distance given by (3.1) used in KNN
imputation. As before, denote the selected K candidate genes for estimating the
MV of target gene j in experiment v by C;. For each of the K selected candidate
genes, we can obtain an estimate of the MV of target gene j based on ordinary
least squares (OLS) regression. More precisely, the kth OLS imputation of a MV
of target gene j € L based on available data is given by

@$):fj+be$Wr—fwa ke Cy,

where ., is the available value of candidate gene k& € C;, Z; and ) are the

sample means based on jointly available data, and bgk) is the regression slope
coefficient using the available data. The final estimate of the MV of target gene
7 in experiment v is the weighted average of the K separate estimates,

~ ~(k
oj= > wiily. (3.3)
keCx

The weights can be based on the distance used to select the K nearest genes,
as in (3.2). If equal weight is desired for each of the K separate estimates, then
Wp = 1 / K.

3.4 Incorporating global gene structure: Imputation via PLS regression

In this section we introduce the method of partial least squares (PLS) im-
putation using PLS regression. PLS is a useful prediction and modelling tool in
chemometrics (Helland, 1988; Hoskuldsson, 1988) and has been applied to can-
cer classification problems based on gene expression data (Nguyen and Rocke,
2002a, 2002b, 2002c). Rather than select K nearest candidate genes for impu-
tation based on pairwise distances, as in KNN, PLS uses all the candidate gene
expressions, as well as the available values from the target gene to estimate the
MVs. Based on the candidate gene expression matrix and the available values
of the target gene, PLS constructs a sequence of gene components. Next, to
estimate MVs of target gene j, a regression model with the target gene as the
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response variable and Kp PLS gene components as predictors is fitted. The MVs
are predicted using the fitted PLS regression model.

Suppose that target gene j € £ has MVs which are to be estimated. All genes
that have available values corresponding to the MVs of gene j comprise the set of
candidate genes. Denote the expression matrix of the candidate genes, without
column j, as X_;. This expression matrix, X_;, can be partitioned according to
the available values (A) and MVs (M) of gene j as follows,

A A
X4 X4
J —J

where Xj‘ is a vector of available values of target gene j, xﬁ-\/l a vector of missing

(empty) entries to be imputed (filled), Xf‘j is a n; x p; matrix of available values

A

corresponding to x4, and X* ; consists of available values corresponding to the

] J
MVs of target gene j (xﬁ‘/f ). In this setup the pair (Xﬁ‘j,xj‘) is the training data
and X* ;is the test data that will be used to predict the MVs xﬁ-\/l .

Note the that the number of samples (rows) is much smaller than the number
of available genes (columns) in the training data, i.e., n; << p;. Hence, dimension
reduction is necessary. PLS is a dimension reduction method which extracts the
gene components sequentially to maximize the sample covariance between the
target gene and the linear combination of the set of candidate genes. More
precisely, in this imputation context, the kth PLS step seeks a weight vector,
wi(j) (pj x 1), satisfying the following objective criterion,

w(j) = argmax COV2(XéjW,X3-4) jeL, (3.4)
w/w=1
subject to the orthogonality constraints
wi.(5)Swa(j) = 0, forall 1 < d <k, (3.5)

where S = Xé;Xf‘j. Equation (3.4) says that weights are assigned to each gene
such that the covariance between the target gene and the linear combination of
the candidate genes is maximized. The weights are non-linear functions of both
the candidate and target expression values. Note that a sequence of weights,
wi(7),w2(j),..., is obtained via (3.4) for each gene j € £ with MVs. Further-
more, these weights depends on what is being predicted, namely target gene j.
The resulting linear combinations with maximum covariance with target gene
j, namely t‘,?(j) = ijwk(j), are the PLS gene components. One interpretation
of the sequence of weight vectors (3.4) and PLS gene components is as follows. In
the first step of PLS the most important mode of covariation exhibited between
the candidate gene expressions and the target gene is captured. The second step
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of PLS still seeks the most important mode of covariation between the candidate
genes and the target, but, as stipulated by (3.5), it further requires the linear
combination constructed to be orthogonal to the one constructed at the first step.
Thus, the second PLS components captures a new mode of target and candidate
gene covariation that is different from the first, i.e., cov(ts,t{) = 0. As in
the second step of PLS, subsequent steps seek the strongest mode of candidate
and target gene covariation and the & — 1 orthogonality constraints imposed
require that the kth linear combination identifies a mode of predictor and response
covariation distinct from those previously identified (by the previous k — 1 linear
combinations).

