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Abstract: In this paper a random sample of drivers aged sixty-five years or
older was selected from the Alabama Department of Public Safety Records.
The data in the sample has information on many variables including the
number of accidents, demographic information, driving habits, and medica-
tion. The purpose of the sample was to assess the effects of demographic
factors, driving habits, and medication use on elderly drivers. The gen-
eralized Poisson regression (GPR) model is considered for identifying the
relationship between the number of accidents and some covariates. About
59% of drivers who rate their quality of driving as average or below are in-
volved in automobile accidents. Drivers who take calcium channel blockers
show a significantly reduced risk of about 34.5%. Based on the test for the
dispersion parameter and the goodness-of-fit measure for the accident data,
the GPR model performs as good as or better than the other regression
models.
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1. Introduction

Analyses of crash reports that are attributed to ‘driver inattention’ suggest
that many types of attention failure may be involved in motor-vehicle crashes.
Shinar and Scheiber (1991) estimated that 25% to 50% of motor vehicle crashes
result from driver inattention. Memory and attention are mental capabilities or
cognitive functions that are integral to driving. Recalling how to operate the
motor vehicle, the meaning of the road signs and signals, and how to get where
the driver intends to go are just part of the whole driving scenario. Attention for
safe driving is critical to monitor traffic, highway, adverse weather, and vehicle
conditions in every age group-elderly as well as non-elderly.

The continued use of the automobile by a high proportion of the elderly com-
munity suggests that the growing older population in the United States is almost
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certain to result in an increase in the number of elderly drivers. Future genera-
tions of elderly drivers are likely to be even older and drive more miles than the
aged of today by virtue of their increasing numbers and their continued reliance
on the car in old age (Jette and Branch, 1992). Thus, it becomes imperative
for additional studies to be conducted in order to identify additional risk fac-
tors for automobile injuries among the elderly in an effort to protect the older
population and the well being of the community. In recent years, Poisson type
regression models have been used to model count response variable affected by
one or more covariates. King (1989) and Winkelmann and Zimmermann (1994)
developed the generalized event count models based on the Poisson, negative bi-
nomial, and the binomial distributions. Winkelmann and Zimmermann (1994)
noted that the Poisson regression model is not appropriate when a data set exhibit
over-dispersion, a condition where the variance is more than the mean.

The main objective of this study is to assess the effects of demographic fac-
tors, driving habits, and medication use on elderly drivers involved in automobile
accidents by using the generalized Poisson regression (GPR) model studied by
Famoye (1993). In section 2, we describe the data used in this paper. Section
3 outlines the GPR model for the number of accidents involving elderly drivers.
In section 4, we review the goodness-of-fit for the GPR model. In section 5, we
present the results from data analysis. In section 6, we discuss the results of data
analysis.

2. Description of Accident Data

A random sample of 901 drivers who aged 65 years or older was selected
from the Alabama Department of Public Safety Records for the years 1991-1996.
The setting of this study was Mobile County, Alabama. Details of the study are
given by McGwin et al. (2000). Briefly, during a telephone interview subjects
were asked if a physician, nurse, or other health care professional had told them
they had certain medical conditions; and if so, whether they were taking any
medications for the conditions. Subjects were also asked about their driving
habits-including self-reported quality of driving, level of comfort with certain
driving situations, and type of vehicle most commonly driven. Subjects were
asked about the number of accidents they had during their driving from 1991 to
1995.

Accident cases or observations were excluded from the analysis, if they had
missing information for questions related to any of the variables in Table 1. Thus,
the final study consisted of 595 subjects, approximately 66% of 901 cases in the
sample. These exclusions were necessary to set up the data matrix upon which
we apply the PR and GPR models. The sample mean and sample variance of the
response variable Y, the number of automobile accidents, are respectively, 0.76



Generalized Poisson Regression Model with Accident Data 289

and 1.33. The Poisson regression (PR) and the generalized Poisson regression
(GPR) models were used to assess the effects of demographic factors, driving
habits and medication use on elderly drivers involved in automobile accidents.
The variables used in the regression models are presented in Table 1.

