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Abstract: This paper examines the issues surrounding the analysis of quasi-
complete binary data using logistic regression models with the aid of some
popular statistical software programs. Results from three procedures in SAS
(LOGISTIC, CATMOD and GENMOD) and the pull-down menu in SPSS
were examined. The review was conducted in response to an observation that
some users of these procedures do not always independently account for data
irregularities encountered when interpreting the computer results. This may
be due partly to the fact that the information provided by some statistical
software packages may not be sufficient for the user to make informed de-
cisions regarding the results. The dataset that motivated this review came
from a substance abuse treatment outcome study. Thirty subjects were fol-
lowed up to determine the proportion that relapsed and to determine the
factors that may predict the relapse. Binary logistic regression models were
used to determine the predictors of a relapse. Results showed that there
was quasi-complete separation of the data and as such the interpretation
is limited. SAS and its procedures in the analysis of quasi-complete data
gave very large standard errors, computed more iterations, and provided a
useful warning for researchers regarding the configuration of data. In con-
trast, SPSS provided estimates with smaller standard errors, and did not
necessarily provide warning for researchers of the data configuration. Thus
researchers who make use of statistical softwares without the knowledge of
the iterative procedures used by the statistical package should be aware of
the possibility of erroneous conclusions as a consequence when analyzing
quasi-complete or complete data.
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1. Introduction

Logistic regression models are commonly used for modeling binary data in
clinical, public health, environmental health and epidemiologic studies. For ex-
ample, logistic regression models have been used to analyze alcohol and drug
abuse data for profiling groups of individuals with substance abuse problems.
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A logistic regression model can be fitted using SAS and SPSS, among other
softwares. Both use iterative procedures involving approximations to obtain pa-
rameter estimates for testing hypotheses and predictions. These approximations,
though based on asymptotic maximum likelihood methods, can result in incor-
rect results, depending on the data configuration. Exact methods are available to
remedy these problems using other software such as StatXact5 or LogXact 4.1,
Oster 2002. However, as these packages are not as readily familiar to researchers
when analyzing quasi-complete data with logistic regression models, the guide-
lines for using two of the more common statistical software packages (SAS and
SPSS) should be clearly stated.

The existence, finiteness, and uniqueness of maximum likelihood estimates for
the logistic regression model depend on the pattern of data points in the obser-
vation space (Albert and Anderson 1984; Santner and Duffy 1986). If the data
are completely or partially separated, it may not be possible to obtain reliable
maximum likelihood estimates since convergence may not occur. Convergence
does not occur because one or more parameters in the model become theoret-
ically infinite. Such is the case if the model perfectly predicts the response or
if there are more parameters in the model than can be estimated because the
data are sparse. Parameter estimates are usually obtained through solving the
normal equations. The maximum likelihood estimates exist only if the normal
equations produce a finite solution. Often, a non-unique maximum can occur on
the boundary of the parameter space, at infinity.

Several procedures are available for fitting logistic regression models. In SAS,
these procedures include the logistic procedure (PROC LOGISTIC), the cate-
gorical data modeling procedure (PROC CATMOD), and the generalized linear
models procedure (PROC GENMOD). In SPSS there is the “Statistics” pull down
menu with options for logistic regression. Criteria for convergence in each of these
programs differ slightly. When obtaining the parameter estimates, for example,
the LOGISTIC procedure in SAS converges when the largest change among the
parameters is small. Hence, convergence does not occur when the parameter is
infinite. Eliminating variables can solve the problem of infinite parameters in the
case of data separation. However, it is impossible to determine those variables
suitable for elimination due to the simultaneous effects.

The existence of a maximum likelihood estimate depends on the concavity
of the log likelihood function. However, concavity of the log likelihood func-
tion alone does not imply that the maximum likelihood always exists. Silvapulle
(1986) obtained a necessary and sufficient condition for the existence of the max-
imum likelihood estimator for a class of linear regression models for grouped and
ungrouped data. This condition has an intuitively simple interpretation. For
a given set of data, these conditions may be verified by linear programming.



Quasi-complete Binary Data with Logistic Models 275

The problems of existence, uniqueness and location of maximum likelihood es-
timates in log linear models have received special attention, (Haberman, 1974,
Wedderburn, 1976; Silvapulle, 1981). For logistic regression models, the existence
theorems fall into three mutually exclusive and exhaustive categories: complete
separation, quasi-complete separation and overlap (Albert and Anderson, 1984).