A linear regression model based on the available values is fitted using the
constructed PLS gene components as predictors. The fitted expression values of
target gene j is

1 =TA()B;, (3.6)

where T4(j) is a matrix of the Kp PLS gene components and ,Bj is the least
squares regression coefficient estimates. The expression values of candidate genes,

*,, corresponding to missing entries, xé\/[ , namely the test data, are used to
construct the test PLS components, T*(j), using only the training information
(3.4). The test components are substituted into the training PLS regression

model (3.6) to predict the MVs,
iéw =T (])B]

Computations involved in (3.4) require Xf‘j to be complete. In practice we first
form a complete matrix by replacing the MVs with “initial” estimates from KNN.

4. Results

4.1 Microarray test data sets

The estimation methods were tested on a variety of cDNA and oligonucleotide
(Affymetrix) arrays. Table 1 summarizes some characteristics of the 5 complete
expression matrices, X, used to evaluate the imputation methods. The first
complete expression matrix, X, consists of n = 45 diffuse large B-cell lymphoma
(DLBCL) arrays with p = 5,353 ¢cDNA probes. We formed a second complete
expression matrix with n = 29 B-cell chronic lymphocytic leukemia (BCLL)
arrays with complete data for p = 5,079 ¢DNAs. Both lymphoma expression
matrices, DLBCL and BCLL, are from the same set of experiments, using a
combination of 9 lymphoma cell lines as the reference (Alizadeh et al., 2000). The
third and fourth complete expression matrices consists of n = 47 acute myeloid
leukemia (ALL) samples and n = 25 acute lymphoblastic leukemia (ALL) (Golub
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et al., 1999). Complete AML and ALL expression matrices contain data for
p = 2,260 and p = 2,560 oligonucleotide sets respectively. The fifth data set used
to evaluate estimation accuracy is a cDNA data set consisting of 7 breast cancer
(BC) samples with mutation in the BRCA1 gene, 8 with mutation in the BRCA2
gene, and 7 sporadic cases with neither mutations detected (Hedenfalk et al.,
2001). The complete expression matrix of the combined 22 BC samples consists of
3,226 cDNAs. The reference used for all 22 BC samples is a nontumorigenic breast
cell line. More detailed protocols for both cDNA and oligonucleotide experiments
are available in Nguyen et al., (2002d). Prior to applying the imputation methods
the data sets were log-transformed.

Note that the first four complete matrices were formed based on biological
samples of one type, such as all ALL samples or all AML samples. This is a
reasonable strategy since prediction generally can be poor for a collection of het-
erogenous samples. However, it may be of interest to see the performance of the
methods under heterogenous or diverse biological samples. The complete matrix
formed from the breast cancer data combined three types of biological samples,
namely samples with mutation in the BRCA1 gene, samples with mutation in
the BRCA2 gene, and sporadic samples with neither mutations detected. This
serves as a test case for comparing the imputation methods with diverse biological
samples.

4.2 Assessment of estimation accuracy as a function of gene expression

The two basic questions regarding evaluation of estimation accuracy being
addressed in the current paper are:

1. Does estimation accuracy depend on the actual gene expression level? If
accuracy depends on the expression level, then it is natural to also examine:

2. How does estimation accuracy depend on the gene expression level? For
example, is the accuracy higher for some range of expresson values and
lower for other ranges?