Table 1: Variable definition of automobile accidents involving elderly drivers

Dependent/response variable is NUM ACC (Y),
the number of accidents involving elderly drivers between 1991 and 1995;
Covariates are coded as 1 if true and 0 otherwise.

Variable Description Percentage of 1’s

GENDER subjects who are male 49.2
EDUC subjects who attain Tech/College educa-

tional level
34.3

BLACK subjects who are Black or African-
American

21.0

DRIVAVE subjects who rate their quality of driving
as average or below

15.1

EVERYDAY subjects who drive everyday per week 51.6
HWAY subjects who are comfortable driving on

highway/freeway
53.4

WALK subjects who need help or have difficulty
walking at least 1/4 mile

11.4

OBJECTS subjects with no difficulty noticing objects
off to the side while walking

89.1

WORK subjects who work full time or part-time 20.2
CA BLO subjects who take CA-CHANNEL

BLOCKER as a medication
9.7

VASODIL subjects who take VASODILATOR as a
medication

3.7

GLAUCMED subjects who take GLAUCMED as a med-
ication

4.5

3. The Generalized Poisson Regression Model

Suppose Yi is a count response variable that follows a generalized Poisson dis-
tribution. To model accident data, we define Yi, (i = 1, 2, . . . , 595) as the number
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of automobile accidents involving elderly drivers. The probability function of Yi

is given by

fi(yi, µi, α) =
(

µi

1 + αµi

)
(1 + αyi)yi−1

yi!
exp

[−µi(1 + αyi)
1 + αµi

]
, (3.1)

yi = 0, 1, 2, . . ., and µi = µi(xi) = exp(xiβ), where xi is a (k − 1) dimensional
vector of covariates including demographic factors, driving habits and medication
use, and β is a k-dimensional vector of regression parameters. For details on the
generalized Poisson regression model, the reader is referred to Famoye (1993).
The mean and variance of Yi are, respectively, given by

E(Yi|x + i) = µi (3.2)

and
V (Yi|xi) = µi(1 + αµi)2 (3.3)

The generalized Poisson regression model (3.1) is a generalization of the standard
Poisson regression (PR) model. When α = 0 the probability function in (3.1)
reduces to the PR model. Within the framework of PR model, the equality
constraint is observed between the conditional mean E(Yi|xi) and the conditional
variance V (Yi|xi) of the dependent variable for each observation. In practical
applications and in “real” situations, this assumption is questionable since the
variance can either be larger or smaller than the mean. If the variance is not equal
to the mean, the estimates in PR model are still consistent but are inefficient,
which leads to the invalidation of inference based on the estimated standard
errors.

When α > 0, the GPR model represents count data with over-dispersion and
when α < 0, the GPR model represents count data with under-dispersion. If
α < 0, (3.1) gets truncated and it may not sum to 1, Famoye (1993). However, if
α > 0, (3.1) will always sum to 1 and this is the case in the application presented
in section 5 [see Appendix for the proof]. In (3.1), α is called the dispersion
parameter and it can be estimated along with the regression coefficients in the
GPR model. Using the method of maximum likelihood the estimates of α and β
in the GPR model (3.1) are given by Famoye (1993).

4. Goodness-of-fit and Test for Dispersion

The goodness-of-fit of GPR model can be based on the deviance statistic that
is defined by Famoye (1993). The deviance statistic can be approximated by a
chi-square distribution when µi’s are large. For the accident data, this is not the
case as our dependent variable has a mean of 0.76. We use the log-likelihood
value to measure the goodness-of-fit of the regression models. The regression
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model with a larger log-likelihood value is better than the one with a smaller
log-likelihood value.