This paper examined the quasi-complete separation in the Relapse Data when
fitting logistic regression models with the aid of SAS and SPSS. Section 2 reviews
quasi-complete separation, complete separation and their properties compared to
overlapped data. Section 3 presents the logistic regression model as encountered
while modeling the Relapse Data with the aid of SAS and SPSS. Some remarks
for researchers who may encounter this phenomenon are given in Section 4.

2. Data Configurations for Binary Responses

2.1 Relapse

Data obtained from a substance abuse treatment outcome study were ana-
lyzed to determine the influence of selected variables on relapse among individuals
who had successfully completed a residential program. For this study, a person
who reported using drugs or alcohol within thirty days of discharge is defined as
having had a relapse. The predictors considered for selection were age, previous
alcohol violations (leading to arrests) and the current severity of family relation-
ship problems. These data (Relapse Data) form the reference for our review of
quasi- complete data with SAS and SPSS.

The Relapse Data, as is true for all other data sets, have to be one of three mu-
tually exclusive and exhaustive categories: complete separation, quasi-complete
separation, and overlap. The configuration of the Relapse Data shows partial
separation, that is, is quasi-complete because one of the variables has a con-
stant value, that is, there was no case that had an alternative value. Of the 30
substance abuse treatment clients followed up after they had discharged from
treatment, 16 did not relapse and did not have previous violations related to
alcohol or drugs. All patients who had alcohol violations had relapsed; that is,
there was no individual with alcohol violations who did not relapse.

2.2 Derived data

The following derived data (Table 1) consist of ten observations with two con-
tinuous independent variables with integer values and binary response variable.
Let Yij be a binary response variable taking on the values 1 and 0, where Yij

represents the j th response of the i th subject. Let xi be the vector of inde-
pendent explanatory variables, which includes the constant 1, associated with the
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intercept. Let X1i and X2i for the i th subject be the two corresponding indepen-
dent variables. Data configurations can be grouped into three mutually exclusive
and exhaustive categories: complete separation, quasi-complete separation, and
overlap.

Complete separation

Complete separation of data points exists if there is a vector b that correctly
allocates all observations to their appropriate response group; that is, b′xi > 0 for
Yij = 1 and b′xi < 0 for Yij = 0. When a data set is completely separated, there
are non-unique infinite estimates. Allowing the iterations of the maximizing
likelihood function to continue, one can see that the log likelihood approaches
zero. The dispersion matrix becomes unbounded, (So 1993). A plot of the data
in Table 1 is shown below in Figure 1.

Table 1: Derived data for configuration

Observation Yij X1i X2i Observation Yij X1i X2i

De-nosied Absolute Percent

1 0 15 40 6 1 35 40
2 0 30 45 7 1 27 28
3 0 34 50 8 1 15 20
4 0 18 49 9 1 38 30
5 0 27 41 10 1 29 20

The complete separation is apparent when one plots the data, that is, there
is no overlap between the Yij = 1 and Yij = 0 observations.

Quasi-complete separation

Quasi-complete separation occurs when there exists a vector b such that b′xi ≥
0 for all j such that Yij = 1 and b′xi ≤ 0 for all j such that Yj = 0 (***** Do
you mean Yij? *****). The equality must hold for at least one subject in each
group. As with complete separation, this configuration also yields non-unique
infinite estimates. If the iterative process of maximizing the likelihood function is
allowed to continue, the dispersion matrix becomes unbounded as in completely
separated data sets. However, as the log likelihood diminishes to zero in the
completely separated case; it approaches a nonzero constant when a data set is
quasi-completely separated. Consider the data in Table 1 with one small change.
The independent values of the first observation are X1i = 30 and X2i = 35.
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Figure 1: Completed separated

Figure 2: Quasi-completed separated
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Figure 3: Overlapped

Figure 2 shows a plot of the data with the first observation replaced. An
examination of the graph of the data points show that we can define a non-trivial
vector such that the vector separates the data points into their respective response
group with at least one of each response group lying directly on the line defined
by the vector of the form (X1,X2, β) is (1,−1, 5). The line X2 = X1−5 separates
the data in two dimensions, but has one observation from each response lying on
the line.

A typical characteristic of quasi-complete separation is that the variances of
the pseudo estimates are seemingly large. Generally, quasi-complete separation
arises only when a number of the explanatory variables have integer coefficients,
and these integral values are forced by the structure of the problem.

