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Abstract: This paper introduces the alternating conditional expectation
(ACE) algorithm of Breiman and Friedman (1985) for estimating the trans-
formations of a response and a set of predictor variables in multiple re-
gression that produce the maximum linear effect between the (transformed)
independent variables and the (transformed) response variable. These trans-
formations can give the data analyst insight into the relationships between
these variables so that relationship between them can be best described
and non-linear relationships can be uncovered. The power and usefulness of
ACE guided transformation in multivariate analysis are illustrated using a
simulated data set as well as a real data set. The results from these exam-
ples clearly demonstrate that ACE is able to identify the correct functional
forms, to reveal more accurate relationships, and to improve the model fit
considerably compared to the conventional linear model.
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parametric regression, transformation.

1. Introduction

In regression analysis, we try to explain the effect of one or more independent
variables (predictors or covariates) on a dependent variable (response). The initial
stages of data analysis often involve exploratory analysis. Instead of imposing
preconceived models, we seek insight into the nature of relationships in the data
set and, if possible, the underlying phenomena that might have produced the
observed data values. Unfortunately traditional multiple regression techniques
are limited in this respect since they usually require a priori assumptions about
the functional forms that relate the response and predictor variables.

The objective of fully exploring and explaining the effect of covariates on a
response variable in regression analysis is facilitated by properly transforming the
independent variables. A number of parametric transformations for continuous
variables in regression analysis have been suggested (Box and Tidwell, 1962;
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Kruskal, 1965; Mosteller and Tukey, 1977; Cook and Weisberg, 1982; Carroll and
Ruppert, 1988; Royston, 2000.)

Box and Cox (1964) discussed response variable transformations with an em-
phasis on a parameterised family of power transformations that has become
known as the Box-Cox family. Though often used in practice, the Box-Cox
method is confined to transformations of the response variable and does not fa-
cilitate transformations of the covariates. Kruskal (1965) suggested a technique
similar to the Box-Cox method that uses isotonic regression to estimate the trans-
formation of the response variable. (Box and Tidwell (1962) studied parametric
transformations of the predictors. Mosteller and Tukey (1977) developed a data-
analytic approach. Others have studied parametric families of transformations
and associated diagnostic methods, see Cook and Weisberg (1982) and Carroll
and Ruppert (1988). Royston (2000) summarised the methods for parametrically
modelling the effect of a continuous covariate in medicine and epidemiology.

Non-parametric curve-fitting techniques have also been proposed for variable
transformations. Those include bin smoothers, high-degree and fractional poly-
nomials Royston and Altman (1994), cubic regression splines Durrleman and
Simon (1989), cubic smoothing splines Hastie and Tibshirani (1990), Green and
Silverman (1994), kernel smoothers Bowman and Assalini (1997). Estimating the
optimal transformation is the primary motivation for the use of non-parametric
regression techniques, which make few assumptions about the regression surface
(Friedman and Stuetzle, 1981; Breiman and Friedman, 1985; Hastie and Tibshi-
rani, 1990). A comprehensive coverage of these methods and their applications
was given by Härdle (1992). Non-parametric regression techniques are based on
successive refinements by attempting to define the regression surface in an iter-
ative fashion while remaining ’data-driven’ as opposed to ‘model-driven’. These
non-parametric regression methods can be broadly classified into those which do
not transform the response variable (such as Generalised Additive Models) and
those which do (such as Alternating Conditional Expectations (ACE)).

In this paper, we introduce the ACE algorithm developed by Breiman and
Friedman (1985) for estimating optimal transformations for both response and in-
dependent variables in regression and correlation analysis, and illustrate through
two examples that usefulness of ACE guided transformation in multivariate anal-
ysis. The power of the ACE approach lies in its ability to recover the functional
forms of variables and to uncover complicated relationships.