A cursory examination of the error curves in Figure 1, for example, indicates
that the accuracy is not uniform across the range of observed gene expression. If
the accuracy is independent of the gene expression levels then the error curves
would all be flat horizontal lines. Therefore, we focus on question 2 above.

For the data in displayed in Figure 1, an overall average estimation accuracy
can be measured by a summary statistics, such as {M 'S |y; — §;]°/c}/?

(s =1,2,...), where y is the true expression value, ¥ is its estimated value, and
¢ is a normalization constant (e.g., the average of the data value in the data set).
The root mean square (RMS) error (Troyanskaya et al., 2001) and the root
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Table 2: Overall average estimation error measured by RMS error, {M =1 > (y; —
ﬁi)Q}l/ 2. The values give an indication of the overall average estimation accuracy
for the various estimation methods (A; MEAN, KNN, OLS, OLSR, PLS1 &
PLS2). Also given (B) are the RMS errors when the methods are applied to the
two channels of the BCLL ¢cDNA data set separately and (C) the RMS errors for
expression-dependent missing rate. See section ‘Construction of the error curves’
for details.

Data MEAN KNN OLS OLSR PLS1 PLS2

A. BCLL 0.6755 0.4578 0.4615 0.4519  0.4520 0.4447
DLBCL 0.7298 0.3990 0.4035 0.4013 0.4074 0.4009
BRCA  0.4493 0.3886 0.3901 0.3907 0.3882 0.3861
ALL 0.6490 0.5791 0.5871 0.5701  0.5640 0.5735
AML 0.6186 0.5440 0.5380 0.5221  0.5221 0.5240

Estimation applied to separate channel-BCLL data.
B. Cyb 1.8994 0.6098 0.6140 0.6078  0.5961 0.5819
Cy3 0.8460 0.4211 0.4226 0.4125 0.4275 0.4071

Expression-dependent missing rate.
C. Cyb 1.2435 0.7749 0.7817 0.7645 0.7596 0.7440
Cy3 1.0056 0.5763 0.5779 0.5557 0.5774 0.5540

mean absolute (RMA) error is when s = 2 and s = 1 in the above formula,
respectively. Such summary measures are essentially averages of the individual
errors: e; = |y1 — 91/%,e2 = |y2 — 92|, ..., enmr = |ynr — Uar|®. They give an indi-
cation of the overall average estimation error, which can be roughly interpreted
as averages of each error curves in Figure 1. Assessing the average estimation
error, as measured by RMS for instance, is important and has been addressed in
detail (Troyanskaya et al., 2001) and we refer the interested reader there for a
more in-depth treatment. We are investigating here a different issue, namely the
dependence of the estimation accuracy on the gene expression and this cannot be
adequately assessed by RMS error or any other summary measure. Therefore, to
more fully address question 2 posed above, we need to examine the entire error
curve, because there are systematic rises and falls in the error curve (accuracy)
as a function of the expression levels that will, inevitably, be lost when averaging
the errors over the entire range of gene expression values. Table 2 gives the rel-
ative overall average performance of the various methods using RMS. As will be
detailed in the following sections, although the overall average estimation error,
as measured by RMS, may be higher for K-nearest neighbors (KNN) than for
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partial least squares regression (PLS), KNN performs better than PLS when the
expression is near the mean.

4.3 Construction of the error curves

Accuracy of the estimation methods were evaluated with 5%, 10%, 15% and
20% missing data. For example, Figure 1 displays the error curves for MEAN,
PLS1, PLS2, OLSR, OLS, and KNN imputation for the BCLL ¢cDNA data with
with 10% missing. PLS1 denotes imputation using PLS regression as described
earlier and PLS2 is also a PLS regression method, but uses the genes with high
sum of squares PLS weights (3.4) from the PLS1 fit (Wold, 1994; PROC PLS,
SAS Institute, 1999). OLS is imputation via ordinary least squares regression
with weights selected using the weighted Euclidean distance (3.1), as in KNN.
OLSR denotes OLS imputation but with distances and weights based on the
Pearson correlation coefficient.

