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Abstract: Clustering algorithms have been used to analyze microarray
gene expression data in many recent applications. In this paper, we make a
comparison among popularly used clustering methods, including hierarchi-
cal clustering with average, complete, and single linkages, k-means cluster-
ing, k-means clustering with hierarchical initialization, and self organization
map (SOM), by making use of our hemotopietic stem cell (HSC) microar-
ray data. To understand the biological pathways from HSC to proliferative
multipotent progenitor (MPP), and from MPP to either common lymphoid
progenitor (CLP) or common myeloid progenitor (CMP), statistical cluster-
ing is an important tool. Our results demonstrated that the HSC microarray
data set casts some challenge on clustering algorithms as different clustering
algorithms resulted in clusters that were not all consistent. We compared
the results by using the total within-cluster sum of squares of dispersions
and the biological functions of the genes, and reached the conclusion that k-
means clustering with hierarchical average or complete linkage initialization
performed the best among all the methods we compared. Our investigation
of the clustering methods with HSC microarray data provide a useful ap-
proach and guide to medical researchers who use clustering algorithms in
analyzing their microarray or related data sets.
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1. Introduction

Microarray technology has made it possible to quantify the expression pat-
terns of thousands or tens of thousands of genes in various tissues, cell lines, and
conditions simultaneously. When such abundant numerical information becomes
available, statistical data analysis is inevitably needed to help biological scien-
tists to organize, summarize, and interpret the results inherent in the numerical
expressions of genes. One frequently used method, is the statistical clustering
method/algorithm in microarray data analysis. A seminal paper by Eisen et al.
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(1998) used average-linkage hierarchical clustering to identify patterns in a bud-
ding yeast Saccharomyces Cerevisiae microarray data set. They found that genes
with similar biological functions cluster together. Several other authors, such as,
Kerr and Churchill (2001), Michaels et al. (1998), also used clustering to analyze
different microarray data sets. Self-organization map (SOM), a statistical data
mining tool, has also been used in microarray data analysis such as in Tamayo
et al. (1999). In the recent paper of Akashi et al. (2003), the k-means clustering
with pre-determined initial seeds (genes) of known biological functions was used
for clustering HSC microarray data. Biological pathways involved with many
important genes were revealed clearly through the clusters.

The expression patterns of genes contain valuable information about the
genes; how to retrieve this information becomes a challenge to statisticians/biosta-
tisticians. Because of the abundance of information inherent in the gene expres-
sions, and because of the complexity of the gene regulation networks and path-
ways, clustering is an important statistical tool for organizing the information
and condensing the genes into smaller groups/clusters with similar expression
patterns so that further biological study of the genes can be conducted.

In the following we first introduce our hematopietic stem cell (HSC) microar-
ray data, then we discuss and review several popularly used clustering algorithms
in microarray data analysis and employ the total within-cluster sum of squares of
dispersions (TWSS) as an evaluation criterion for comparing different clustering
methods. Then, using our HSC data we present the TWSS values for the clusters
obtained by different algorithms. Finally, we discuss how to choose a suitable
clustering algorithm for a microarray data set.

2. Hematopoietic Stem Cell (HSC) Microarray Data

Hematopoietic stem cells (HSCs) are clonogenic cells, which possess the prop-
erties of both self-renewal and multilineage potential for giving rise to all types of
mature blood cells. Early HSC development displays a hierarchical arrangement
starting with HSCs, which have extensive self-renewal capability. Next is the
expansion stage, corresponding to proliferative multipotent progenitor (MPP).
MPP is also a stage of priming or preparation for differentiation. MPP then
commits to either common lymphoid progenitor cells (CLP), which give rise to
all the lymphoid lineages, or common myeloid progenitor cells (CMP), which
produce all the myeloid lineages. We obtained stem-cell samples from mice and
used Affymetrix Microarray Chips to read the expressions of the genes in HSCs,
MPPs, CLPs, and CMPs. For more details of the experiment and data produc-
tion, please refer to Akashi et al. (2003). As understanding the transcriptional
accessibility for multi-tissue and multi-hematopoietic lineage genes is our primary
goal, we were interested in how the genes were clustered together and how they
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were associated with each other biologically.