2. The ACE Algorithm

The general form of a linear regression model for p independent variables
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(predictors), say X1, X2,...,Xp, and a response variable Y is given by

Y = β0 +
p∑

i=1

βiXi + ε (2.1)

where β0, β1, . . . , βp are the regression coefficients to be estimated, and ε is an
error term. The (2.1) therefore assumes that the response, Y , is a combination
of linear effects of X1, X2,...,Xp and a random error component ε.

Conventional multiple regression requires a linear functional form to be pre-
sumed a priori for the regression surface, thus reducing the problem to that of
estimating a set of parameters. This linear parametric approach can be success-
ful provided the assumed model is appropriate. When the relationship between
the response and predictor variables is unknown or inexact, linear parametric
regression can yield erroneous and even misleading results. This is the primary
motivation for the use of non-parametric regression techniques, which make few
assumptions about the regression surface (Friedman and Stuetzle, 1981).

These non-parametric regression methods can be broadly classified into those
which do not transform the response variable such as Generalised Additive Models
and those which do such as the ACE, which is the focus of our discussion in this
paper.

An ACE regression model has the general form:

θ(Y ) = α +
p∑

i=1

φi(Xi) + ε

where θ is a function of the response variable, Y , and φi are functions of the pre-
dictors Xi, i = 1, ..., p. Thus the ACE model replaces the problem of estimating
a linear function of a p-dimensional variable X=(X1,X2, . . . ,Xp) by estimat-
ing p separate one-dimensional functions, φi, and θ using an iterative method.
These transformations are achieved by minimising the unexplained variance of
a linear relationship between the transformed response variable and the sum of
transformed predictor variables.

For a given data set consisting of a response variable Y and predictor variables
X1, . . . ,Xp, the ACE algorithm starts out by defining arbitrary measurable mean-
zero transformations θ(Y ), φ1(X1), . . . , φp(Xp). The error variance (ε2) that is
not explained by a regression of the transformed dependent variable on the sum
of transformed independent variables is (under the constraint, E[θ2(Y )] = 1)

ε2(θ, φ1, ..., φp) = E{[θ(Y ) −
p∑

i=1

φi(Xi)]}2
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The minimisation of ε2 with respect to φi(Xi), . . . , φp(Xp) and θ(Y ) is carried
out through a series of single-function minimisations, resulting in the following
equations

φi(Xi) = E[θ(Y ) −
p∑

j �=i

φj(Xj)|Xi]

θ(Y ) = E[
p∑

i=1

φi(Xi)|Y ]/||E[
p∑

i=1

φi(Xi)|Y ]|| (2.2)

Two basic mathematical operations involved in here are conditional expec-
tations and iterative minimisation and hence, the name alternating conditional
expectations. The final φi(Xi), i = 1, . . . , p, and θ(Y ) after the minimisation are
estimates of the optimal transformation φ∗

i (Xi), i = 1, . . . , p, and θ∗(Y ). In the
transformed space, the response and predictor variables are related as follows

θ∗(Y ) =
p∑

i=1

φ∗
i (Xi) + e∗

where e∗ is the error not captured by the use of the ACE transformations and is
assumed to have a normal distribution with zero mean. The minimum regression
error, e∗, and maximum multiple correlation coefficient, ρ∗, are related by e∗2 =
1 − ρ∗2.

These optimal ACE transformations are derived solely from the given data
and do not require a priori assumptions of any functional form for the response
or predictor variables and thus provide a powerful tool for exploratory data anal-
ysis. Moreover, the ACE algorithm can handle variables other than continuous
predictors such as categorical (ordered or unordered), integer and indicator vari-
ables. These present no additional computational complications. For categorical
variables, the ACE transformations can be regarded as estimating optimal scores
for each value level of the variable and therefore may be used to combine groups
in a parsimonious way.

3. Simulated Example

The ACE algorithm for multiple linear regression can be implemented using
the ace function in the S-PLUS statistical package (Venables and Ripley, 2002).