The GPR model reduces to the PR model when α = 0. To assess the adequacy
of the GPR model over the PR model, we test the hypothesis

H0 : α = 0 against Ha : α �= 0 (4.1)

The test of H0 in (4.1) is for the significance of the dispersion parameter. When-
ever H0 is rejected, it is recommended to use the GPR model in place of the PR
model. To carry out the test in (4.1), one may use the asymptotically normal
Wald type “t” statistic defined as the ratio of the estimate of α to its standard
error. An alternative test for the null hypothesis in (4.1) is to use the likelihood
ratio test statistic, which is approximately chi-square distributed with one degree
of freedom when the null hypothesis is true.

5. Results

About 59% of drivers who rate their quality of driving as average or below are
involved in automobile accidents. Nearly 59% of African Americans are involved
in automobile crashes. Drivers who take calcium channel blockers show a signif-
icantly reduced risk of about 34.5%. Fifty six percent of males are involved in
automobile accidents. The parameter estimates and their standard errors using
the PR and the GPR models are given in Table 2.

In comparing the sample mean 0.76 of the response variable to its sample
variance 1.33, the data suggests a case of over-dispersion. The estimated dis-
persion parameter from the GPR model is positive, which is an indication of
over-dispersion. The asymptotic “t”-statistic for testing the null hypothesis in
(4.1) is approximately 2.68 as given in Table 2. Thus, the dispersion parameter
α is significantly different from zero (5% level). The Poisson regression model is
not appropriate for this data since we reject the null hypothesis given in (4.1).
The log-likelihood values for the PR and GPR models are −673.3 and −667.0, re-
spectively, which also indicate that modeling over-dispersed data using the GPR
model is more appropriate than the PR model.

In both PR and GPR models, seven independent variables (drivave, everyday,
hway, walk, ca blo, objects, and work) are significant at 5% level. The variable,
gender, is significant under the PR model at 10% level but this is not the case
under the GPR model. The parameter estimates from both models are very
similar; however, the standard errors from the PR model are under estimated.
The standard errors from the GPR model are more appropriate in this case since
the model accounts for the over-dispersion exhibited by the data. At 5% level,
the effect of elderly working drivers is statistically significant and is positively
associated with the number of automobile accidents. This implies that elderly
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Table 2: Determinants of elderly automobile accidents

Poisson GPR
Variable Estimate±se t-value Estimate±se t-value

Intercept −0.5924 ± .1849 −3.20∗ −0.6309 ± .1996 −3.16∗

Black 0.1856 ± .1138 1.63 0.2015 ± .1226 1.64
Ca blo −0.4644 ± .2010 −2.31∗ −0.4686 ± .2098 −2.23∗

Drivave 0.2725 ± .1245 2.19∗ 0.2908 ± .1348 2.16∗

Everyday 0.2250 ± .0998 2.25∗ 0.2167 ± .1068 2.03∗

Gender 0.1735 ± .0997 1.74 0.1689 ± .1063 1.59
Glaucmed −0.2288 ± .2469 −0.93 −0.1883 ± .2626 −0.72
Walk 0.6461 ± .1232 5.24∗ 0.5965 ± .1359 4.39∗

Vasodil −0.5904 ± .3603 −1.64 −0.6075 ± .3726 −1.63
Hway 0.4338 ± .1404 3.09∗ 0.4289 ± .1487 2.88∗

Objects −0.4582 ± .1310 −3.50∗ −0.3977 ± .1443 −2.76∗

Work 0.2828 ± .1108 2.55∗ 0.2450 ± .1206 2.03∗

Educ −0.1453 ± .1048 −1.39 −0.1275 ± .1119 −1.14

α 0.0794 ± .0296 2.68∗

Log-likelihood −673.3 −667.0

∗ means significant at 0.05 level, se = standard error

drivers with part time or full time work are involved in more automobile crashes
than the others. Elderly drivers who rate their quality of driving as average
or below significantly contributed to number of automobile accidents. Elders
who need help or have difficulty walking at least 1/4 mile were involved in more
accidents than the other group. Elders who drove everyday were involved in
more accidents than those who did not. Elderly drivers who take calcium channel
blockers show a significantly reduced risk of automobile accidents.