3. Clustering Methods in Analyzing the Stem-Cell Gene Expression
Data

Clustering is a primitive multivariate technique in that no assumptions are
made concerning the number of groups or the group structure. The “natural”
grouping (clustering) depends on the definition of similarity. All possible group-
ings are not feasible as the number N(n, c) of different partitions of n objects
into c clusters is the Sterling number of the second kind (Liu, 1968), namely,
N(n, c) = O(nt) for some t > 1. This number N(n, c) becomes quite large even
for moderate n and c. As pointed out in Everitt et al. (2001), even with today’s
advanced computer technology, it remains impractical to enumerate all possible
clusters. Therefore, there is some subtlety left when clustering is applied to any
data set especially for such large data set as microarray data set. We begin our
general review and description of the clustering methods in the sequel below. For
a more detailed discussion on clustering, the reader is referred to the monograph
by Everitt et al. (2001).

3.1 Hierarchical clustering algorithms

Hierarchical clustering has two approaches: Agglomerative method and divi-
sive method. Agglomerative method starts with n clusters for a data set of n
observations, and then joins two ”nearest” observations into one cluster in the
next step according to a selected similarity measure. This process continues until
all the observations merge into one cluster. The divisive method starts with one
cluster, then the two objects that are most “dissimilar” are separated to form
two clusters; this process continues until all the n observations form n clusters
(one observation per cluster). The similarity/dissimilarity measures used in hier-
archical clustering are usually one of the following distance measures: Euclidean
distance, squared Euclidean distance, Pearson’s correlation coefficient, city block
distance (Manhattan distance), or Minkowski distance. Hierarchical clustering
procedures are associated with different linkage methods. Three popularly used
linkage methods are: single linkage (minimum distance or nearest neighbor),
complete linkage (maximum distance or farthest neighbor), and average linkage
(average distance). Another method is Ward’s method (see Lattin et al. (2003)
for details), which is based on minimizing the “loss of information” from joining
two clusters. In addition, the centroid method is used sometimes.

The hierarchical method is now popularly used in analyzing microarray data
after the publication of the paper by Eisen et al. (1998). We would like to
point out that the hierarchical clustering method is highly structured and the
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clustering results depend on which linkage method and distance measure is used.
This problem was recently discussed and illustrated through gene expression data
by Goldstein et al. (2002). As pointed out in Chen et al. (2002), the average
linkage hierarchical method was the worst among the four clustering methods they
compared. According to Chen et al. (2002), k-means clustering outperformed
average linkage clustering most of the time in most cases of their embryonic stem
(ES) cell data. This conclusion is in line with what we observed when we analyzed
our HSC microarray data in Akashi et al. (2003). In the following section, we
make a summary about the k-means clustering method.

3.2 The k-means clustering

Another approach of clustering, rather than the hierarchical clustering, is
the partitioning method such as k-means clustering, and the partitioning around
medoids (PAM) method (Chen et al., 2002). Let X be an n × p data matrix,
with each row a 1 × p observation vector. The total dispersion matrix due to
partitioning n observation vectors into c clusters can be written as

T =
c∑

i=1

ni∑

j=1

(xij − x)(xij − x)′,

where xij is the p-dimensional observation vector of the jth object in cluster i,
x is the p dimensional vector of overall sample means for each variable, and ni

is the size of cluster i. T can be partitioned into T = W + B, where W is the
within-cluster dispersion matrix and B the between-cluster dispersion matrix.
Let xi be the p-dimensional vector of sample means within cluster i, then:

W =
c∑

i=1

ni∑

j=1

(xij − xi)(xij − xi)′,

and

B =
c∑

i=1

ni(xij − x)(xij − x)′.

The purpose of clustering is to group objects that are homogenous (using se-
lected criterion) into one cluster and to separate objects that are heterogeneous
into different clusters. Many clustering methods employ the criterion of either
maximizing the between-cluster dispersion or minimizing the within-cluster dis-
persion. This approach results in three criteria in terms of the matrices W and
B, namely: minimization of trace(W) (or maximizing trace(B) ) as discussed in
MacQueen (1967), and Ball and Hall (1967); minimization of det(W) (equiva-
lently, maximization of det(T)/det(W) ) as in Friedman and Rubin (1967), and
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Marriott (1971, 1982); maximization of trace(BW−1) as in Friedman and Rubin
(1967).