In this section, we apply the ACE technique to a synthetic example – i.e.,
case for which we know the correct answers – to demonstrate how the ACE
algorithm can be used to identify the functional relationship between dependent
and independent variables.
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Figure 1. Scatterplots of simulated dataset

Our synthetic example is a multivariate case with five predictor and 100 ob-
servations generated from the following model

Y = log[4 + sin(4X1) + |X2| + X2
3 + X3

4 + X5 + .1ε] (3.1)

where X1,X2,X3,X4 and X5 are independently drawn from a uniform distribu-
tion U(−1, 1) and ε is independently drawn from a standard normal distribution
N(0, 1). If we are simply given the data values for Y , X1, X2, X3, X4 and X5

without any knowledge of functional relationship in (3.1), we might then try to
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Figure 2: ACE optimal transformations of simulated dataset

plot Y individually against the predictors X1, X2, X3, X4 and X5 so as to gain
some insight into the pair-wise relationships, yielding the graphs in Figure 1.
Note that the plots in Figure 1 do not reveal any obvious functional forms for
either the dependent variable or predictors, even though X1, X2, X3, X4 and
X5 are statistically independent. Under such circumstances, direct application of
linear regression is not appropriate.

If we regress Y on X1, X2, X3, X4 and X5 using the Ordinary Least Squares
(OLS) method, we obtain the estimated OLS equation that has an adjusted R2
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of .3708 and F -statistic of 12.67 on 5 and 94 degrees of freedom (P < 0.0001).
The predictors X1,X4 and X5 are statistically significant (P < 0.0001) but the
probabilities of null tests of zero coefficients for X2 and X3 are 0.0527 and 0.5635,
respectively. Rearranging (3.1) as:

exp(Y ) = 4 + sin(4X1) + |X2| + X2
3 + X3

4 + X5 + .1ε

we know that the optimal transformations of dependent and independent vari-
ables will have the following forms up to a linear transformation:

θ∗(Y ) = exp(Y )
φ∗

1(X1) = sin(3X1)
φ∗

2(X2) = |X2|
φ∗

3(X3) = X2
3

φ∗
4(X4) = X3

4

φ∗
5(X5) = X5 (3.2)

To check if the ACE algorithm can recover these functions, we applied the
algorithm to this simulated data set and the results are plotted in Figure 2.
Clearly, ACE is able to recover the corresponding functions in (3.2).

A regression of the transformed dependent variable on all the transformed
covariates results in all parameter coefficients of the independent variables being
positive and close to 1:

θ∗(Y ) = 0.9989φ∗
1(X1)+.9959φ∗

2(X2)+.9999φ∗
3(X3)+1.0006φ∗

4(X4)+1.0000φ∗
5(X5)

which is very close estimate of

θ∗(Y ) = φ∗
1(X1) + φ∗

2(X2) + φ∗
3(X3) + φ∗

4(X4) + φ∗
5(X5)

indicating that the optimal parametric transformations have achieved. The ACE
transformed variables has an adjusted R2 of 0.9904, considerably better than the
value of 0.3708 obtained using OLS. Note that in theory ACE cannot produce a
worse fit than ordinary regression, because if no transformations are found to be
necessary (i.e., the ordinary regression model is appropriate), then ACE would
simply suggest nearly linear transformations for all the variables.

As with similar methods, ACE will generally not perform as well with em-
pirical data as the simulated example here for reasons which include: (1) the
dependent variable will usually have a lower association with independent vari-
ables; (2) some predictors are likely to be highly correlated; (3) sizeable error
terms tend to exist; (4) there are some unobserved predictors which have been
omitted; and (5) some superfluous variables may be included in the regression
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Figure 3: Scatterplots of US air pollution data

model (although this situation can be partially taken care of by using a stepwise
variable selection procedure, such procedures should be used with caution). For
this simulated dataset, a backward stepwise procedure retains all five independent
variables when using ACE, but discards X2 and X3 when using the OLS method.