6. Discussion

With the growing population of older adults, the number of persons aged 65
years or older driving continues to increase. In 1985, there were 15.5 million
American drivers (9.8% of all drivers) aged 65 years or older (Reuben et al.,
1998). With driving being so closely associated with independence and personal
autonomy, it is not likely that this estimate of elderly drivers will significantly
decrease in subsequent years. Jette and Branch (1992), in a ten-year longitudinal
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study, reported that the elderly continue to rely on the automobile as a primary
mode of transportation into their eighth and ninth decades of life. Additionally,
the study revealed that more than three-quarters of all people rely on the auto-
mobile as their primary means of travel and that this pattern of reliance changed
little during the subsequent decades of their lives.

When a data set has too many zeros, Lambert (1992) suggested the use of
zero-inflated Poisson regression (ZIP) model. In the accident data, the observed
percentages of 0, 1, and 2 are, respectively, 47.2%, 36.6% and 12.1%. van den
Broek (1995) proposed a score test for zero inflation in a Poisson regression model.
The score statistic has an asymptotic chi-square distribution with 1 degree of
freedom under the null hypothesis of no zero inflation. For this data, the score
statistic is computed to be 0.67, which is not significant. Based on this result,
it does not appear that there is zero inflation in the data. Therefore, we did
not consider the use of zero-inflated PR model for the data. Also, the data is
over-dispersed which indicates that the PR model is not appropriate either.

To model over-dispersion, the GPR model discussed in section 3 and the
negative binomial regression (NBR) model are among the suitable models. We
applied the NBR model to the data and found the results to be similar to that of
GPR model. Thus, we decided to exclude the parameter estimates of the NBR
model to save space in the paper. If we know before hand that the data is over-
dispersed, either the NBR model or the GPR model can be used. However, if the
type of dispersion is unknown, the choice should be GPR model since it is more
flexible.

In summary, the estimated dispersion parameter from the data is positive and
it is significantly different from zero. Based on the goodness-of-fit measure for
the accident data, the GPR model seems to perform better than the PR model
in identifying demographic factors, driving habits and medication use associated
with the number of accidents involving elderly drivers. Additional studies should
be conducted in order to identify additional risk factors for automobile accidents
involving the elderly to improve traffic safety.
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Appendix: Model (3.1) sums to 1

The Lagrange expansion [see Whittaker and Watson (1927, p.133)] of f(t) =
eθ(t−1) under the transformation u = t/g(t) = te−αθ(t−1) is given by

f(t) = f(0) +
∞∑

y=1

uy

y!

(
∂

∂t

)y−1 [
gy(t)f ′(t)

]
t=0

= e−θ + θ

∞∑
y=1

uy

y!

(
∂

∂t

)y−1

[exp[θ(1 + αy)(t − 1)]]t=0

= e−θ +
∞∑

y=1

uy θy

y!
(1 + αy)y−1 [exp[−θ(1 + αy)]]

f(1) = 1 =
∞∑

y=0

θy(1 + αy)y−1

y!
exp[−θ(1 + αy)]

From Famoye (1993), θ = µ/(1 + αµ) and so by using this value of θ in the last
summation, we get

1 =
∞∑

y=0

(
µ

1 + αµ

)y (1 + αy)y−1

y!
exp

[−µ(1 + αy)
1 + αµ

]
(A.1)

The terms in the above summation are given by (3.1). If α < 0, the right hand
side of (A.1) gets truncated and it may not sum to 1. However, if α > 0, the
right hand side of (A.1) will always sum to 1. Thus, the probabilities in (3.1) will
sum to 1 when α > 0.
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