The error curves, lines plotted in Figure 1, are the loess fits through the scatter
plots of the true values, y1,...,yn (z-axis) versus the errors ey, ...eps (y-axis).
The same window size of 0.20 was used in the loess fits for all methods. The
individual errors are given by e; = |y; — 9;|°/ci, where g; is the estimated value
and ¢; is a normalization constant. Taking s = 1 and ¢; = 1 gives the absolute
error, e; = |y; — ¥;|, which is a direct and simple measure of error. An advantage
of using absolute error is its simple and natural interpretation. However, it may
be more appropriate to consider a relative measure of error which accounts for
the magnitude of the true value. More specifically, taking ¢; = |y;| gives rela-
tive absolute error (RAE), e; = |y; — 9i|/|yi| = |[TRUE — ESTIMATE|/|TRUE].
Note that the RAE measure is appropriate, but has some minor drawbacks. It is
undefined for y; = 0 and for small y; values the ratio is unstable (e.g., could be
artificially inflated). Thus, the error patterns of the various estimation methods
can not be reliably compared in this region, say |y;| < €, although RAE may
be adequate for |y;| > e. We first illustrate that the conclusions remain essen-
tially the same, whether the error curves are constructed from individual RAE
or absolute errors. We then propose an alternative construction of error curves
that (1) resolves the aforementioned drawbacks of RAE, (2) allows for evaluation
of the error patterns equally across the range of gene expression values, and (3)
facilitates easy comparison and interpretation.

To examine the RAE measure discussed above, Figure 1 gives the RAE error
curves for the various estimation methods using RAE = |y; — 4;|/|yi| for |y;| > €
and |y; — s|/€ for |y;| < € (e = 0.5). The vertical lines marks the mean of the
true expression values (i), & o, and p + 30, where o is the standard deviation
of the true expression values. Note the range of expression levels where KNN
estimation out-performed the other methods {y ~ (u — .750, pu + .600)} and vice
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Figure 2: Error curves in Figure 1 with standard error bands. Given are the
KNN, OLSR, and PLS2 error curves in Figure 1 with corresponding error bands
added. Error bands are given for the +3 standard deviation of true value (-
axis) range to avoid artifacts. Note that the OLS curve and the PLS1 curve
which is very similar to the PLS2 curve are not displayed. Mean imputation
performed extremely poorly and is not of particular interest. The standard
error bands were obtained using the bootstrap method (Efron and Tibshirani,
1993) and with 500 replications.

versa {y S pu— 750, y 2 p+ .600} for this data set. The KNN, OLSR and PLS2
curves in Figure 1 are repeated in Figure 2 along with the standard error bands.
(To avoid clutter in the plot, the OLS curve and the PLS1 curve which is very
similar to the PLS2 curve are not displayed. Mean imputation performed very
poorly and is not of particular interest as well.) Similar results were obtained
from error curves based on individual absolute errors |y; — 3;|. However, due to
wide range of expression values, the region where KNN performed well relative
to the other methods is not apparently clear in the error curves constructed
from absolute errors. In addition, since we are assessing the performance of
the proposed new methods (PLS1, PLS2, OLSR, and OLS) relative to KNN
estimation, the RAE curves in Figure 1 can be presented by dividing the RAE
error curves for the new methods by the RAE error curve for KNN. For example,
the new PLS2 error curve, relative to KNN, is obtained as
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Figure 3: (a) RAE error curves presented relative to KNN for BCLL data and
(b) Error curves relative to KNN for BCLL data.
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These relative RAE curves are given in Figure 3(a). Note that in Figure 3(a) the
KNN error curve is represented by the flat horizontal line at one. We emphasize
that the information in Figures 1 and 3(a) are identical. However, the relative
comparison and interpretation of the error curves is straight-forward from Figure
3(a): (1) The region where KNN out-performs the other methods is clear — it is

(4.1)
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the region where the error curves rise above the (KNN reference) horizontal line
at 1. (2) The region where the regression methods out-perform KNN estimation
is simply where the error curves fall below the horizontal reference line at 1.