4. Example: US Air Pollution Data

In this section, we apply ACE to air pollution data for 41 US cities, collected
by Sokal and Rohlf (1981) from several US government publications (the data
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Table 1: Comparison of R2 values for the US air pollution data

Dependent Variable Independent Variable Correlation R2

Y X1 0.1880
Y X2 0.4157
Y X3 0.2438
Y X4 0.0090
Y X5 0.0029
Y X6 0.1366
Y X1,X2,X3,X4,X5,X6 0.6695

θ∗(Y )
∑6

i=1 φ∗
i (Xi) 0.9428

are also available in Handetal (1994)). There is a single dependent variable, Y ,
the annual mean concentration of sulphur dioxide, in micrograms per cubic me-
tre. The data generally relate to means for the three years 1969-71. The values of
six explanatory variables are also recorded, two of which relate to human ecology,
and four to climate as follows:

X1: Average annual temperature in degrees Farenheit
X2: Number of manufacturing enterprises employing 20 or more workers
X3: Population size (1970 census) in thousands
X4: Average annual wind speed in miles per hour
X5: Average annual precipitation in inches
X6: Average number of days with precipitation per year

The main question of interest is how the pollution level, as measured by sulphur
dioxide concentration, is determined by these six explanatory variables using
multiple regression.

Figure 3 shows scatterplots of Y against X1,X2,X3,X4,X5,and X6. A linear
regression of Y on the individual variables yields a maximum multiple correla-
tion R2=0.4157 with X2 (number of manufacturing enterprises) and a minimum
correlation R2=0.0029 with X5 (average annual precipitation), see Table 1. The
correlation coefficient is statistically significant at the 5% level for only four of
six variables, X1, X2, X3, and X6.
We first present the conventional linear regression model of sulphur dioxide con-
centration on the six predictor variables:

Y = 111.7285 − 1.2679X1 + 0.0649X2 − 0.0393X3

− 3.1814X4 + 0.5124X5 − 0.0521X6 (4.1)

with R2 = 0.6695. Statistical P values for zero coefficient test are 0.0491, 0.0002,
0.0138, 0.0887, 0.1669 and 0.7500 for X1,X2,X3,X4,X5, and X6, respectively.
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We then applied the ACE agorithm to the data. The optimal transformations
for Y and the six independent variables are shown in Figure 4. Regression of
the transformed response on the transformed independent variables yields the
following estimated equation:

θ∗(Y ) = 1.0123φ∗
1(X1) + 1.0089φ∗

2(X2) + 1.0479φ∗
3(X3)

+1.1610φ∗
4(X4) + 1.0630φ∗

5(X5) + 1.1907φ∗
6(X6) (4.2)

with R2 = 0.9469 and statistical P values for zero terms (H0 : φ∗
i (Xi) = 0) are

all less than 0.0001.
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Figure 4: ACE optimal transformations of US air pollution data
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We draw the following conclusions from the results above. First, the estimated
regression model of (4.2) from the ACE transformed variables has an R2 value
of 0.9469 which is close to 1 and much better than 0.6695 for the estimated
model of (4.1) obtained using the original untransformed variables. The ACE
transformation is optimal and outperforms conventional regression by a large
margin in this case.

Second, all the transformed independent variables (φ∗
1(X1), φ∗

2(X2),..., φ∗
6(X6))

are statistically significantly related to the transformed dependent variable θ∗(Y )
at P < 0.0001. This is in contrast with the finding from the estimated linear
regression model in (4.1) that only X1,X2 and X3 are statistically significant at
the 5% level.

Third, of the six independent variables, only X2 (number of manufacturing
enterprises) and X3 (population size) have a linear effect on sulphur dioxide
concentration (after controlling for the other predictors, population size has a
net negative effect on the sulphur dioxide concentration. This is largely due to
the high correlation between X2 and X3 (r=0.9553), as they are both indicators
of size of the city.). The irregular patterns of the estimated transformations for
the other four independent variables indicate complicated relationships between
the concentration of sulphur dioxide and its predictors. One of major problems
with conventional linear regression is its inability to detect and uncover such
relationships. For example, from model (4.1) we would conclude that X4 is not
a significant predictor of sulphur dioxide concentration, but ACE analysis shows
that it is significant in non-linear form. Treating such a non-linear relationship
as linear one will distort the true relationship between a predictor and response.