The k-means algorithm is one such algorithm that minimizes trace(W). The
k-means clustering algorithm has its different versions. MacQueen (1967) pro-
posed an algorithm that assigns items to the cluster having the nearest centroid
according to the Euclidean distance. It starts with an initial partition of k clus-
ters, or k initial centroids (seed points). It proceeds through the list of items,
assigning an item to the cluster whose centroid is nearest. It then recalculates
the centroid for the cluster receiving the new item and for the cluster losing the
item. The process is repeated until no more reassignment of items occurs. This
algorithm has been implemented by a variety of commercial statistical software,
such as Minitab, that can perform k-means clustering.

3.3 Self-organization map (SOM)

SOM is popularly used in statistical data mining. It starts with a predeter-
mined geometry of the clusters and then maps the observations to its nearest
centroid. The purpose of SOM is to geometrically map the high dimensional
input data into a good lower dimensional grid of nodes. There is a detailed illus-
tration of SOM and free software available in Tamayo et al (1999). Affymetrix
also provides SOM for people who use the Affymetrix Data Mining tool to orga-
nize the data obtained from Affymetrix microchips. We will give a comparison
between clustering and SOM in a later section of this paper.

3.4 The total within-cluster sum of squares of dispersions (TWSS)

Clustering methods are exploratory tools for data analysis, and there is no
formal statistical inference in any of the methods. When the data set is not
large, all the clustering methods seem to produce consistent results after applying
several runs of any clustering method mentioned above. The challenge emerges
with the information era when huge (several thousands or several hundreds of
thousands) data sets such as microarray data sets are readily available. Chen
et al. (2002) suggested a couple of indices to evaluate some clustering methods
using embryonic stem (ES) cell data. We took into consideration the total sample
variance approach as used in traditional statistical inferences including regression,
ANOVA, and MANOVA. It is a natural measure of the variation arouse in any
data set.

As the total variance of matrix T, trace(T), is a fixed constant, we propose
to use the total variance of the sum of squares of the within cluster dispersion
matrix W as an evaluation index, denoted by TWSS. That is TWSS =trace(W).
According to the nature of the TWSS index, a clustering method with smaller
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TWSS value is a better algorithm as a smaller TWSS value indicates better ho-
mogeneity in each cluster. This index will be used in the following data analyses.

4. Applying Clustering Algorithms to the HSC Microarray Data

4.1 HSC microarray data pre-screening

The expressions of 12,429 genes in HSCs, MPPs, CLPs, and CPMs were
obtained by using Affymetrix chip A. As any clustering method is sensitive to
outliers or “noise points” in a data set, we deleted some outlier genes whose
expression levels are above 20000. For illustration purposes, we selected genes
that had passed the following filter as differentially expressed genes and then the
clustering method was applied to these differentially expressed genes. The genes
in our microarray data were considered as differentially expressed if they passed
the filter given by

∣∣yj(m) − yj(l)

∣∣ > 100 and yj(m)/yj(l) > 4, for j = 1, . . . , n,

where yj(m) and yj(l) are the order statistics with yj(1) ≤ . . . ≤ yj(m)for the jth
gene. This filtering criterion simultaneously considered the absolute difference of
the gene expression levels and the fold change of the expression levels for each
gene across the conditions. There were 659 genes that passed this filter. We also
normalized these 659 genes such that each gene had a mean of 0 and a standard
deviation of 1.

4.2 Comparison among the clustering methods in light of the HSC data

The k-means clustering result depends on the initial partition (initial seeds) of
the clusters (Milligan, 1980). However, if the initial seeds are selected according
to some known features of the data, then the k-means clustering is quite robust
according to Milligan (1980). This point was addressed in Akashi et al. (2003).

When the initial seeds of clusters are not available, we design to use one
of the hierarchical algorithms to generate seeds for different clusters. Once the
seeds are obtained, one can proceed to the k-means clustering method to achieve
final partition of the gene expression levels. This design/approach of clustering
makes use of the merits of hierarchical algorithms and k-means method and
overcomes their shortfalls simultaneously. This approach is illustrated in the
following analysis of the 659 genes observed in HSC, MPP, CLM, and CMP in
Chip A.