In Figure 3(a) the RAE error curves are presented relative to KNN for BCLL
data. The identical error curves in Figure 1 are presented here relative to KINN.
These error curves were obtained by dividing each of the error curves by the
KNN error curve in Figure 1. The error curves here contain the same informa-
tion as the error curves in Figure 1, but they are relative to KNN. Thus, the
relative comparison and interpretation is straight-forward: (1) The region where
KNN performs better relative to the other methods is the region where the error
curves rise above the (KNN reference) horizontal line at 1. (2) The region where
the regression methods out-perform KNN estimation are simply where the error
curves fall below the horizontal reference line at 1. In Figure 3(b), error curves
relative to KNN for BCLL data are presented. Given are the error curves nor-
malized relative to KNN as in Figure 3(a), but constructed based on individual
errors ¢; = |y; — 9;| = |TRUE — ESTIMATE|. These error curves approximates
those in Figure 3(a) well, thus the conclusions remain the same. In addition, they
eliminate some of the drawbacks associated with RAE (detailed in the section
‘Construction of the error curves’) and, like Figure 3(a), the relative comparison
and interpretation is straight-forward. Note that error curve for mean estimation
was removed (here and throughout) because it performed extremely poor in all
cases.

The error curves in Figure 3(a) (based on indivdual RAEs) are easy to in-
terpret, but still have the aforementioned drawbacks. Error curves that alleviate
these technical problems, but still retain the properties of the relative RAE error
curves (in Figure 3(a)) is desirable. Thus, we also examined the error curves
constructed as

{* error curve (|y; — QZ(*)D} + {KNN error curve (|y; — QZ-(KNN)D} (4.2)

where * = PLS1, PLS2, OLSR, and OLS (see Figure 3(b)). Note that the error
curves in Figure 3(b) are very similar to the ones in Figure 3(a). The conclusions
drawn are the same: (1) KNN is superior relative to PLS2 regression method in
the range {y ~ (u—.750, 1+ .600)}. (2) PLS2 Regression method out-performed
KNN in the range {y < p— 750, y 2 p+ .600}. As in Figure 3(a), the new
error curves in Figure 3(b) clearly show the range of gene expression where KNN
performed well.

Also, the absolute error, |y; — QZ-(KNN)L was observed to be far above zero, so
the aforementioned drawbacks associated with RAE were no longer issues. Note

that the use of (4.2) would have the same problems as RAE if the KNN estimation
was perfect (QEKNN) = y;). However, this was not the case.



362 D. V. Nguyen, N. Wang and R. J. Carroll

z z
g (a) DLBCL g (b) BRCA
=] e
o 0 Q n
- 2w
'% N - - PLS1 R
2 o | Z ok L o |
T R RSN —-os o o
E N =
< w | ~ < v |
= A N > A
= AN [
] o ~ ~ %] o 213
woS ~F———= W & ~=—=F=z2 | SE==ofr
i - ST w [ -
> v | o v |
x o r o
g E
- 9 | ° o |
8 ° T T T T T & ° T T T T T T T
© ‘©
g -4 -2 0 2 4 g 3 -2 -1 0 1 2 3
15} 9]
[ = c
TRUE TRUE
z z
z (c) ALL g (d) AML
=] 2
o 0 Q n
2 o 2 ]
© ©
e o e o
o N o o~
= =
< w | < v |
= — = i
= [
[} o | =~ — n o
W &7 =Z=—=f- -7 N SRR N W et N
4 Rl S s 4 ity Bt
> v | o v
¥ o ¥ o
g E
- 9 | ° o |
S ° 4 T T T T T g ° T T T T T
© ‘©
£ 0 2 4 6 8 10 £ 2 4 6 8 10
15} 9]
[ = c
TRUE TRUE

Figure 4: Error curves relative to KNN (a) DLBCL data. Given are the error curves
normalized relative to KNN for the diffused large b-cell lymphoma (DLBCL) cDNA
data. See Figure 3(b) caption for details. Similarly for (b)BRCA data, (¢) ALL data,
(d) AML data.