Having implemented the ACE procedure and plotted the ACE results in Fig-
ure 4, we may attempt to find the closed functional forms for these six determi-
nants of sulphur dioxide concentration. There are often a number of potential
candidates for transformation of a variable suggested by the ACE plot that fit
the data well according to statistics such as proportion of variance explained, or
goodness-of-fit Chi-square. There are a number of statistical selection criteria for
choosing of the best transformation (Akaike, 1973; Raftery, 1995), of which the
Bayesian Information Criterion (BIC) has been widely used (Raftery, 1995). In
a linear regression model, BIC is often approximated by:

BIC = N log(1 − R2) + p log N

where R2 is the square of the multiple correlation coefficient, p is the number of
independent variables in the model of interest (not including the intercept) and
N is the sample size. The smaller the BIC, the better the model.

As seen in Figure 4 and mentioned earlier, θ∗(Y ), φ∗
2(X2) and φ∗

3(X3) seem to
be linear, so no transformation is needed for these three variables. The remaining
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four transformed variables tend to be linear in different regions. So we use linear
splines to approximate and parameterise those four transformations. We calcu-
lated the BIC statistic for various change points so that we could determine the
best cut points (nodes) for the proposed linear spline functions. Table 2 displays
the parameterisation of transformed variables and their coefficient estimates from
regression analysis of the parameterised variables.

Table 2: Parameter estimates from regression analysis of parameterised
variables for the US air pollution data

i φ̂∗
i (Xi) βij S.E.(βij) T P

Intercept -214.9484 156.7822 -1.3710 0.1813
1 β11 min(X1, 48) 6.9969 2.8786 2.4310 0.0217

+β12 max(X2, 48) -1.1340 0.9859 -1.1500 0.2598
2 β2X2 0.0620 0.0129 4.7891 0.0001
3 β3X3 -0.0439 0.0127 -3.4612 0.0017
4 β41 min(X4, 8) -1.3794 6.9971 -0.1973 0.8451

+g1(X4) 6.1285 2.9690 2.0644 0.0484
+β43 max(0,X4 − 10.6) -14.8222 5.0014 -2.9641 0.0061

5 β51 min(X5, 42) 0.5720 0.5373 1.0646 0.2962
+β52 max(X5, 42) -0.0889 1.2106 -0.0734 0.9420

6 β61 min(X6, 100) -0.5184 0.4223 -1.2275 0.2299
+β62g2(X6) 0.8466 0.3326 2.5457 0.0167
+β63 max(0,X6 − 125) -0.3716 0.2235 -1.6635 0.1075

Note: g1(X4) = β42 max(0, min(X4 − 8, 10.6 − 8)), g2(X6) = max(0, min(X6 −
100, 125− 100))

There are a number of observations from Table 2. First, the general patterns
for the estimated effects of independent variables are similar to those observed
in Figure 4. Second, the estimated model has an R2 of 0.8324, much larger than
that of 0.6695 for the OLS estimated model in (4.1) but still far from that of
0.9469 for the ACE estimated model in (4.2), indicating the parameterisation of
the transformed variables in Table 2 is still not fully satisfactory. Third, φ̂∗

4(X4)
and φ̂∗

6(X6) become statistically significant determinants of Y . In fact, the P
values for joint F test for zero coefficients for their linear spline components
(H0 : β41 = β42 = 0 for X4 and H0 : β51 = β52 = β53 = 0 for X6) are 0.0363 and
0.0249, respectively. The results contrast those from the OLS results in (4.1),
which found that X4 and X5 were not significant. Finally, regarding the effect
of X1, the OLS analysis shows a marginally significant negative effect for X1

(P=0.0491), whereas Table 2 shows that φ̂∗
1(X1) consists of two linear splines,

6.9969min(X1, 48)−1.1340max(X1, 48), the former term being significant at the
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5% level, but the latter not significant (suggesting a saturation effect). φ̂∗
1(X1)

provides a slightly better fit of the data than the simple linear X1, as the P values
of the F test of their effects are 0.0310 and 0.0491, respectively.