We applied the average linkage hierarchical algorithm, k-means algorithm
with average linkage hierarchical initialization, complete linkage hierarchical al-
gorithm, k-means algorithm with complete linkage hierarchical initialization, sin-
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gle linkage hierarchical algorithm, and k-means algorithm with single linkage
hierarchical initialization, for different k values: k = 15, 18, 21, 24, and 27. The
distance measure we used is the squared Euclidean distance, which is equivalent
to Pearson’s correlation as we have normalized each gene to have mean 0 and
variance 1. All the calculations were performed using Minitab Data Analysis
software. Finally, we also used SOM to cluster these 659 genes by employing
5 × 3, 3 × 5, 6 × 3, 3 × 6, 7 × 3, 3 × 7, 8 × 3, 3 × 8, 9 × 3 and 3 × 9 as the starting
geometry. The SOM results were obtained by using the free software provided in
Tamayo et al. (1999).

The TWSS values were calculated for all the clustering methods used. These
values are graphed in Figure 1 (A-F). Figure 1A shows that the k-means clustering
with average linkage hierarchical initialization is better than the corresponding
average linkage hierarchical clustering for any cluster size. Figure 1B shows that
k-means clustering with complete linkage hierarchical initialization is better than
the corresponding complete linkage hierarchical clustering for any cluster size.
Figure 1C shows that k-means clustering with single linkage hierarchical initial-
ization is better than the corresponding single linkage hierarchical clustering for
any cluster size. It is important to know that single linkage hierarchical clustering
is the worst (with largest TWSS in all cases), and k-means clustering can even
correct the situation brought up by single linkage (see Figure 1C). Figure 1D offers
a comparison between SOM with starting geometry of 3×5, 3×6, 3×7, 3×8, 3×9,
and SOM with starting geometry of 5×3, 6×3, 7×3, 8×3, 9×3. When the cluster
size gets larger, the former starting geometry tends to give better clustering re-
sults. In Figure 1E, we compared all six clustering methods (including a k-means
clustering with random initialization) except the single linkage method, which is
the worst one as we noted before. In Figure 1E, we observe that even k-means
with random initialization performs well in terms of TWSS. As the cluster size
gets larger, k-means clustering with complete linkage hierarchical initialization
and k-means clustering with average linkage hierarchical initialization performed
almost identically the best. Finally, in Figure 1F, we compared the SOMs with
all six methods mentioned above. It is very clear that the six methods are better
than the SOMs in general.

Now that we have some ad hoc comparisons of the clustering methods, we need
to know how the biological information is conveyed by these clustering methods.
This is explored in the following section.

4.3 Biological interpretation of the clustering results

We were particularly interested in four patterns that would appear in some
of the clusters: 1. Genes predominantly expressed in HSCs which are involved
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Figure 1. TWSS values for the clusters generated by different clustering meth-
ods at different cluster sizes are graphed from A to F for the indicated com-
parisons shown in each graph. The smaller the TWSS value is, the better the
cluster is.

in maintaining stem cell compartment; 2. Genes that are preferentially upregu-
lated in MPPs because MPPs are highly proliferative cells and presumably at a
priming stage for both myeloid and lymphoid differentiation; 3. Genes that are
upregulated in CLP; and, 4. Genes that are upregulated in CMPs. Due to space
limitations and for simplicity and illustration purposes, we only show compari-
son of the clustering results (k = 27) obtained by complete linkage hierarchical
clustering and k-means clustering initialized by complete linkage.

There are 123 genes predominantly expressed in HSCs. They are identified in
Clusters 4, 6, and 7 by complete linkage hierarchical and k-means with complete
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Table 1: Predominantly expressed genes in HSC identified
by k-means with complete linkage initialization only

gene description

AB008516 Tetratricopeptide repeat domain
AF006688 Muspaox
AI154017 Mus musculus cDNA
AI849587 Mus musculus cDNA
AJ005563 Small proline-rich protein 2E
AV007820 Mus musculus cDNA
AV235418 Mus musculus cDNA
AW121616 Mus musculus cDNA
AW124933 Mus musculus cDNA
U16175 Thrombospondin 3
U58972 Growth factor independent 1
U72644 Lymphocyte specific transcript (LST)
U90435 Flotillin
Y14004 Acyl-CoA thioesterase
Z12604 Matrix metalloproteininase 11
AA163908 Mus musculus cDNA
AF011336 Putative E1-E2 ATPase
AI840198 Mus musculus cDNA
M32032 Selenium binding protein 1
U73478 Acidic nuclear phosphoprotein 32
U83509 angiopoietin-1
X12761 Jun oncogene
X61597 Kallikrein-binding protein
M90388 Tyrosine phosphatase
U16985 Lymphotoxin-beta