Overlapped

When there is no separation (complete or quasi-complete) found in the data
configuration, there is said to be an overlap of sample points. In this data con-
figuration, the maximum likelihood estimates exist and are unique. Generally,
complete separation and quasi-complete separation are problems typically asso-
ciated with small data sets. Complete separation can occur with any type of
data; however quasi-complete separation rarely is present with truly continuous
explanatory variables. Recall the data in Table 1 and replace the first observation
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with the values of X1i = 34 and X2i = 35. The data are now in an overlapped
configuration. This is also seen in Figure 3.

2.3 Binary data configurations with statistical software

The Relapse data as described in this paper were found to be quasi-complete.
It was the motivating factor for looking at data configurations. When looking at a
graph of the data, we found a non-trivial vector such that the vector separates the
data points into their respective response group with two; one of each response
group lying directly on the line defined by the vector.

If the data configuration is one of complete separation, it will be apparent
graphically since no overlap will be seen between the cases when Yij = 1 and
Yij = 0. Using SAS procedures when fitting logistic regression models would
have resulted in a warning: “There is a complete separation of data points and
that the maximum likelihood estimate does not exist”. In particular, the warning
says: “The LOGISTIC procedure continues in spite of this warning. The results
given are based on the last maximum likelihood iteration. Validity of the model fit
is questionable.” Similar warnings are obtained using PROC GENMOD in SAS.
The warning states: “Convergence is not attained for at least one side of profile
likelihood confidence interval, the number of iterations i equals 50.” Thus the
researcher of the Relapse data would be alerted that the data are separated and
do not provide conclusive evidence regarding the impact of the predictors. This
configuration also yielded non-unique infinite estimates. If the iterative process
of maximizing the likelihood function were allowed to continue, the dispersion
matrix becomes unbounded.

When confronted with quasi-complete data as it is in the Relapse Data, PROC
LOGISTIC gave the warning: “That there is possibly a quasi-complete separation
of data points. In particular, the maximum likelihood estimate may not exist.
The LOGISTIC procedure continues in spite of the above warning. Results shown
are based on the last maximum likelihood iteration. Validity of the model fit is
questionable.” It is typical of quasi-complete separation data that the variances
of the pseudo estimates are seemingly large. A slight perturbation of appropriate
data points would remove the separation, or make it complete. Such a situation
can be tested by appropriately perturbing the coefficients by a percent or so (not
any coefficients which have known exact values). If the answers vary wildly, this
suggests numerical ill conditioning, and the specific solution has limited meaning.

If the Relapse Data were complete there would have been a vector b that
correctly allocates all observations to their appropriate response group; that is,
b′xi > 0 for Yij = 1 and b′xi < 0 for Yij = 0 where Yij represents the j th response
of the i th subject and xi be the vector consisting of age, alcohol violations, family
relationship, and the constant 1 associated with the intercept. A complete data
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set it would have produced non-unique infinite estimates, with the log likelihood
approaching zero and the dispersion matrix becoming unbounded, (So, 1993).
Webb (2002) reported that there are some shortcomings of the definition for
complete separation since for b = 0 the restriction will always hold. Therefore, one
needs a nonzero vector, which none of the software tutorials explicitly mention. In
particular, one needs to determine if there is a nonzero feasible vector. Silvapulle
and Burridge (1986) demonstrated one such method for determination.

If the Relapse Data were overlapped, then there would have been cases in
the two response groups distributed across the categories of the response variable
and the maximum likelihood estimates would exist and be unique. Complete
separation and quasi-complete separation are problems generally associated with
small data sets. Complete separation can occur with any type of data; however
quasi-complete separation rarely is present with truly continuous explanatory
variables.

3. Binary Logistic Models

There are several statistical procedures that are useful for fitting binary lo-
gistic regression models. In particular in SAS, the procedures include PROC
LOGISTIC, PROC CATMOD, and PROC GENMOD and in SPSS there is a
pull-down menu for binary logistic regression.

A logistic regression model was fitted to the Relapse Data with the binary
response as whether or not a person used drugs and/or alcohol within the 30
days of discharge. Age, alcohol violation (ALCVIOL), and a family relationship
score (FAMCOMP) were used as prognostic factors. Alcohol violation is a binary
variable, where 0 denoted no arrests and 1 denoted at least one arrest. The family
score ranged in values from 0.00 to 1.00, where 0.00 means that there were no
family problems and 1.00 indicating severe family problems. The variable age
was measured in years.