5. Limitations of the ACE Algorithm Approach

We have demonstrated that the ACE algorithm provides a largely automatic
method for estimating optimal transformations of response and predictor vari-
ables in multiple regression. The transformations generated by ACE can facili-
tate the identification of appropriate, and possibly meaningful, functional forms.
Even when the transformed variable cannot be well-approximated as in Figure
4, examination of the ACE transformation plots may lead to new insights into
the relationships between response and predictor variables. Another feature of
ACE is its ability to incorporate multiple and mixed variables, both continuous
(such as temperature) and categorical (such as occupation) within a common
framework. The ACE algorithm can also be easily extended to generalised linear
models (Raftery and Richardson, 1996). While the ACE approach has many ad-
vantages as a data analysis tool, we now turn to some important issues related
to its application.

5.1 Sensitivity to variable ordering

ACE results depend on the order in which the predictor variables are entered
into the analysis (in practice, this is the order they are in the X matrix), see (2.2).
We use the US air pollution data and, for illustrative purposes, we use only six of
the possible 720 permutations of the six predictor variables X1,X2,X3,X4,X5,X6

by changing only the order of first three variables X1,X2,X3. We then apply ACE
to them and present the R2 values in Table 3, showing that the R2 values are
sensitive to the order of predictor variables, ranging from 0.9000 for the order
X3,X2,X1,X4,X5,X6, to 0.9525 with X1 and X2 reversed.

Table 3: Sensitivity test of R2 values to ordering and outlier in ACE
transformation for the US air pollution data

Order All Data Excluding Outlier

X1,X2,X3,X4,X5,X6 0.9469 0.9102
X1,X3,X2,X4,X5,X6 0.9431 0.9213
X2,X1,X3,X4,X5,X6 0.9272 0.9122
X2,X3,X1,X4,X5,X6 0.9349 0.9292
X3,X1,X2,X4,X5,X6 0.9525 0.9320
X3,X2,X1,X4,X5,X6 0.9000 0.9082
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This sensitivity might be due to the choice of smoother use by ACE (Hastie
and Tibshirani, 1990). However, this property of ACE has important implications
for its application. The authors of ACE suggested that several different orderings
should be tried once a subset of the predictor variables has been selected (Breiman
and Friedman, 1985). In the case of the US air pollution data, it seems that it
is better to transform the variables in the order of X3,X1,X2,X4,X5,X6 rather
than the order of X1,X2,X3,X4,X5,X6 as we used in the analysis (although
this will not necessarily lead to similar magnitude differences in the results if
functional transformations are made).

5.2 Robustness to outliers

Another inherent problem with the ACE procedure is that it may be highly
sensitive to extreme outlying data values and highly influential points in both
the response and predictor variables (Breiman and Friedman, 1985; Tibshirani,
1988). To illustrate this property, we use the US air pollution data again, in which
Chicago has a very large number of manufacturing enterprises and an extreme
value of sulphur dioxide concentration. Chicago is confirmed to be an outlier
by the Cook statistic, and removed from the analysis. Application of ACE to
this reduced dataset results in R2 being 0.9102, compared with R2=0.9469 when
Chicago was included in the analysis. The above example demonstrates that
even a single influential point can have some impact on the ACE results. The R2

correlations for the sample without Chicago are also displayed in Table 3. The
results show that R2 values have been slightly reduced for all the permutations
except for the order of X3,X2,X1,X4,X5,X6 compared with the results of Table
2, and that variation of the R2 values are considerably less in the reduced than
in the original data set.