4.4 Observed estimation error pattern as a function of gene expression

For the reasons detailed in the previous section, we present the error curves
given by (4.2) in this section, although the conclusions remain the same, whether
using (4.1), absolute errors, or squared errors. The error curves using other error
measures are made available at

http://stat.tamu.edu/~dnguyen /supplemental.html.

The estimation error curves (4.2) for the data sets, summarized in Table 1
(labelled BCLL, DLBCL, AML, ALL, and BRCA), are given in Figures 3(b), 4(a)-
(d). Error curves for all data sets are not flat horizontal lines, so the accuracy is
not uniform across the observed expression levels. (Full-size figures are available
at the above supplemental web site.) As can be seen from Figures 3 and 4 the
estimation accuracy patterns fluctuates as a function of the gene expression
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level. Furthermore, there are some notable patterns in this dependence between
accuracy and actual gene expression level.

For example, KNN estimation is more accurate, compared to PLS regression
estimation (e.g., PLS2), when the true expression is near the mean, y ~ pu.
This is indicated by the PLS error curves rising above the horizontal (KNN
reference) line near p (center vertical line). The range of expression where KNN
is most accurate for the various data sets are more precisely summarized in the
first column of Table 3. However, outside this range, PLS2 estimation is more
accurate compared to KNN (Table 3, second column). This is apparent from
the error curves falling below the KNN horizontal reference line. The ranges
where OLSR is more accurate relative to KNN is also summarized in Table 3
(third column), although the relative gain in accuracy is substantially less than
PLS2. Compared to both KNN and regression methods, the accuracy in MEAN
imputation is unacceptably low across the observed range of expression levels for
all five data sets. The general results described thus far are based on data within
1+ 2.50 to avoid extreme data points (although the same results hold for the
u £ 3.00 range as well). Thus, any potential artifact at extreme ends (e.g., y
beyond p + 3.00) does not play a role.

These findings hold similarly for other percentage of missing data (5%, 15%,
and 20%). The estimation accuracy patterns for these cases are quite similar
to the case of 10% missing data discussed above. Error curves for the other
percentages of missing data are available at

http://stat.tamu.edu/~dnguyen/supplemental.html.

We also investigated application of missing value estimation methods to the
Cy5- and Cy3-channel data separately for cDNA microarrays. For illustration, we
used the BCLL data (with 10% missing). A summary of the performance of the
various estimation methods are given in Table 3B. The error curves for the Cy5-
and Cy3-channel data are given in Supplemental Figures 5 and 6 respectively.
The results here are similar to the earlier results, except for the Cy3-channel
data. For the Cy3-channel data the accuracy of PLS2 is higher than KNN across
the entire range of expression values. However, in the range y ~ (u, u + .250)
the gain in accuracy from PLS2 estimation over KNN is not as substantial as the
gains from outside this expression range (see Supplemental Figure 5).

5. Discussion

5.1 Choosing the number of nearest neigbors K

The use of KNN imputation requires the selection of the number of nearest
neighbors, the parameter K. The same K was used for OLS and OLSR imputa-
tion. KNN imputation is repeated for a sequence of values for the parameter K
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in the evaluation design, for each data set, to provide general guidelines for the
selection of K in practice. However, for a given data set in practice, missing data
can be induced as described in the evaluation design to find K. Implementing
the evaluation design to find K for a given data set is preferable since the choice
of K is likely to depend on the particular data. For each of the five complete
expression matrices (BCLL, DLBCL, BRCA, AML, and ALL) KNN imputation
was carried out for K =1, 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 46, 54, 62, 70, 80,
90, 100, 140, 180, 250, 300, and 500. This was repeated for each data set with
5%, 10%, 15% and 20% missing data.