When fitting logistic regression models with SAS using PROC LOGISTIC
on the Relapse Data, the estimation process does not converge since the largest
change among the parameters is small. In this case, convergence cannot be ob-
tained since one or more of the parameters are infinite. In such situations one may
want to reduce the number of variables and/or recode the continuous variables
so they are treated as categorical. However, as many researchers have pointed
out, there is no easy way to know exactly which variables should be eliminated
or which continuous variables to categorize as the variables are fitted simultane-
ously. Instead of reducing or altering the variables, one can use a different rule to
decide when to stop the iterations. Such adjustment is possible when using SAS
as shown i n SAS 6.11 release LOGISTIC documentation. The resulting model
is usually appropriate for prediction or classifying observations, but not suitable
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Table 2: Iteration history for PROC LOGISTIC for relapse data

Iteration −2 log L Intercept AGE FAMCOMP ALCVIOL

0 41.46 −0.1335 0 0 0
1 21.59 −0.453454 −0.038254 3.363752 2.574144
2 17.33 0.918579 −0.108884 6.079823 4.107869
3 14.66 3.138064 −0.217551 9.730740 6.351777
4 12.93 6.081887 −0.372817 15.504767 9.658252
5 12.25 8.930162 −0.528479 21.797471 13.132423
6 12.12 10.546430 −0.617270 25.561036 15.535184
7 12.10 10.925740 −0.637943 26.434712 16.861932
8 12.10 10.941250 −0.638783 26.469832 17.877148
9 12.09 10.941274 −0.638784 26.469888 18.877988
10 12.09 10.941274 −0.638784 26.469888 19.878290
11 12.09 10.941274 −0.638784 26.469888 20.878401
12 12.09 10.941274 −0.638784 26.469888 21.878442

to make inferences.
The logistic regression procedure in SAS has a fairly simple approach to rec-

ognize data configurations that lead to infinite parameter estimates. The idea
behind this empirical approach is that any convergence method of maximizing
the log likelihood will necessarily yield a solution giving complete separation
when such a solution is possible. Within the first eight iterations, if SAS had
met convergence criteria in maximizing the log likelihood function, SAS does not
perform an internal check for complete or quasi-complete separation. If the con-
vergence criterion is not met within the first eight iterations, as with the Relapse
data, SAS computes the probabilities of each observation’s observed response.
Complete separation occurs when the probability of all observations’ observed
response is one or zero. When this occurs the iteration process ends. If the data
configuration is not completely separated, the SAS program then looks for an
observation having a large probability (> 0.95) of the observed response. Since
the Relapse data have a quasi-complete separated configuration, the asymptotic
dispersion matrix was not bounded and some of the diagonal elements of the
dispersion matrix were greater than or equal to 5000. Under these conditions,
the iteration process subsequently ended and the SAS program stated that the
data configuration is quasi-complete.

When PROC LOGISTIC detects a quasi-complete separation, which impacts
on the validity of the model, SAS produces a warning that the maximum likeli-
hood estimates may not exist because quasi-complete separation of data points
is detected. The iteration history for the Relapse data is given in Table 2. SAS
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Table 3: Parameter estimates, standard errors, and P -values

Parameter SAS (LOGISTIC) SAS (CATMOD) SPSS

Intercept 10.941 −21.373 10.941
8.015 8.001 8.014
0.172 0.008 0.172

AGE −0.639 0.639 −0.639
0.407 0.406 0.407
0.116 0.116 0.116

FAMCOMP 26.470 −26.462 26.470
16.593 16.563 16.593
0.111 0.110 0.111

ALCVIOL 21.878 0.000 19.872
182.50 10.436 67.173
0.905 . . . . . . 0.767

continues processing the data and gives the estimates and standard errors, Table
3.

The LOGISTIC procedure in SAS offers two iterative maximum likelihood
algorithms: The Fisher-scoring method (default algorithm) and the Newton-
Raphson method. Fisher-scoring method is the same as fitting a model by iter-
atively reweighting least squares. Both algorithms, Fisher-scoring and Newton-
Raphson, will give the same parameter estimates in this instance. However, the
estimated covariance matrices of the parameter estimators are not necessarily
the same. This is due to the fact that the Fisher-scoring method is based on the
expected information matrix while the Newton-Raphson method is based on the
observed information matrix (SAS Inc., Iterative Algorithms for Model-Fitting).
In the fit of a binary logistic model the observed and expected information ma-
trices are the same resulting in identical estimated covariance matrices.