linkage. These genes are given in Figure 2A. Some of these genes may play a
role in maintaining stem cells, such as transcriptional factors LRG-21, LKLF,
TCF-3, and growth factors Wnt1 and Dhh (see details in Akashi et al., 2003). In
addition, k-means with complete linkage identified 26 more genes predominantly
expressed in HSC than complete linkage clustering alone. These genes are listed
in Table 1. Further, k-means with complete linkage also relocated 6 genes, which
are identified by complete linkage hierarchical as in this category, into other
category.

There are 47 genes that are preferentially upregulated in MPPs. They are
identified in Clusters 11, 14, and 21 by both complete linkage hierarchical and
k-means with complete linkage. These genes are given in Figure 2B. Some of
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Figure 2. The normalized gene expressions are graphed
from A to D. The pathways of the genes are shown in each
graph.

these listed genes make biological sense. Leukotriene B4 receptor and Cyclin E
are involved in the regulation of cell proliferation. Differentiation factors, such as
myeloid associated differentiation protein, erythroid differentiation regulator, and
growth differentiation factor 9, are required for cell differentiation. The k-means
clustering with complete linkage also identified two more novel genes that are
preferentially upregulated in MPPs (AW061073 and AW227620). The k-means
with complete linkage also relocated 1 gene, which was also identified by complete
linkage hierarchical, into another category.

There are 146 genes that are upregulated in CLP. They are identified in
Clusters 2, 10, 12, 20, 23, 25, and 26 by both complete linkage hierarchical
and k-means with complete linkage. These genes are given in Figure 2C. This
cluster is enriched with genes that are essential for the commitment of lymphoid
lineages or have important immunological functions. Examples of these genes
are: IL-12a, IL-18R, TCR, CD94, CD7, CD28, Rag-1, Notch1 and Hey1 (see
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detailed description in Akashi et al., 2003). The k-means with complete linkage
also identified two more genes that are upregulated in CLP: NAD-dependent
methylenetetrahydrofolate dehydrogenase and AI842887.

There are 141 genes that are upregulated in CMP. They are identified in Clus-
ters 3, 8, 13, 19, 22, 24, and 27 by both complete linkage hierarchical and k-means
with complete linkage. These genes are given in Figure 2D. The functions of most
of these listed genes, including transcriptional factors C/EBPdelta, NF-E2, Lim
only 2, cytokine receptors G-CSFR, IL-11R, functional proteins myeloperoxidase
and Plysozyme, are associated with myeloid differentiation or function (see details
in Akashi et al., 2003). Further, k-means with complete linkage also identified
seven more genes that are upregulated in CMP and relocated 25 genes, which
were identified by complete linkage hierarchical, into another category.

5. Conclusion and Discussion

Clustering methods are useful in recognizing gene expression patterns in large
gene profiling. Careful selection of clustering methods in analyzing microarray
data is important. Different hierarchical clustering methods do not always give
the same clustering results for one data set (Johnson and Wichern, 1998) be-
cause of the similarity/dissimilarity and distance functions employed in these
methods. This problem may become severe if the data set is huge (as is the case
of a microarray data set). Hierarchical methods tend to take a long time for
computation and some produce inversions. An inversion occurs when an object
joins an existing cluster at a smaller distance (greater similarity) than that of a
previous consolidation. Once two observations are joined in a cluster by hierar-
chical clustering, they can never be separated, while in k-means clustering they
still can be separated if they are closer to some new centroids of new clusters.
The k-means clustering method is not only an optimal clustering algorithm, but
is also much faster than the hierarchical methods in computation for large data
sets. Furthermore, the k-means clustering gives more compact clusters than hi-
erarchical methods. When initial seeds of clusters are chosen to be genes of vital
and known biological functions, the k-means clustering is robust and produces
meaningful results. Alternatively, when seed genes are not available or hard to
find, the k-means clustering with initialization by either complete or average link-
age hierarchical clustering performs the best among other clustering methods as
well.
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