With more than K = 30 neighbors the estimation error, outside a moderate
range of true expression, deteriorates rapidly and is unacceptably high, although
the error is low near the mean expression level y. On the other extreme, when
the number of neighbors is very small (K < 6) the accuracy is quite low near
u. For example, for the BRCA data with 5% missing, a choice of K between
10 and 22 is reasonable, although for this data K = 14 performed best over-
all. Similar results were observed for the other data sets and percentage of
missing data. Detailed results of our study on the choice of K is available at
http://stat.tamu.edu/~dnguyen/supplemental.html. We note that it was also
found in Troyanskaya et al., (2001) that, on average, KNN “is relatively insen-
sitive to the exact value of K within the range of 10-20 neighbors,” based on a
yeast cDNA array data. Our result supports this finding. For illustration of the
methods, the results described above are based on K = 14 neighbors.

5.2 Choosing the distance metric in KNN and OLS

As described earlier, KNN imputation requires the selection of a “distance”
function to measure closeness. A variety of distances were examined in Troy-
anskaya et al. (2001), including the Pearson correlation, and the results there
indicate that the weighted Euclidean distance (3.1) did well. Our preliminary
analysis compared the use of this distance and the Pearson correlation in KNN
and results are similar to that in Troyanskaya et al. (2001; data not shown).
Thus, for KNN we only used weighted Euclidean distance (3.1). However, for
OLS imputation we used both the weighted Euclidean distance (OLS) and the
correlation (OLSR).

5.3 Choosing Kp in PLS

For PLS imputation, the number of PLS gene components, Kp, must be
selected. For each data set and percentage of missing data we also examined
the performance of PLS imputation using Kp = 1 to 8 gene components for
prediction. The results suggest, not surprisingly, that in many cases there is not
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a particular choice of Kp which gives superior accuracy across the wide range
of true values. However, differences in accuracy between various values of Kp
is small across the range of true expression values and a choice of Kp beyond 5
appears unnecessary. Again, detailed results of our study of the choice of Kp are
available at http://stat.tamu.edu/~dnguyen/supplemental . html.

Like classification with PLS where Kp can be chosen to minimize the number
of misclassifications (e.g., Nguyen and Rocke, 2002b), one can choose Kp here to
minimize, for example, the mean absolute error (MAE) M1 3", |true; —estimate; |
or some other measure of average error, M ! >, €i- The values of Kp minimizing
the this total absolute error range from 1 to 5 for all cases. However, as mentioned
earlier, the use of such overall measure in this context does not give indications of
the accuracy of PLS imputation across the range of expression values. It is more
informative to use this criterion in conjunction with the error curve to select Kp.
For illustration of of the methods above we used Kp = 4.

Table 4: Variation of PLS estimation error for some examples with 15%
missing data. Given are the average and variance of MAE (mean abso-
lute error) from 14 repetitions of the study design.

Kp=3 Kp=14
Mean Variance Mean Variance

BRCA  0.2880 0.0744  0.2882 0.0744
DLBCL 0.2919 0.0852 0.2939 0.0860
ALL 0.3667 0.1540 0.3685 0.1551

5.4 Variation of estimation error and sensitivity to initial values for
PLS

To assess the variance in estimation error of PLS imputation we repeated
the evaluation design. For example, Table 4 gives the average and variance of
MAE (mean absolute error) from 14 repetitions of the evaluation design for PLS
imputation. A similar assessment of variability for KNN is given in Troyanskaya
et al. (2001) and the reader is referred there for details.