In some extreme cases, outliers could significantly distort the estimated trans-
formations. The authors of ACE warned that the algorithm should be used with
a great deal of caution in the suspected presence of extreme outliers (Breiman
and Friedman, 1985). It is advised that the algorithm should be used in the
context of the ever-growing collection of modern tools for regression such robust
procedures and diagnostic techniques for identifying influential points.

5.3 Normality and homoscedasticity assumptions

There are three basic assumptions in a linear regression analysis: linearity,
homoscedasticity, and normality. Transformations in a regression analysis may
be needed to overcome violation of one or more of these requirements, but not,
of course, the problem of omitted variables. The goal of the ACE algorithm is
to find the transformations that maximise the multiple linear correlation of the



Optimal Transformations Using the ACE Algorithm 343

predictors with the response variable, i.e. the dependence of the response variable
on the independent variables is maximised. This is only one of three goals of
an optimal transformation for regression. Our examples suggests that when the
transformation is optimal in terms of linearity, in practice, it also likely to be close
to optimal in terms of normality and homoscedasticity. However, this is certainly
not always the case. It should be emphasised here that there is no guarantee that
the residuals in the ACE transformed model will be normally distributed with
stable variance. Although ACE is a potent and versatile approach for maximising
correlations, it suffers from some anomalies when viewed as a regression tool,
especially in low-correlation settings. A modification of ACE designed primarily
for such regression problems was proposed by Tibshirani (1988) and differs from
the original ACE algorithm in that it chooses θ(Y ) to achieve a special asymptotic
variance stabilising feature. The goal here is to estimate transformations θ and
φi which have the following properties:

E{θ∗(Y )|X1,X2, . . . ,Xp} =
p∑

i=1

φi(Xi)

V ar(θ(Y )|{
p∑

i=1

φi(Xi)}) = constant

The transformation θ is assumed to be strictly monotone (and thus invertible) and
the conditional expectations are approximated using scatterplot supersmoother
smoothing (Friedman and Stuetzle, 1982). The resulting algorithm is called ad-
ditivity and variance stabilisation (AVAS). In this paper, we discuss and apply
only the ACE algorithm.

6. Summary

We have introduced the ACE algorithm, a non-parametric automatic trans-
formation method that produces the maximum multiple correlation of a response
and a set of predictor variables. The approach solves the general problem of
establishing the linearity assumption required in regression analysis, so that the
relationship between response and independent variables can be best described
and existence of non-linear relationship can be explored and uncovered. An ex-
amination of these results can give the data analyst insight into the relationships
between these variables, and suggest if transformations are required.

We have described the implementation of the ACE algorithm and the interpre-
tation of its output. The ACE plot is very useful for understanding complicated
relationships and it is an indispensable tool for effective use of the ACE results.
It provides a straightforward method for identifying functional relationships be-
tween dependent and independent variables. There will often be a number of
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potential candidates for transformation of a variable suggested by the ACE plot
that fit the data well according to R2. To select the best transformation, we have
introduced the BIC statistical selection criterion. With the ACE plot and BIC,
we can derive the most appropriate functional relationships between the response
variable and its predictors.

Using a simulated dataset and an actual dataset, we have demonstrated the
usefulness of ACE guided transformation in multivariate analysis. The power of
the ACE approach lies in its ability to recover the functional forms of variables
and to uncover complicated relationships. In addition, the ACE guided param-
eterisation of variables will often improve the model fit considerably compared
with the conventional linear model.

Although ACE provides a largely automated approach to estimating optimal
transformations, it does not mean that the ACE results should be trusted blindly
and used dogmatically, additional information and experience of the data analyst
remain important. It should be emphasised that the success of the ACE algo-
rithm, like other modern statistical methods, relies on the quality of the data and
underlying association between the response and independent variables.
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