The Relapse data were also fitted using the GENMOD procedure, which fits
a generalized linear model to the data by maximum likelihood estimation of the
vector of parameters. In general, there is no closed form solution for the maximum
likelihood estimates of the parameters. The PROC GENMOD, as with the other
SAS procedures, uses an iterative process to estimate the parameters. When
infinite parameters are present in the model, it signifies that either there are one
or more zero frequencies or there is a poor model choice with collinearity among
the estimates.

In SPSS, the maximum likelihood estimates for the vector of parameter are
obtained using a Newton-Raphson based algorithm. The convergence of the max-
imum likelihood estimates can be based on the following: the absolute difference
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for the parameter estimates between iterations, the percent difference in the log-
likelihood function between successive iterations, or the maximum number of
iterations specified. Otherwise, if during the iterations, the value of the prod-
uct of the predicted probabilities and its complement is less than 10−10 for all
cases then the log-likelihood function is very close to zero. When this occurs,
the iterations stops and the message “All predicted values are either 1 or 0” is
displayed.

In light of these approaches, when using SPSS neither age, family score, nor
alcohol violations, had a significant effect on the probability of a person dis-
charged from rehabilitation center relapsing within thirty days. Although none
of the variables were found to be significant in the model, it is of interest to exam-
ine the data configuration and check whether the maximum likelihood estimates
converge. The initial −2 log likelihood has a value of 41.455. The maximum
likelihood estimates converged on the tenth iteration. The last decrease in the
log-likelihood function was less than .001

The approach to the analysis of quasi-complete data may differ among pro-
grams in the iterative procedures. For example, SAS terminates at the twelfth
iteration whereas a program such as SPSS may terminate at the tenth iteration.
An examination of the iteration shows that the last change in the ALCVIOL
variable was one unit, while the other variables had negligible change. The last
change in the log likelihood function in SAS is 0.0001033108, which does not
reach the minimum level for SAS to see convergence in the maximum likelihood
functions, which is 10−8. None of the three variables under consideration were
found to be significant in predicting the probability that a person will use drugs
or alcohol within 30 days out of rehabilitation. SAS detected quasi-complete
separation, and the standard error for the ALCVIOL variable is very large. The
estimates for the variable ALCVIOL differ substantially in both programs.

The data were also fitted using PROC CATMOD and PROC GENMOD in
SAS. The CATMOD procedure stated that the maximum likelihood computa-
tions converged but noted that ALCVIOL may be a redundant or restricted
parameter. It refers to the parameter estimate associated with ALCVIOL as
infinite. The estimates based on PROC CATMOD are given in Table 3.

The GENMOD procedure also produced a warning about the convergence of
the log maximum likelihood function: “that the negative of the Hessian is not
positive definite and the convergence is questionable. The procedure continues
but the validity of the model fit is questionable”. The specified model did not
converge.

4. Conclusions

When fitting binary logistic regression models using SPSS, or SAS with LO-
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GISTIC, CATMOD or GENMOD procedures, the resulting parameter estimates
may differ substantially if the data are not overlapped . In particular SAS ac-
knowledges or notifies the user of the potential validity of the model, while SPSS
may not provide such clarity in a warning. This is in part due to the fact that
SPSS stops at the 10th iteration while SAS goes to the 12th and beyond if the
“NO CHECK” option is instituted in the program. In these cases when quasi-
complete or complete data are encountered the standard errors provided by SPSS
may be substantially smaller than the standard errors provided by SAS. However,
these standard errors are not appropriate to be used in any analysis.

The Relapse data have a quasi-complete data configuration. Since SAS deliv-
ered warnings regarding the configuration of the data, the researcher should use
this as an alert to look for alternate models. Not all programs will necessarily
give these details and as such the researcher may conclude that the variables are
all non- significant when in fact that is not known. In particular the results give
the impression that alcohol violations variable was not significant when it is im-
possible to determine this due to the quasi-complete separation between relapse
and alcohol violations. These results suggest that not all softwares are equipped
for binary logistic models when the dataset is sparse and there are sampling ze-
ros and more importantly the data is not overlapped. Indeed, since it is possible
for software programs to fail to acknowledge the quasi-complete separation, the
use of any statistical packages without caution under irregular conditions is ill
advised. But then how does one know that the conditions are irregular.

Even if there is no alert from the statistical software regarding data separation
one should be concerned if the standard errors are large. Omitting a variable
and re-running the data is one method of approach. If the coefficients change
substantially then this is a further sign to explore the data configurations.
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