Computations involved with PLS dimension reduction (3.4) required a com-
plete candidate expression matrix (Xf‘j). However, this matrix contains missing
entries so estimates from KNN were used as initial estimates to fill in X4 I’ Sensi-
tivity of PLS imputation to the initial estimate was assessed. The results we have
presented for PLS uses KNN estimates for the initial values and this appears to
work well. To see how PLS would perform with poor initial estimates, PLS impu-
tation for the BCLL data with 15% missing was run with initial estimates from



Microarray Missing Value Estimation 367

MEAN imputation. The PLS2 imputation error curve using poor initial estimates
is quite similar to the PLS2 error curve using good initial estimates from KNN
imputation (see http://stat.tamu.edu/~dnguyen/supplemental.html). However,
for y ~ p, PLS2 estimates with mean initial values are not as good. Thus, a
KNN-PLS2 is the preferred strategy.

5.5 More complex missing data mechanisms

There are various missing data mechanisms, including missing completely
at random (MCAR), missing at random (MAR), and missing not at random
(MNAR). For microarray data, an example of MAR is when the missing data
probability is a function of an observe covariate, Z, such as background noise.
Missing not at random is the most complicated situation. In this situation the
missingness depends on the expression intensity values (Y'), that are not observed.
It is well known that MNAR would cause non-identifiability problems. Issues
become complex due to the high dimension in microarray data. Consequently,
not assuming the missingness pattern depends on Y to avoid non-identifiability
induced by MNAR leads to the MCAR scenario. There are complex statistical
issues associated with MNAR and the interested reader is referred to missing
data imputation literature.

The evaluation procedure and methods proposed here and in Troyanskaya
et al. (2001) provide a simple study model containing the essential issues and
provide a framework upon which more complex studies can be built. For example,
it may be of interest to see how the current study model performs when the
MCAR assumption is violated. To study this, an experiment was conducted
when the missingness rate was allowed to depend on the expression level in a
uniform fashion; that is, the missingness rate does not vary from gene to gene
beyond depending on the gene’s expression level. Precisely, the missing rate in
the low expression range (y < p — 20) was set to be twice that of the remaining
expression range (y > p — 20). Table 3C gives the results for this missing not
at random scenario (see also Supplemental Figure 7 and 8). For illustration,
this was applied separately to the Cy5- and Cy3-channel of the BCLL data set.
As can be seen the results are quite similar to the MCAR case (Table 3B and
Supplemental Figures 7 and 8).

6. Conclusions

We have provided an evaluation of KNN (and MEAN) imputation by ex-
amining the accuracy across the full range of observed gene expression values.
Our findings suggest that KNN imputation, although a very simple method, per-
formed well on average for microarray data sets used. This is consistent with
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previously reported results on yeast cDNA arrays (Troyanskaya et al., 2001).
However, the accuracy is high mostly near the center of the distribution of true
expression values (e.g., within one standard deviation of the mean). The relative
accuracy of KNN can be improved outside this moderate range of true expression
values. Among the regression methods proposed, PLS2 provided the most gain
in accuracy outside this moderate range.

Nonetheless, the methodological simplicity and modest computational cost
are some appealing aspects of the KNN imputation. The extensive study of the
neighbors, K, described earlier suggests some general guidelines to consider when
choosing the number of neighbors for KNN imputation: (1) K < 6 provides poor
accuracy near the center of the distribution of true values (2) good accuracy
is achieved for K between 10 and 22 and (3) although the moderate range of
expression values is less sensitive to the choice of K, the accuracy deteriorates
rapidly for KNN imputation with a large number of neighbors (K 2 30).

PLS imputation incorporates global information on all candidate genes as well
as the target gene expression values in the training data set for predicting the
missing values. Accuracy for PLS imputation is higher for some ranges beyond
moderate expression. Gene expression beyond moderate expression may be of
interest when searching for differentially expressed genes.

We have focused on the missing value estimation methods themselves and
on the evaluation of estimation accuracy as a function of the expression level.
Although beyond the scope of this work, it would be of interest to examine the
performance of some downstream analyses in the context of data imputation. For
example, to what extent will microarray-based cancer classification/prediction
analysis differ based on using only available data, ignoring missing data (genes),
and imputing missing data? These are issues that are worth investigating further.
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